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PREFACE 
 
This report documents capabilities added to the computer code UCODE_2005 (Poeter et al, 2005) 
to produce UCODE_2014. The new capabilities include  

a) support for adding parameters needed to simulate prediction conditions that were not needed 
to simulate calibration conditions, 

b)  updated weighting capabilities,  
c) enhanced capabilities when using coefficients of variation to determine observations 

weights, 
d) use of SVD parameter transformation to solve inverse problems,  
e) ability to evaluate uncertainty in estimated parameters and simulated values using the 

DREAM Markov-chain Monte Carlo (MCMC) method, and 
f) a new stacked version of a sensitivity analysis graph that allows important observations and 

important parameters to be identified. 

Also included are instructions for using UCODE_2014 with MATLAB models and models run 
through a graphical interface (the latter uses HYDRUS as an example), and an example model 
calibration report.  

No changes were needed for the post-processing programs documented with UCODE_2005. These 
programs are distributed with UCODE_2014, so users do not need to download items from both the 
UCODE_2005 and UCODE_2014 distributions of UCODE. The documentation presented in this 
report describes the methods used and includes detailed descriptions of the required input and 
typical use of the output files.  

UCODE is one of a set of inverse modeling codes supported by the U.S. Geological Survey. 
UCODE was developed for models in which the number of parameters is less than the number of 
observations. It supports a wide range of parameterization capabilities through its template file and 
derived parameter capabilities, and emphasizes the utility of a range of sensitivity and uncertainty 
analysis methods. Two other inverse modeling codes supported by the U.S. Geological Survey are 
PEST++ (Welter et al., 2012) and bgaPEST (Fienen et al., 2013). Both support methods with which 
the number of parameters can exceed the number of observations. It is hoped that making a range of 
methods readily available to users will enable the kind of experimentation needed to understand 
how to enhance the predictive skill and process understanding models ideally provide. There are 
also a number of freely available programs from outside the U.S. Geological Survey with similar 
capabilities. These include, for example, PEST (Doherty 2010) and OSTRICH (Mattot, 2010). 
Users are encouraged to consider this rich set of alternatives as they develop their models. 

The code documented by this report is public domain, open-source software and can be downloaded 
from the Internet at URL http://igwmc.mines.edu/. The performance of the code presented in this 
work has been tested in a variety of applications. Future applications, however, might reveal errors 
that were not detected in the test simulations. Users are requested to notify the IGWMC (Integrated 
Groundwater Modeling Center) of any errors found in the report or the computer codes. Updates 
might occasionally be made to both the report and to the codes. Users can check for updates on the 
Internet at URL http://igwmc.mines.edu/. 

http://igwmc.mines.edu/
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UCODE_2014, with New Capabilities to  
Define Parameters Unique to Predictions, 

Calculate Weights using Simulated Values, 
Estimate Parameters with SVD,  

Evaluate Uncertainty with MCMC, and More 
Constructed using the JUPITER API 

____________________________________ 

By Eileen P. Poeter1, Mary C. Hill2, Dan Lu3, Claire R. Tiedeman4, and Steffen Mehl5 

____________________________________ 

Abstract 
This report documents additions to the computer program UCODE_2005 made to create 
UCODE_2014.  The new capabilities include support of parameters that are required for predictions 
but that had not been considered previously in model development. Examples of situations with 
such parameters are storage parameters when calibration conditions are steady-state and prediction 
conditions are transient, and transport parameters when calibration conditions involve only a flow 
field and prediction conditions include advective, advective-dispersive, or advective-dispersive-
reactive transport. Second, weighting based on user-supplied coefficients of variation are supported 
more thoroughly in UCODE_2014 than in previous versions of UCODE and, we believe, any other 
available software package. Third, the use of singular value decomposition (SVD) for parameter 
estimation has been integrated into UCODE_2014 and the transparency offered to SVD users by 
sensitivity analysis is stressed. The implementation of SVD in UCODE_2014 is useful for 
estimating parameters in some circumstances, and guidance is provided for migrating to PEST 
when its unique capabilities are of interest. Inclusion of Markov-chain Monte Carlo (MCMC) 
uncertainty measures means that UCODE_2014 has three methods of uncertainty evaluation that 
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proceed from (i) linear uncertainty intervals that are very computationally frugal (commonly 10s to 
100s of parallelizable model runs) and depend on the model not being too nonlinear and errors 
being approximately Gaussian, to (ii) nonlinear uncertainty intervals with moderate computational 
demands (commonly 1,000s of model runs) and depend on model smoothness and Gaussian errors, 
to (iii) MCMC uncertainty intervals that are computationally demanding (commonly 10,000s of 
model runs and more) and few restrictive assumptions. Having this range of methods in one 
program encourages application and exploration of the entire range of methods.   

