Characterization and Assessment of the Controls on Performance of Niobrara and Codell Reservoirs, Northern DJ Basin, Colorado

> Chad Taylor (MUDTOC) Geology M.S. Student Ali Downard (RCP) Geophysics M.S. Student 04/22/21

<u>ctaylor1@mymail.mines.edu</u> <u>adownard@mymail.mines.edu</u>

Chalk Bluff Development Optimization Project

Modified from Sonnenberg and Underwood, 2012

- Redevelopment of the Hereford Field in the northern Denver-Julesburg Basin
 - Features legacy wells and newly drilled wells
- Two targets
 - Codell Sandstone
 - Niobrara Chalk
- Goals
 - Accelerate learnings in Chalk Bluff to optimize additional D&C in the area
 - Generalize learnings to be applied to other unconventional reservoirs (e.g., Permian, Eagle Ford, Austin Chalk)

2

RESERVOIR CHARACTERIZATION **PROJECT**

Characterizing Geologic Heterogeneity

Data Overview

Assessing geologic heterogeneity

REGIONAL GEOLOGY AND DJ BASIN OVERVIEW

Depositional Context

Codell Sandstone (Turonian Age)

Modified from Sonnenberg, after Underwood, 2013

Figure 2.1. Stratigraphic column of Cretaceous interval for the 3D seismic area. A separate "D" bench may be found in some areas. Two tiers of polygonal type faults are recognized. Approximate drilling depths are indicated. Niobrara Formation (Santonian - Turonian Age)

Structural Context

Yonkee and Weil, 2015

Canada

Α

Upper Pierre Sub-Parkman

Lower Pierre

Niobrara Codell

Basement

í.

Hereford Field Production Evolution

1st Generation Conventional Wells (*Pre 2009*)

1st Generation Unconventional Wells, EOG Uncemented Liner – Sliding Sleeve Completions (SRL) (2009 - 2015) 2nd & 3rd Generation Unconventional Wells Fifth Creek & HighPoint Resources Cemented with Plug and Perf Completion (SRL & XRL) (2015 - 2021)

Legacy Field Progression - Cumulative Production

Produced Fluid Heterogeneity

Stratigraphy, structure, and temperature

DETAILED REGIONAL STUDY OF HEREFORD FIELD

Hereford Geology

12

Codell

Niobrara

Net = (>/=) 20 ohm/m deep resistivity

Present-Day Expression of Structure

B Chalk Formation Temp

C.I. = 10 Deg (f)

Niobrara B Chalk – Formation Temp w/ Shading C.I. = 10 Deg (f) Shade Interval 170 deg (F) to 200 deg (F)

Compaction

From Bredehoeft Et al 1988

Shale (ductile) compact differentially in relation to the Sand (brittle)

Niobrara lotal Chalk – Isopach C.I. = 20'

Total Chalk = Nio Chalk (A+B1+B+C)

Marl to Chalk = (Nio Marl A+B1+B+C) / (Nio Chalk A+B1+B+C)

Marl (ductile) compacts differentially in relation to the Chalk(brittle)

Compaction – Fluid Compartmentalization

Petroleum System Charge Analog - (Niobrara Chalk Reservoir Fracture)

Figure 12—Diagrammatic cross section of a compartmentalized flow system.

From Bredehoeft Et al 1988

Basement Control on Temperature and Expulsion 🙆

Basement Control on Temperature and Expulsion 🙆

Compaction – Impacts on Reservoir Quality

Niobrara B Chalk – Net to Gross Isopach C.I. = 10% Net to Gross

W/ B Chalk Formation Temperature Shade

Codell– Net to Gross Isopach C.I. = 10% Net to Gross

W/ B Chalk Formation Temperature Shade

Hereford – (1st Generation) CUM GOR Bubble Map - With B Chalk Formation Temp Shade 2400 to 200 (scf / BO deg)

