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   I)  THE ACCRETION WEDGE.

   I1) The model.

   Consider a 2-D prismatic body having a triangular vertical section (Fig.I1), in the presence of gravity. The wedge rests on a
rigid basement having the slope equal to θ0 . Both the compressional force acting on the left side of the wedge and the friction

to the basement cause thickening of the incompressible material and the development of a topographical slope equal to α . It is
assumed that the material is into a state of plastic yielding according to the VON MISES-HENCKY criterion. It follows to
obtain a condition relating the slopes of the topography and that of the basement to the geometry of the wedge, its yield strength
and the friction coefficient to the basement.

Fig.I1. The 2-D accretion wedge.

   I2) Equations of equilibrium. Yield condition. Stress field.

   Taking into account that the 2-D case is discussed, the stress in polar co-ordinates is
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Because the material is assumed to be incompressible, the POISSON coefficient is ν = 1 2/ .
Using polar co-ordinates, the equilibrium equation (d40)-(d41) in the presence of gravity are

∂

∂

∂ θ
∂θ

θθ ρ θσ σ σ σrr
r

r
r

rr
r

g+ +
−

+ =sin 0                                                (i2)

∂ θ
∂

∂ θθ
∂θ

θ ρ θσ σ σr
r r

r
r

g+ + + =2 0cos                                                       (i3)

Using (i1), the yield condition (r54) is

1 3 2σ σ− = k                                                                       (i4)

Taking into account again that the compressive stress is assumed to have positive sign, eqs.(d11)-(d13) give
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where the trace of the stress has been denoted by f r tr( , ) ( )θ σ= 1

2
 and ψ ψ θ= ( , )r  is the angle between the radius and

the local direction of the maximum compressive stress (variable inside the wedge). However, it will be assumed that
ψ ψ θ= ( ) only. After some manipulations, substituting (i5) into (i2)-(i3) gives
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Eqs.(i6a) and (i6b) are differentiated with respect to θ , r  respectively, the results of the differentiation being equal each other.

After some elementary manipulations, it follows that
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where C is a constant of integration. Substituting (i8) into (i6a) gives
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f Ck r gr g= + +2 ln sin ( )ρ θ θ         ,                                           (i10)

To find the unknown function g g= ( )θ , eq.(i10) is substituted into (i6b) to obtain
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Using (i8), it follows that
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i.e.
g Ck C A= + +ln( cos )2ψ              ,                                           (i13)

where A is another constant of integration. Hence the final stress inside the wedge is
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   I3) Boundary conditions. Final results.

   Consider the segment AC placed on the side OA of the wedge, having θ = 0 and OC r OA≤ ≤ , where the point C is very

closed to the point A. The outward pointing normal vector  is n e
→

= −
→
θ . Here, is acting the lithostatic pressure due to the

topography. Hence
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Because the angle θ0 has very small values, it will be assumed for all angles θ that

θθ ρ ασ = − gr tan          ,                                                (i17)

or
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However, all the next derivations are supposed to be valid at the rear of the wedge, where the topography is generated due to
the horizontal compression, i.e. the radius r is a mean value of the lengths OA and OC, the point C being closed to A. By
differentiating (i14b), eq.(i18) leads to
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   Consider now the side OB of the wedge, having θ θ= 0 and the outward pointing normal vector n e
→

=
→
θ . Here, is acting

the friction force due to the basement, assumed to have the magnitude equal to λk , where λ is a friction coefficient. Hence
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The next partial derivative follows to be evaluated in two ways. In the first approach, eqs.(i22), (i16a) and (i20) are used to
give
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The dominant stress is into the wedge is the horizontal compression. Hence ψ θ≅ , both angles having small values. It follows

cos 2 1ψ ≅ . Eqs.(i5c), (i8), (i19) and (i20) give
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From (i23) and (i24) it follows
ρ α θ λgh k k0 2 0tan + ≅         ,                                                    (i25)

showing that the friction force (resistance to sliding of the wedge onto the basement) is balanced by tqo forces. The first one is
due to the topography and the second force is related to the compressive stress and to the slope of the basement. Further details
related to the application of eq.(i25) in real cases are presented by Ranalli (1987).