Auxiliary programs introduced since UCODE_2005 are described briefly. This includes three 
auxiliary programs: MMA for multi-model analysis, OPR-PPR for value of information measures, 
and Sim-Adjust for when simulated equivalents to observations cannot be calculated.  Three 
graphical interfaces are also described: ModelMate for constructing and running applications of 
UCODE_2014, GW_Chart for evaluating model fit, sensitivity analysis results, and uncertainty 
measures, including support for the new capabilities, and enhancements to Model Viewer for 
plotting objective-function surfaces using the UCODE _sos data-exchange files.  

Instructions are provided for using UCODE_2014 with programs constructed using MATLAB and 
models run using graphical interfaces, using HYDRUS as an example.  

Example and test cases include surface-water and groundwater problems. 

UCODE_2014 is constructed in a modular fashion using JUPITER API conventions and modules.  
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Chapter 1: INTRODUCTION 
Since the publication of UCODE_2005 a great deal of activity has occurred in the field of model 
calibration, sensitivity analysis, and uncertainty assessment. Much of this activity has been driven 
by the remarkably improved computer hardware capabilities. This document describes 
enhancements that were made to UCODE_2005 to create UCODE_2014, and is intended to be used 
with the UCODE_2005 document. 

Purpose and Scope 

As UCODE_2005 has been used and modeling of natural and human-made systems has progressed, 
it has become apparent that the unique perspective provided by UCODE, which includes making 
each step of model development as transparent as possible, can provide an important contribution. 
As a result, a number of new methods have been added to UCODE to create UCODE_2014.  

The main new capabilities in UCODE_2014 are enhanced support of predictions (Chapter 2), 
updated weighting capabilities (documented in Chapter 3 of this report), estimation of process-
model parameters using singular value decomposition (SVD) parameter transformation (Chapter 4), 
and quantification of parameter and prediction uncertainty using Markov-chain Monte Carlo 
(MCMC; Chapter 5). New programs for users of UCODE and possibly other inverse models and 
additional modifications to UCODE are documented in Chapter 6, along with a new way of plotting 
composite scaled sensitivities (CSS) that clearly shows the contribution to this measure of user-
defined groups of observations. Finally, Chapter 7 describes how to use UCODE_2014 with process 
models programmed using MATLAB, Chapter 8 shows how to use UCODE_2014 with a program 
run through a GUI, and Chapter 9 presents an application of UCODE to calibrate a synthetic 
groundwater flow model and evaluate the model predictions. 

The enhanced support of predictions provides a convenient mechanism to accommodate situations 
in which the simulated prediction conditions require system characteristics not involved in 
calibration conditions. Accounting for prediction uncertainty resulting from uncertainty in 
prediction-specific parameters can be accomplished by defining parameters to represent those 
characteristics. Consider a groundwater example. Groundwater models often are calibrated using 
heads and flows, but are used to predict transport. If advective transport is to be simulated, the new 
system characteristic that needs to be considered is effective porosity. To propagate the uncertainty 
in effective porosity into uncertainty measures of the predicted advective transport using either 
Monte Carlo or inferential methods, parameters that represent effective porosity need to be defined. 
The new capabilities of UCODE_2014 make it possible to define such additional parameters 
without changing the definition of parameters already defined as part of model calibration. 

The updated weighting capabilities provide more control when the user specifies coefficients of 
variation from which UCODE calculates observation weighting. With UCODE_2014 the user can 
limit the size of the weight through the use of a new input value η, even when observed values are 
used with the coefficients of variation to calculate the weight. With this addition, and given the 
ability of UCODE to use full weight matrices for observations and prior information, we believe the 
methods UCODE_2014 includes for weighting are among the most advanced of any open-source 
program of its type.  
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Problems with parameter insensitivity and correlation can be problematic in model calibration, and 
such problems can be detected using the methods described by Hill and Tiedeman (2007, p. 50-54). 
One way to mitigate these problems is herein-named the process-model parameter (PMP) method of 
obtaining a tractable regression problem. This approach identifies a set of process-model parameters 
to remove from the estimation process to obtain a tractable regression problem using mostly 
composite scaled sensitivities (CSS) and parameter correlation coefficients (PCC) (Hill and 
Tiedeman, 2007). All parameters with small CSS values and selected parameters with large absolute 
values of PCC are suggested for omission. The result is that process-model parameters are omitted 
that are less important because the calibration data provide minimal information about those 
parameters. Hill and Tiedeman (2007) suggest that the unestimated parameters need to be 
reactivated for uncertainty analysis. 

An alternative and often more convenient way to obtain a tractable regression problem is to 
transform the process-model parameters into singular value decomposition (SVD) parameters, and 
identify a set of SVD parameters to remove from the estimation process to obtain a tractable 
regression.  Here this is called the SVD method for obtaining a tractable regression problem. Each 
SVD parameter is a linear combination of process-model parameters, and the coefficients of the 
linear equations are calculated using SVD decomposition of weighted parameter sensitivities (the 
same quantities used in the PMP method to calculate CSS and PCC). SVD parameters with small 
singular values are suggested for omission. Small singular values tend to occur for SVD parameters 
dominated by process-model parameters with small CSS values and parameters with large absolute 
values of PCC. The SVD parameter method has become popular in part through its excellent 
implementation in the computer program PEST and the creative terminology “superparameters” 
(Tonkin and Doherty, 2005; Doherty, 2010; Doherty and Hunt, 2009, 2010a). 