HIGH-RESOLUTION PETROPHYSICAL ANALYSIS AND RESERVOIR CHARACTERIZATION

Vertical log assessment

Geological Data Integration - Petrophysical Model 🛆

	rormation	Plem Thickness
NIO Gen	7321	274
A Ch	7324	13
A MARL	7337	16
B1 CH	7353	33
B1 MARL	7386	14
B CH	7400	28
B MARL	7428	19
ССН	7447	48
C MARL	7495	43
C MARL BASE	7538	27
Ft HYS	7565	30
Ft HYS BASE	7595	
Codell	7596	17
Upper Codel		8
Lower Codel	7604	9
Codell BASE	7613	

。 喀爾城區黑爾爾爾加城城港港		副無意義	医眼腺膜膜	18 B. e. e.	毘诺伽姆 (e.) 🏭 (etc	罐罐罐罐	協議論論	her ter nachter nachte ber an der
								
		1 V ()		jii				
				<u>1</u>				
				I		1 " "	, ,	
	11 11 11 11	(8,000				1. 3 13		

					Log Curves a	and Clay Calos					
Cal Formation Psi = (psift)"depth	Cal Formation temp (deg(f) y = mx+c	GAPI (ECGR): Environmentall y Corrected Gamma-Ray	LOG HIRES Gamma -NMR (API)	SP (mV)	LOG Density from Combo - (G/C3)	Density from Core - (G/C3)	PE (Barns)	Clay Volume Steiber: (V Clay) % Calculated Vol = IGR/[3.0 - (2.0"IGR]	Clay Volume Clavier: (V Clay) % Calculated Vol = 1.7*[3.38*(IGR+ 0.7)*2]*0.5	(NMR) Clay Volume Steiber: (V Clay) % Calculated Vol = IGR/[3.0 - (2.0*IGR]	Volume Clavier: (V Clay)Dece Calculated V = 1.7*[3.38*(IGF 0.7)*2]*0.5
3,206.94	189.86	48.84	135.18	-122.32	2.53	2.66	4.58	4.19%	5.24%	14.75%	18.16
3,152.12	187.50	84.88	183.15	-128.18	2.52	2.68	5.24	7.68%	9.58%	21.65%	26.77
3,158.35	187.77	158.34	261.95	-119.42	2.53	2.64	5.07	16.17%	20.03%	42.47%	48.71
3,168.89	188.22	63.23	155.33	-123.05	2.50	2.64	4.77	5.23%	6.57%	16.89%	21.06
3,178.99	188.65	75.07	175.27	-125.60	2.50	2.63	4.76	6.32%	7.95%	20.20%	25.07
3,188.02	189.04	32.99	113.10	-140.68	2.48	2.66	5.02	2.61%	3.26%	10.68%	13.41
3,198.13	189.48	51.76	140.15	-120.10	2.56	2.67	4.53	4.25%	5.34%	14.82%	18.47
3,212.53	190.10	27.19	102.60	-120.13	2.56	2.66	4.38	2.13%	2.66%	9.17%	11.55
3,232.10	190.88	45.26	142.67	-116.59	2.51	2.61	4.24	3.67%	4.60%	15.17%	18.91
3,247.15		32.58	131.48	-114.14	2.54	2.69	4.16	2.60%	3.24%	13.34%	16.71
3,259.40	191.58	9.50	61.18	-122.69	2.61	2.71	4.51	0.74%	0.92%	4.33%	5.43
3,269.94	192.56	19.74	106.46	-124.01	2.48	2.70	2.52	1.53%	1.91%	9.62%	12.12
3,268.00	192.48	17.28	112.80	-123.27	2.50	2.70	2.48	1.34%	1.67%	10.43%	13.14
2 271 66	102.64	21.52	101.20	124.62	2.47	2.70	2.54	1.670/	2.08%	0.070	11.20

