Evaluating Production Performance of Permian Basin Wells to Improve Hydrocarbon Recovery

Ozan Uzun PhD Candidate, Petroleum Engineering uzun@mines.edu

Previous Work

Enhanced Oil Recovery for Liquid-Rich Unconventional Shale Reservoirs Using Low-Salinity and Wettability Altering Dilute Surfactants

Codell Sandstone

40,000 ppm outside, 40,000 ppm inside

Osmosis increases hydrocarbon recovery 3% Niobrara B-Chalk

5,000 ppm outside 40,000 ppm inside

tside 40,000 ppm outside side 40,000 ppm inside

Osmosis increases hydrocarbon recovery 5%

Low salinity water injection 20% 18% 16% fraction 14% 12% factor, 10% Oil recovery 8% No injection 6% 10-days of Injection 4% 20-days of Injection 2% — 30-days of Injection 0% 0 200 400 600 800 1000 Time, days

Osmosis increases hydrocarbon recovery 3%

Numerical Model

Previous Work

Enhanced Oil Recovery for Liquid-Rich Unconventional Shale Reservoirs Using Low-Salinity and Wettability Altering Dilute Surfactants

Codell Sandstone

Low salinity brine with non-ionic surfactant increases hydrocarbon recovery with additional 6%

- Oil recovery accelerated
- Decrease in IFT between oil-water results in higher imbibition, thus lowering the water production.

Numerical Model

Problem Statement

- **Permian Basin** is the most prolific oil and gas producing geologic basins in the United Sates, spanning West Texas and Southeastern New Mexico. It has produced more than 33.4 Bbbl of oil and 118 Tcf of natural gas during a 100-year period (EIA 2018).
- The ever-increasing water production and usage in the Permian Basin requires attention—it is a major issue.
- Classical waterflooding in unconventional reservoirs is not plausible because of the small pore size and low permeability of the mudstone matrix.
- The practical alternative is **cyclic or continuous gas injection** which is one objective of my research to increase oil production.

Recap - Production Trends

Performance of Oil Wells

12 Months

12 Months

Volum Terry Lynn Garza Color Store Store Store Store Store Otero Eddy Andrews Martin Howard Otero Eddy Andrews Martin Howard Otero Eddy Andrews Martin Howard El Paso Culberson Reserved Upton Resgan Jeff Davis GAS Orceckett Creckett

12 Months

Performance of Gas Wells

12 Months

12 Months

12 Months

Recap - RTA Analysis

Flow

	Well Name	Drill Type	End of Linear Flow Regime (months)	Cumulative Production End of Linear Flow (STB)
_	Red Crest 1	V	32	17,631
	Riverfront State 276	V	31	50,019
1	Russel 5H	н	19	88,142
	Candlestick 212	н	24	93,750
	Red Crest 4H	н	7	84,941
	Red Crest 3H	н	13	87,695
	Red Crest 2H	н	12	148,148
Ē	Blue Crest 3H	н	19	166,682

(Source: Enverus 2019)

Recap - Compressibility vs Permeability/Quartz Content

Recap - Elastic Rock Properties

(Source: Enverus 2019)

- Comparison of static vs dynamic properties from four wells
- Expected unconventional reservoir behavior
- Higher dynamic Young's modulus
- Higher brittleness index

Recap - Geomechanical Model

 $E_h \ge E_v$ VTI system behavior

Static-dynamic Relationship

Validation for the backcalculated static moduli = 86%

Statement of Work

- Step 1:

- Understanding the production trends and behavior of the wells in Delaware Basin
- Preliminary experimental work
- Step 2:
- Building a numerical model
- Preparation for the experiments
- Step 3:
- Conducting experiments
- History matching the production data using numerical model
- Automated interpretation

Current Work – Dual Porosity Model

Required Data for Numerical Model

- Rock Properties (φ, k, etc.)
- Fluid Properties (Composition, Viscosity, etc.)
- Pressure profile (Daily pressure data)
- Rate profile (Daily rate data)
- Completions data (Stimulation report, well design)

Current Work - Summary of Reservoir Properties

- Thickness:
- Initial res pressure:
- Reservoir temp:
- Porosity:
- Matrix permeability:
- Matrix pore compressibility:

400 ft 8175 psia 181.5 °F 0.08 0.004 mD 1 x 10⁻⁵ psia⁻¹

Current Work - Fluid Model

Current Work - Model Grid Structure

- IMAX : 1000
- JMAX : 40
- KMAX:40

50 HF stages

Current Work - Model Rock Properties

Matrix

Natural Fractures

Property	Value	Unit
Porosity	0.08	-
Permeability	0.004	mD
Compressibility	1 x 10 ⁻⁵	psia ⁻¹

Property	Value	Unit
Porosity	0.01	-
Effective permeability	0.01	mD
Compressibility	1 x 10 ⁻⁵	psia ⁻¹

Property	Value	Unit
L _x	1	ft
L _y	1	ft
L _z	1	ft
σ	12	ft ⁻²

Current Work - Initial Model Inputs

Matrix

Natural Fractures

Property	Value	Unit	Property	Value	Unit
Initial reservoir pressure	8175	psi	Initial reservoir pressure	8175	psi
Initial water saturation	0.4	-	Initial water saturation	0.05	-
Global composition, CH ₄	67.59	Mole %	Global composition, CH ₄	67.59	Mole %
Global composition, C ₂ H ₆	9.24	Mole %	Global composition, C ₂ H ₆	9.24	Mole %
Global composition, C ₃ H ₈	5.51	Mole %	Global composition, C ₃ H ₈	5.51	Mole %
Global composition, $IC_4 - NC_4$	2.79	Mole %	Global composition, $IC_4 - NC_4$	2.79	Mole %
Global composition, $IC_5 - FC_6$	2.31	Mole %	Global composition, $IC_5 - FC_6$	2.31	Mole %
Global composition, $FC_7 - FC_{10}$	5.62	Mole %	Global composition, $FC_7 - FC_{10}$	5.62	Mole %
Global composition, $FC_{11} - C_{15}$	2.98	Mole %	Global composition, $FC_{11} - C_{15}$	2.98	Mole %
Global composition, $FC_{16} - C_{22}$	1.69	Mole %	Global composition, $FC_{16} - C_{22}$	1.69	Mole %
Global composition, $FC_{23} - C_{30+}$	1.35	Mole %	Global composition, $FC_{23} - C_{30+}$	1.35	Mole %

Future Work - Laboratory Experiment and Procedures

Capillary Pressure – Relative Permeability

Ultra-High-Speed Centrifuge (ACES-200)

- Capillary Pressure
- Relative Permeability
- Drainage (15,500 RPM maximum speed)
- Forced Imbibition (16,500 maximum speed)

Saturation Measurement Apparatus

Future Work - Laboratory Experiment and Procedures

Core Flooding – Gas Injection

Rising Bubble Apparatus (RBA)

• Determination of Minimum Miscibility Pressure (MMP)

Formation Response Tester (FRT-6100)

• Core flooding experiments in reservoir conditions (P,T)

Future Work - GOHFER Project

Future Work - GOHFER Project

Phase 1 – Integration of domain expertise and machine learning

ACKNOWLEDGEMENT

- Dr. Hossein Kazemi (Co-Advisor)
- Dr. Steve Sonnenberg (Co-Advisor)
- Dr. Bob Barree and GOHFER Development Team
- Kathy Emme
- Jim Emme

MUDTOC Consortium Sponsors Fall 2020

Sponsoring Member Companies

Supporting Companies

Mike Johnson & Associates