There are obvious parallels between the PMP and SVD parameter approaches, which are consistent 
with the underlying mathematics (as described in Chapter 4 and Appendix E). These parallels can 
be exploited to produce a sensitivity analysis that provides considerable insight about which 
process-model parameters are important in a model calibration problem, which observations are 
most important for model calibration, and which observations and parameters are important to 
subsequent predictions of interest. UCODE_2014 provides output to address these issues. The 
integration of sensitivity analysis methods from the PMP and SVD methods is, to our knowledge, 
unique to UCODE_2014. 

An important aspect of using SVD parameters is the process of transforming SVD parameters back 
to process-model parameters. UCODE_2014 provides users with two methods. One method 
preserves the values of process-model parameters that are insensitive or extremely correlated, and 
one preserves the values of SVD parameters with small singular values. The latter is the method 
most commonly found in other works (e.g., PEST and Aster et al., 2012) 

The Markov-chain Monte Carlo (MCMC) DREAM algorithm (Vrugt et al., 2009) was included in 
UCODE_2014 so that users would have a full suite of uncertainty evaluation tools along with a 
mature set of sensitivity analysis methods. UCODE_2014 can produce linear uncertainty intervals 
that are very computationally frugal (commonly 10s to 100s of parallelizable model runs) and 
depend on the model being not too nonlinear and errors being approximately Gaussian, to nonlinear 
uncertainty intervals with moderate computational demands (commonly 1,000s of model runs) that 
depend on model smoothness and Gaussian errors, to MCMC uncertainty intervals that are 
computationally demanding (commonly 10,000s of model runs and more) and have few restrictive 
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assumptions. This tradeoff between increasing computational demand and decreasing restrictive 
assumptions and, therefore, more general applicability is important to understand when deciding 
what method to use in a given problem. Should one compromise the simulated processes to ensure 
that a computationally demanding uncertainty analysis can be used? When are the more 
computationally frugal methods likely to be adequate? The range of methods provided in 
UCODE_2014 allows appropriate methods to be used in applications and allows the different 
methods to be investigated by researchers using different types of problems.  

Recent conceptual work in inverse modeling investigates how regression and Bayesian methods 
relate to one another (Lu et al., 2012). That work cites statistical literature from as far back as the 
1960’s that suggests conditions under which the regression method used in UCODE is a pragmatic 
alternative to methods for which MCMC is the modern version.  The regression method in UCODE 
is nearly identical to the maximum a posteriori (MAP) method, though MAP is derived from a 
Bayesian framework. The careful evaluation of the two approaches by Lu et al. (2012) suggests that 
finding adequate models may often be more important than investing many runs in uncertainty 
intervals, but for some studies the precision of the MCMC result is vital. 

Much of the attraction of Bayesian methods in the last decades has been its use of global search 
methods that are robust in the presence of features such as local minima typical of very nonlinear 
models. Recent work by Kavetski and Clark (2010) suggests that some models are far more 
nonlinear than the systems they represent. To the extent this is true, it may be that, if the unrealistic 
nonlinearities can be reduced, more computationally frugal local search methods may have greater 
utility than previously assumed. UCODE_2014 includes a range of methods, including gradient 
methods like composite scaled sensitivities (CSS), parameter correlation coefficients (PCC), and 
linear confidence intervals and global methods like MCMC uncertainty evaluation. Having ready 
access to these methods aids exploration of their relative utility. 

The additional programs listed in Chapter 6 include UCODE post-processor ModelMate, new 
capabilities of GW_Chart, and a new Model Viewer capability to plot objective-function surfaces. 
Changes to keywords in several input blocks and two data-exchange files also are described. A 
complete updated list of data-exchange files is provided in Appendix B. 

MATLAB is being used increasingly to program process models and to perform sensitivity and 
uncertainty analyses. It is hoped that the instructions provided in Chapter 7 for using MATLAB 
process-based models with UCODE will begin and evaluation of model analysis methods provided 
by MATLAB and UCODE. 

Use of UCODE with models that are executed through a GUI is addressed using HYDRUS as an 
example in Chapter 8. Chapter 9 presents a groundwater flow model calibration of the synthetic 
Faux Valley to provide readers with an example of how model study results could be presented. 