	NN		
NMR Total Porosity TCMR .CFCF	NMR CFCF (BFV): Bound Fluid Volume	NMR CFCF (CMFF): CMR Free Fluid	NMB T2 Logarithmic Mean T2LM (ms)
0.011	0.0098	0.0011	107.43
0.010	0.0093	0.0009	31.51
0.013	0.0119	0.0014	61.42
0.011	0.0099	0.0006	171.91
0.015	0.0135	0.0020	180.28
0.012	0.0110	0.0008	45.08
0.010	0 .0078	0.0019	58.46
0.009	0.0080	0.0009	133.16
0.011	0.0101	0.0009	122.66
0.012	0.0106	0.0013	121.11
0.011	0.0094	0.0015	107.34
0.008	0.0072	0.0011	14.17
0.010	0.0084	0.0012	12.36
0.007	0.0062	0.0010	15.50

Sample Organics									
Diff - Fm A Smol	Sample .ve vs .ve Ave	TOC (Schmoker) TOC Vt% = 0.01°(154.497/D ens)-58.271	Sample TOC	Sample (S1) Fee Oil Yield B0/Ac-Ft					
	1.235	3.715	2,480	94.053					
	1.117	4.064	2.947	106.877					
	-0.048	3.853	3.901	138.960					
	1.836	4.490	2.654	129.614					
	1.748	4.420	2.673	117.529					
	2.730	4.919	2.188	139.510					
	0.823	3.065	2.242	44.332					
	0.788	3.075	2.287	58.190					
	0.318	4.345	4.028	153.523					
	1.780	3.541	1.761	74.330					
	1.487	1.873	0.387	7.584					
	-4.212	4.990	0.778	42.231					
	-3.687	4.555	0.868	29.693					
	-4.676	5.364	0.688	54.770					

23

Petrophysical Model – Reservoir Deliverability

	Calculated Org	anic Properties	
Matrix (Ambrose corrected ¢eff INDO CAL with Clav) = (¢eff - ¢Organo Matrix OM)	ASQ Organino ¢om = Vke* OM (K from Smoker)	ASQ Organino ¢om = Vke OM (K Sample TOC Stage level))	Volume of Kerogen vke = {SMDKER TOC*KVR 8 pb)/ pKerogen)/100
0.092	0.026		0.086
0.089	0.028		0.094
0.099	0.027		0.090
0.092	0.031		0.104
0.090	0.031		0.102
0.085	0.034		0.113
0.084	0.022		0.072
0.092	0.022		0.073
0.111	0.030		0.100
0.108	0.025		0.082
0.062	0.013		0.045
0.107	0.034		0.114
0.102	0.031		0.105
0.112	0.037		0.122