Appendix A provides a short description of the JUPITER API modules used. Appendix B lists all of 
the data-exchange files produced by UCODE_2014. Appendix C describes the distributed files. 
Appendix D describes test problems for SVD and MCMC that are distributed with UCODE_2014. 
Appendix E shows how the SVD ID statistic relates to the composite scaled sensitivity (CSS) 
reported by UCODE_2014. Appendix F presents the mathematics behind the new version of the 
CSS plot which uses stacked bars to show the contribution of different observation types to the 
estimation of the defined parameters. Appendix G provides a brief description of the capabilities of 
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the model-independent inverse models UCODE_2014, PEST, and OSTRICH, including unique 
features and utility. Appendix H lists web sites with useful statistical and mathematical capabilities 
such as normal probability calculations. Appendix I describes how to run UCODE_2014 and 
provides abbreviated input instructions for all UCODE_2014 capabilities, including those 
documented in the UCODE_2005 report. 

A Word about Words: Process Model 

Both the UCODE_2005 documentation and this UCODE_2014 report use the phrase “process 
model” to describe the model run by UCODE and for which UCODE estimates parameter values. 
Consider this within the ongoing debate in many fields of environmental science about three types 
of models: statistical models based on probability distribution functions (pdfs), conceptual models 
based largely on if/then rules, and process-based models based largely on differential equations. The 
authors of UCODE have used process-based models throughout their careers, and when defining a 
term by which to differentiate the model run by UCODE and the inverse model embodied by 
UCODE, it was natural to call the model run by UCODE a process model. However, UCODE is not 
limited in any way, and is equally capable of being used with statistical and conceptual models (for 
example, Foglia et al., 2013 evaluate a range of conceptual models that differ in how aspects of a 
system are simulated).  

Thus, UCODE is not limited to process models as defined in some scientific disciplines, despite the 
use of the term “process model”. Of concern is whether the parameters to be estimated and the 
observations used in the estimation are real numbers (UCODE applies) or discrete (UCODE does 
not apply). In some cases with discrete parameter values or for other aspects of model construction 
for which discrete alternatives are of interest (for example, alternative ways of calculating recharge 
or alternative conceptualizations of boundary conditions or geometry of system characteristics), 
constructing alternative models that represent the discrete alternatives and using UCODE and 
another code called Multi-Model Analysis (MMA) (Poeter and Hill, 2007) can be useful. For an 
example, see Foglia et al. (2013). 
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Chapter 2: PREDICTION RUNS WITH NEW PARAMETERS  
Simulation models of natural and engineered processes commonly are developed and calibrated for 
the purpose of prediction. Prediction simulations generally differ from the calibration simulations. 
Examples related to groundwater systems include the following.  

(1) The nature of the prediction may differ from the observations, as occurs when the model is 
calibrated using heads and flows and predictions include the position of particles tracked in 
the flow field or simulated values of concentration. For either type of transport prediction, 
parameters defining the distribution of effective porosity are needed for the predictive model 
but not for the calibration model. For concentrations, generally parameters characterizing 
dispersive processes also are needed. 

(2) The model may be calibrated for time-averaged steady-state conditions, and the predictions 
are inherently transient, such as those needed to evaluate proposed aquifer storage and 
recovery (ASR) scenarios. In this case, parameters defining storage properties are needed for 
the predictive model but not for the calibration model. 

(3) Part of the system may be removed or altered due to mining activity or natural dissolutions 
during karstification. For this case, changes in boundary conditions and the addition of 
turbulent flow equations may be needed for the predictive model but not for the calibration 
model. 

The new parameters are important in part because any uncertainty in their assigned value produces 
uncertainty in the predictions. Prediction uncertainty can be approximated using UCODE_2014 and 
related programs in four ways: 

(a) Linear uncertainty intervals calculated by the UCODE post-processor 
LINEAR_UNCERTAINTY (documented by Poeter et al., 2005).  

(b) Nonlinear uncertainty intervals calculated by UCODE.  
(c) The new MCMC capability described in Chapter 5 of this work. 
(d) Model averaged uncertainty intervals calculated by the program MMA (Poeter and Hill, 

2007).  

In calculating measures of prediction uncertainty, it is important to include any knowledge about the 
new parameters in prior information equations. Omission of the defensible prior information on 
these parameters can lead to larger measures of parameter uncertainty. If correlation between the 
added parameters and the calibration parameters is of importance, the new parameters need to be 
included in the originally defined input blocks and the convenience of the new input blocks 
provided by UCODE_2014 cannot be used. Of note is that when aspects of a model important to 
predictions are not informed by observations, prediction accuracy often suffers. This point is made 
by Oreskes et al. (1994) and is demonstrated vividly by Doherty and Christensen (2011). 

In addition to measures of prediction uncertainty, the following are also of interest: 

(i) Prediction scaled sensitivities (PSS) calculated by UCODE and Parameter-Prediction (PPR) 
statistics calculated by OPR-PPR (Tonkin et al., 2007) can be used to identify parameters 
important to predictions.  
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(ii) Observation-PRediction (OPR) statistics calculated by the program OPR-PPR can be used to 
identify potential new observations likely to reduce prediction uncertainty, and to identify 
the observations used in model calibration that are contributing to very small prediction 
uncertainty measures.  