			Porosity and Perm					Calculated SV & Swe					we		
	Log Density Porosity (Not Corrected) =	TOTAL POROSITY (Log Uncor) = ((2.71-pb)/(2.71- pFluid))	¢EffLogCorr- SIM INDO (CAL) = ¢CDP(1- ClavierSHCal)	ASQ Sand Shale - ¢e = ((¢Dclay*2 + ¢Nclay*2)/2)*1/ 2	Core Ave. (¢)	Core Ave. (HZ K mD)	Core Ave. R35 (Micron) (Vinland CALC)	Core Ave. Cap Psi CAL)			Ratio SV = (Ro/Rt)^.5	SIMNDUX - INDO Form	ASQ Swe (Shaly Sand) 1/¢ Corr Den(Square Root (Rw/Rt + (0.35Vclay/2)*2 - 0.35Vclay/2)	ASQ Shale Method - Correced - Log Swe (Ro/Rsh)^0.5	SW (Mineral Matrix MM) = (Ro/RT)^ 0.5
	0.104	0.085	0.069	0.118	0.078	0.006	0.032	5,648.13			0.806	0.812	0.645	1.027	1.324
	0.113	0.094	0.069	0.117	0.098	0.019	0.060	3,759.00			0.602	0.627	0.364	0.824	0.957
	0.108	<mark>0</mark> .089	0.047	0.126	0.078	0.001	0.011	12,192.21			0.697	0.647	0.312	0.881	1.114
	0.122	0.104	0.082	0.123	0.086	0.011	0.037	5,882.29			0.368	0.399	0.203	0.752	0.583
	0.121	0.102	0.077	0.121	0.076	0.002	0.021	6,745.44			0.409	0.436	0.213	0.764	0.649
_	0.132	0.113	0.098	0.119	0.098	0.026	0.074	2,547.46			0.278	0.309	0.178	0.694	0.440
	<mark>0</mark> .088	0.070	0.058	0.106	0.067	0.002	0.024	5,187.07			0.887	0.819	0.629	1.133	1.441
1	0.089	0.070	0.062	0.114	0.069	0.003	0.028	4,878.56			0.896	0.929	0.766	1.085	1.445
	0.119	0.100	0.080	0.141	0.074	0.002	0.019	8,207.95			0.579	0.624	0.431	0.803	0.923
	0.099	0.081	0.066	0.133	0.079	0.002	0.023	5,313.25			0.993	0.998	0.831	1.057	1.613
	0.058	0.041	0.038	0.075	0.074	0.004	0.033	3,830.83			2.070	1.990	2.040	2.067	3.599
	0.134	0.115	0.101	0.141	0.124	0.015	0.043	3,461.08			0.799	0.886	0.731	0.694	1.265
	0.124	0.105	0.092	0.134	0.125	0.013	0.045	2,869.34			0.926	1.017	0.845	0.747	1.468
	0.143	0.124	0.110	0.148	0.124	0.017	0.040	4,171.17			0.687	0.770	0.628	0.648	1.085

BVW Scenarios (Grain Size & Wettability)

Calibrated Organic and Effective Porosity

Effective Reservoir Saturation

Reservoir Quality Summary

		Niobrara Monophasic	Sample 1.01 2010	Niobrara Recombined Sample 2018			Codell Rec	2018		
		At Saturation Point (2051 psi and 230F) At Saturation Point (2093 psi and 190F)			At Saturatio	on Point (1918 psi d 195F)				
	Bo	1.416	RB/STB	Bo	1.36		RB/STB	Bo	1.337 RB/STB	
	Rs	591	SCF/STB	Rs	583.84		SCF/STB	Rs	522.34 BCF/STE	3
		Gas at 1615 psi	and 230F		Gas at 1715 psi and	190F		Gas at 16	15 psi and 195F	
	Bg	0.010343	RCF/SCF	Bg	0.0093		RCF/SCF	Bg	0.0101 RCF/SCF	
		Shrink Factor (OIL)	1.3	3						
				Posonyoir Volum						
				Reservoir volum						
		Adsobred Gas in Place	SIMX EFF and Sat - Free	Oil in Place	SIMX EFF and ASQ Shale Sand SWE Sat -	SIMX EFF and ASQ				
		Vol (Gs scf/area) =	(Gf) =	Volume -	Free Gas in Place	Volume - (OOIPstb)				
		Den (p)	43560*Area*(h)*φ*ff*c tive"(Sq - Set Gar - (1-	=7758*(h)*(φeffec	43560*Area*(h)*¢effe	=7758*(h)*(deffectiv				
			5us))" (1/Bq)	tive* (1-Swe))*	ctive*(Sg = Sat Gas = (1				Formation	Mem Thickness
		26,874,984,658.63	18,/23,226,220./1	23,855,151.83	28,819,063,979.3	36,718,199.03		NIO Gen	7321	274
		1,462,024,108.69	1,047,085,173.20	1,334,085.03	1,775,514,885.4	2 2,262,173.02		A Ch	7324	13
		2,444,293,988.24	893,501,832.39	1,138,405.40	1,620,241,089.1	2,064,339.59		A MARL	7337	16
		3,454,294,455.07	4,961,696,354.76	6,321,667.99	6,558,411,637.0	5 8,356,033.49		B1 CH	7353	33
		1,498,008,720.93	1,898,894,218.08	2,419,369.90	2,632,018,836.2	3,353,439.64		B1 MARL	7386	14
A/2 DSL 320		2,445,664,226.70	5,804,115,049.49	7,394,988.67	6,897,496,814.5	7 8,788,059.91		В СН	7400	28
A DSU 640		1,763,049,393.64	852,068,621.60	1,085,615.59	1,497,013,861.4	1,907,336.51		B MARL	7428	19
		4,492,909,107.65	866,989,731.24	1,104,626.49	2,348,650,631.8	5 2,992,401.88		с сн	7447	48
		6,651,418,871.22	4,241,426,769.96	5,403,976.77	6,270,779,180.3	7,989,562.68		C MARL	7495	43
		1,996,900,784,41	873,786,513,65	1.113.286.23	1,856,261.099.4	2 2,365,051.29		C MARL BAS	E 7538	27
		891,995,575.84	-2,594,548,890.44	-3,305,699,40	-2,515,333.666.1	-3,204,771.75		Ft HYS	7565	30
		scf	scf	BO	scf	BO		Et HYS BASE	7595	
Total HC	ET LIVE	25 982 989 082 70	21 317 775 111 15	27 160 851 23	31 334 397 645 4	7 39 922 970 79		Terris SASE		
TOtal HC		23,362,363,082.79	21,317,773,111,13	27,100,031.23	31,334,357,043.4	33,322,310.78				
		644 439 544 65	C04 C45 522 24	042 409 56	4 424 705 252 0	1 001 105 05		Cardall	7505	17
		014,428,514.05	081,045,539.31	543,188.30	1,451,795,362.9	1,981,100.05		Ulanan Cal	1220	1/
		326,971,407.65	-4,356,924.99	-6,028.65	363,231,710.2	502,601.39		Opper Code		8
		303,598,099.39	696,950,063.55	964,365.33	1,102,505,346.9	1,525,529.57		Lower Code	II 7604	9
								Codell BASE	7613	
				AV	'E Statistics (Ir	ו Place) - 6	540 AC			
					·	•				

B Chalk:	Codell
Low case : 6.2 MMBO	Low case : 454 MBO
High case: 7.35 MMBO	High case: 1.3MMBO
Low case : 5.1 BCF	Low case: 696 MMCF
High case: 5.8 BCF	High case: 1.1 BCF

Connecting regional observations to pore-scale observations

DETAILED ANALYSIS OF FIBER-OPTIC WELLS: CHALK BLUFF STUDY AREA

Fiber Wells

Present-Day Expression of Fractures

Niobrara B Chalk

Stage by Stage analysis - Steering Evaluation

Controls on Open Fractures in the Niobrara

Codell

Seismic sensitive to thicker pay zone?

Codell Pay Zone Relationship to RMS Amplitudes

Fracture Impacts on Microseismic Events

Summary

Niobrara

- Structurally-controlled
 - definable fracture fairways
- Fracture depletion
 - redefine reservoir quality for new phases of production
- Upside potential in the Niobrara
 - additional targets in the B1 Chalk and C Marl (should commodity prices allow)

Codell

- Stratigraphically-controlled
 - lower-Codell brittle pay zone
- Oil mixing
 - Potential to develop deeper source intervals
- Upside potential
 - predictable pay across the region, mappable with well and seismic

Recommendations

Optimization

- Adjust completions in the Niobrara to avoid depleted fractures and maximize exposure to saturated matrix and un-depleted fractures
- Drilling
 - More attention on geosteering to target pay (especially in Codell)
 - Basic MWD tools diagnostic for reservoir characterization
- Enhanced Oil Recovery
 - Significant volumes remaining in place
 - Opportunities in both formations but more definable recovery factor in Codell

MUDTOC Consortium Sponsors

Spring 2021

RCP Members and Contributors

RESERVOIR CHARACTERIZATION **PROJECT**

FROM INSIGHT TO FORESIGHT