While the evaluations needed when there are parameters that apply only to prediction conditions 
could be done with UCODE-2005, these evaluations are more easily conducted using the new 
capabilities in UCODE_2014. 

Without the new capabilities described in this chapter, the following procedure is needed. The basic 
issue is the parameters defined as active in a sensitivity or parameter-estimation run that simulates 
calibration conditions need to be identical to those in the prediction run (Table 2 of the 
UCODE_2005 documentation describes these runs). The first calculates the a posteriori matrix of 
parameter variances and covariances for the calibration conditions; the second calculates a vector of 
sensitivities for the predictive conditions. The dimensions of the matrix, which is square, need to 
match the dimensions of the vector. This is accomplished by the runs described. The prediction-
only parameters need to be included in the first run even though the observation sensitivities to 
these parameters equal zero. An example is described in Hill and Tiedeman (2007, Chapter 8 
exercises). Defining these prediction-only parameters in the sensitivity or calibration run can be 
cumbersome and prone to error. 

Any parameters added for predictions using the capabilities documented here need to have zero 
sensitivity relative to the observations used to estimate parameters. If there is any question, 
calculate the sensitivities related to observations using the parameters in question and check that the 
sensitivities are zero. This can be done by checking that dimensionless and composite-scaled 
sensitivities (DSS and CSS) are zero. Values of zero for CSS identify parameters that are 
completely unimportant to the predictions. In general it is best to look for zeros instead of just small 
numbers. Though numerical issues can produce small non-zero values that are acceptable, they may 
not be conclusive. This is especially true for parameters with a datum (see discussion in Hill and 
Tiedeman, 2007, p. 57). 

This chapter describes the UCODE_2014 capability of defining parameters and prior information 
only for prediction runs, and describes the associated UCODE model output.  

The capabilities described here were originally included in UCODE_2005 version 1.009. At that 
time it was documented using an auxiliary pdf file distributed with UCODE_2005. This section 
replaces that file.  The capability remains the same and is fully backward compatible. 

New “_For_Prediction” Input Blocks 

Six input blocks accommodate the UCODE_2014 support of parameters that are only applicable to 
prediction conditions. The blocklabels for the new input blocks are shown in bold type in Table 1, 
in the order in which the new input blocks need to appear in the main UCODE_2014 input file 
relative to other input blocks. The name of each new input block builds on the name of an existing 
input block, by appending “_For_Prediction” to the name of the existing block, as shown in Table 1.  

For each of the “For_Prediction” input blocks, the keywords are exactly the same as those for the 
existing input block that has the same name without “_For_Prediction” appended. These inputs are 



Chapter 2: PREDICTION RUNS WITH NEW PARAMETERS 

 9 

documented in Poeter et al. (2005). Abbreviated input instructions are provided in Appendix I of 
this report. 

Parameter_Groups_For_Prediction (optional) 

Use this input block to assign data that apply to all or many of the parameters defined only for the 
predictions. When quantities specified in the Parameter_Groups_For_Prediction input block are 
repeated in the Parameter_Data_For_Prediction block, the data specified in the 
Parameter_Data_For_Prediction block are used.  

Keywords available for use in this input block are the same as those available for the 
Parameter_Groups input block described fully in Poeter et al. (2005, p. 68). The keywords and brief 
descriptions are listed in Appendix I of this report. 

Parameter_Data_For_Prediction (optional) 

Use this input block to assign data to parameters defined only for the predictions and for which 
uncertainty in the parameter is to be propagated into the prediction uncertainty. If any knowledge 
about added parameters exists, use it to define prior information in the 
Linear_Prior_Information_For_Prediction input block. Instructions for the 
Parameter_Data_For_Prediction input block are identical to those for the UCODE_2005 
Parameter_Data input block, as documented in Poeter et al. (2005, p. 69-72). The keywords are 
listed in Appendix I of this report. 

Parameter_Values_For_Prediction (optional) 

Use this input block to specify the values of parameters defined in the 
Parameter_Data_For_Prediction input block. Values listed in this input block replace values listed 
under keyword StartValue of the Parameter_Data_For_Prediction input block. Keywords in this 
input block are described in Poeter et al. (2005, p. 74) and are listed in Appendix I of this report. 

Derived_Parameters_For_Prediction (optional) 

Use this input block to define parameters using other parameters. The other parameters are defined 
in the Parameter_Data_For_Prediction input block or in preceding lines of the 
Derived_Parameters_For_Prediction input block. Keywords in this input block are described in 
Poeter et al. (2005, p. 76) and are listed in Appendix I of this report. 

Prior_Information_Groups_For_Prediction (optional) 

Use this input block to assign data that apply to many or all of the items of prior information 
defined in the Linear_Prior_Information_For_Prediction input block. When quantities specified in 
the Prior_Information_Groups_For_Prediction input block are repeated in the 
Linear_Prior_Information_For_Prediction block, the data specified in the 
Linear_Prior_Information_For_Prediction block are used.  
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Keywords in this input block are described in Poeter et al. (2005, p. 94) and are listed in Appendix I 
of this report. 

In some circumstances, the prior information for the parameters used only by predictions includes 
parameter correlation. This can be represented by defining the relevant variance-covariance matrix 
in the Matrix_Files input block and listing the name of that matrix in the 
Prior_Information_Groups_For_Prediction input block using the CovMatrix keyword. 

Linear_Prior_Information_For_Prediction (required by post-processor 
LINEAR_UNCERTAINTY when Parameter_Data_For_Predictions input block 
exists) 

Use this input block to assign prior information on parameters defined only for prediction 
conditions. The instructions for this input block are the same as those for the 
Linear_Prior_Information input block described in Poeter et al. (2005, p. 95-96). The keywords and 
brief descriptions are listed in Appendix I of this report.  

Expressions defined for the Equation keyword need to consist only of the names of parameters 
listed in the PARAMETER_DATA_FOR_PREDICTION input block. To define a prediction-only 
parameter using a parameter listed in the Parameter_Data input block, add the prediction-only 
parameter to the Parameter_Data or the Derived_Parameters input block. That is, while the 
_For_Prediction input blocks can be a convenient way to manage parameters needed only for 
prediction conditions, an alternative is to add them to the original input blocks and this is required if 
the prediction-only parameters are to be expressed in terms of the other parameters. 

The Linear_Prior_Information_For_Prediction input block is required if the 
Parameter_Data_For_Prediction input block exists and UCODE post-processors 
LINEAR_UNCERTAINTY (Poeter et al., 2005) and(or) OPR-PPR (Tonkin et al., 2007) are used. 
Because these parameters are not defined for the calibrated model, prior information is the only 
mechanism for including any knowledge about these parameters in measures of prediction 
uncertainty. The definition of prior information on these parameters is accomplished using the 
Linear_Prior_Information_For_Prediction input block and, optionally, the 
Prior_Information_Groups_For_Prediction input block. If there is no information about an added 
parameter, the lack of knowledge can be expressed by defining prior information and assigning it a 
large value of variance, standard deviation, or coefficient of variation, or a small weight. These are 
assigned using the keywords Statistic and StatFlag. 

Output Changes 

Changes to UCODE output are mostly associated with existing and new data-exchange files, which 
are described here. Changes to the main output file depend in the value of Verbose in the Options 
input block and are clearly labeled.  

When there are parameters defined only for predictions, there are changes to seven existing 
data_exchange files and four new data_exchange files are created. None of the changes are to files 
commonly accessed by the user. These files are primarily used by other programs such as 
Linear_Uncertainty, OPR-PPR, and MMA. 
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Changes to Existing Data-Exchange Files 

Data-exchange file _dmp includes a second line with the label “NUMBER OF PARAMETERS 
FOR PREDICTIVE EVALUATION = “, which reports the total number of parameters defined for 
prediction conditions.  

Data-exchange files _sppp, _sppr, _spsp, _spsr, and _spu include sensitivities for parameters 
defined only for prediction conditions.  

Data-exchange file _pv has the same appearance, but calculated prediction variances include the 
effects of prediction sensitivities for parameters defined only for prediction conditions, and of the 
uncertainty in these parameters. The effect of any prior information on these parameters is included 
in the reported measures of prediction uncertainty. 

New Output Files 

The four new data-exchange files have filename extensions _mvp, _paoptp, _suprip and _wtprip. 
Each is similar to an existing data-exchange file for which the filename extension lacks the final 
“p”. 

File _mvp has contents similar to the file _mv (Poeter et al., 2005, Table 19, p. 154), except only the 
parameters for prediction are listed.  

File _ paoptp has the same contents as file _ paopt (Poeter et al., 2005, Table 19, p. 154), except 
only the parameters for prediction are listed. 

File _suprip has the same contents as file _supri (Poeter et al., 2005, Table 18, p. 153), except 
PRIOR NAME is the name of a prior information equation defined in the 
Linear_Prior_Information_For_Prediction input block, and Param-Name1, Param-Name2, and so 
on, are names of parameters defined in the Parameter_Data_For_Prediction input block. 

File _wtprip has the same contents as file _wtpri (Poeter et al., 2005, Table 17, p. 152), except the 
number of rows equals the number of prior information equations defined in the 
Linear_Prior_Information_For_Prediction input block. 

Example UCODE_2014 Input 

In this example, a transient model is calibrated using head, drawdown, and flow observations, and is 
then used to predict an advective transport path. The prediction requires that an effective porosity 
parameter be defined; this parameter is not applicable to the calibration run. The part of the 
UCODE_2014 input file for the prediction run shown in Figure 1 lists input blocks that pertain to 
the definition of parameters, predictions, and prior information.  
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# --------------------- 
# PARAMETER INFORMATION 
# --------------------- 
BEGIN PARAMETER_GROUPS KEYWORDS 
   GroupName = MyPars  adjustable=yes TOLPAR=.01 SenMethod=2 
   MaxChange=2.0 
END PARAMETER_GROUPS 
 
BEGIN PARAMETER_GROUPS_FOR_PREDICTION KEYWORDS 
   GroupName=porgroup  Adjustable=yes TOLPAR=0.01    SenMethod=2 
      MaxChange=2.0    Transform=no   Scalepval=0.33 
END PARAMETER_GROUPS_FOR_PREDICTION 
 
BEGIN PARAMETER_DATA FILES 
..\ex1b-files\tr.params 
END PARAMETER_DATA  
 
BEGIN PARAMETER_DATA_FOR_PREDICTION TABLE 
nrow=1  ncol=9 columnlabels 
paramname STARTVALUE lowervalue uppervalue perturbamt groupname 
  POR_1&2   0.33        0.27       0.39     0.01D0    porgroup  
END PARAMETER_DATA_FOR_PREDICTION  
 
# ----------------------------- 
# PREDICTION INFORMATION 
# ----------------------------- 
BEGIN PREDICTION_GROUPS FILES 
..\ex1b-files\groups.pred 
END PREDICTION_GROUPS 
 
BEGIN PREDICTION_DATA FILES 
..\ex1b-files\adv.pred 
END PREDICTION_DATA 
 
... 
 
# ----------------------- 
# PRIOR INFORMATION 
# ----------------------- 
BEGIN PRIOR_INFORMATION_GROUPS_FOR_PREDICTION KEYWORDS 
GroupName=prior   PlotSymbol=4  UseFlag=yes 
END PRIOR_INFORMATION_GROUPS_FOR_PREDICTION 
 
BEGIN LINEAR_PRIOR_INFORMATION_FOR_PREDICTION KEYWORDS 
PriorName=PrPorosity     Equation=POR_1&2   PriorInfoValue=0.33      
Statistic=0.03           StatFlag=SD 
GroupName=prior 
END LINEAR_PRIOR_INFORMATION_FOR_PREDICTION 

Figure 1. Part of UCODE_2014 main input file 15.in showing input blocks that define an 
effective porosity parameter that is only applicable to the prediction run, and of prior 
information on this parameter. Input blocks described in this document are shown in 
bold type. 
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Chapter 3: ENHANCED OBSERVATION WEIGHTING 
UCODE_2005 supports the use of error-based weighting in model development. Error-based 
weighting has appeared in the literature extensively (for example, Hill, 1992; Hill, 1998; 
Mroczkowski et al., 1997; Oliver et al., 2008; Foglia et al., 2009, Renard et al., 2011), and is the 
only objective formulation that in ideal circumstances produces minimum variance parameter 
estimates (Hill and Tiedeman, 2007, p. 396-398). For error-based weighting in UCODE_2005, the 
user has been able define a full variance-covariance matrix to characterize observation errors that 
are dependent, or independent errors can be characterized using values specified for each 
observation. The enhancements introduced in UCODE_2014 involve only the situation when 
individual values for each observation are specified. 

To support error-based weighting when observations errors are independent, UCODE has always 
allowed the user to specify the statistic most applicable to a given situation, and has calculated the 
needed weight using that information. The statistics that can be specified include a coefficient of 
variation (the standard deviation of the observation error divided ideally by the true value of the 
observation), a standard deviation, and a variance. UCODE_2005 also allows the weight and 
square-root of the weight (the latter provided for compatibility with PEST). Of these alternatives, 
the enhancements provided by UCODE_2014 only involve how coefficients of variation can be 
used to calculate weights.  

Coefficients of variation are generally used when the observation errors are thought of in terms of 
percent or fraction of the observed value. This most often happens when  

1. The quantity involved can vary over many orders of magnitude, as occurs for concentrations 
and streamflow. For example, errors in streamflow are often thought of as about 5 to 10 
percent of the measured flow if measurement error dominates, or larger if epistemic model 
error is thought to be significant. 

2. An arbitrary datum is not needed to define the value. An arbitrary datum is used, for 
example, for groundwater heads defined relative to sea level. Sea level is an arbitrary datum; 
it could just as well be the elevation of some point within the area of interest. For example, 
consider a system in which heads are 1,000 meters (m) above sea level. For this system, 
changing the datum to 900 m above sea level results in the observed heads being around 100 
m. The same flows and relative heads would be simulated – just the datum has changed. 
This is what we call an arbitrary datum – the modeler can choose any datum. Coefficients of 
variation are generally not valid for defining weights for observations for which the datum 
can be defined arbitrarily.  

In the UCODE_2005 documentation, conversion of coefficients of variation to weights is defined in 
equation 3. The equation is 

                             (1) 

( )2~
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η
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where i identifies the observation, ωi is the weight, cvi is the coefficient of variation, is the true 
value, and η is a constant that can be added to control how much small values of influence the 
results.  

As noted there, the true value is not known. Obvious possibilities for its estimation include the 
observed and simulated value. The results of Anderman and Hill (1999) suggest that under ideal 
conditions slightly less parameter bias can be obtained using simulated values. However, using 
simulated values from the beginning of the regression can produce weights that vary dramatically 
from one parameter-estimation iteration to the next. Thus, even when the goal is to use simulated 
values, it is generally advantageous to start out using the observed values. UCODE_2014 provides 
new alternatives for using coefficients of variation. 

Change in How Coefficients of Variation are used to Calculate Weights  

In UCODE_2014, an observation value for which a coefficient of variation is used to define the 
weighting can either (1) use the observed value in equation 1 or (2) use the observed value at first 
and use the simulated value as regression approaches a solution. For both, the value of η  is 
specified by the user and applied to calculate the weight for all parameter estimation iterations. This 
differs from UCODE_2005 in which use of the observed value only (option 1) allowed only η=0.0.  

Another change in UCODE_2014 captures a potential user-input error. If the denominator of 
equation 1 is calculated as zero, a zero is assigned to the weight of that observation.  This will occur 
if and η are both zero. The code tests for zero values of cvi (the user-defined input) when 
UCODE begins; if cvi =0.0, an error message is printed and execution stops. 

The following section discusses how to use η and how weighting with coefficients of variation is 
controlled in UCODE_2014. 

Using η 

Figure 2 shows the influence of η on the value of the square-root of the weight. A wide range of 
 values (labeled as y in the figure) is shown because observations may not be normalized. Of 

interest is what values to use for η. 

When η = 0.0, Figure 2 shows that the value of the weight can become very large for small values 
of y. This may make sense. For example, streamflows may be expected to have an accuracy of 10% 
over a wide range.  

For other problems such large weights for small values may be problematic. For example, again 
consider streamflow. If groundwater processes are not included in the simulation and are important, 
simulated low flows are likely to be less accurate than high flows (actually biased because they lack 
an important source of water). In this case the larger weights produced for low flow when η = 0.0 
than for η > 0.0 would likely be ill-advised. In such circumstances η > 0.0 can be useful.  

iy~
iy~

iy~

iy~
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What value of η should be used? Commonly the value of η is set equal to or slightly larger than a 
typical residual value given known error contributions (measurement and model). The value of η 
can also be determined by what value is significant to a given problem. For example, if 
concentration values are normalized so that the largest value equals 1.0, and values less than 110-4 
are considered to be small enough to lack significance for the problem considered, a value of η = 
110-4 could be appropriate. 

Data range issues can also be accommodated using other capabilities in UCODE. For example, the 
detection limit capability described for the UCODE_2005 documentation on page 84 using keyword 
Nondetect may in some circumstances be useful. For more information, see the Observation_data 
input block instructions in the UCODE_2005 documentation.  

 

Figure 2. Weights calculated with η equal to six values between 0.0, 1.0. The true value 
(labeled y in the figure) is generally approximated using either the observed or 
simulated value. In either case, this figure shows the effect of η in equation (1). SQRT, 
square root; WT, weight; CV, coefficient of variation. 

Modified Input 

Keywords that can be used in three input blocks are modified: UCODE_Control_Data, 
Reg_GN_Control, Observations_Groups, and Observation_Data. The keyword changes are listed 
first and then their utility is described. 

UCODE_Control_Data Input Block 

Keyword Use_WT is added to enable UCODE runs that follow regression runs to use the final 
weights from the regression. These will differ from weights calculated from the Observation_Data 

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E-07 1.E-04 1.E-01 1.E+02 1.E+05

Ca
lc

ul
at

ed
 sq

ua
re

 ro
ot

 o
f t

he
 

w
ei

gh
t (

SQ
RT

(W
T)

)

y

0
0.0001
0.001
0.01
0.1
1

SQRT(WT)=
1/[(CV x y) + η)]
Here, CV=0.10

Value of η

iy~



Chapter 3: ENHANCED OBSERVATION WEIGHTING 
 

 16 

input block when weights are calculated from coefficients of variation using simulated values, as 
discussed in this chapter. 

Use_wt                       yes/no. Yes uses the weights saved in the _wt data-exchange file to calculate 
the likelihood; no uses the weights calculated based on the statistics defined 
in the Observation_Data input block. Default=no. 

When coefficients of variation (CV) are used to define weights in the Observation_Data input 
block, the final weights saved in the _wt file may be different from the weights calculated based on 
the Observation_Data input block information, as described in Chapter 3 of this documentation. The 
issue occurs because simulated values instead of observed values may be used to calculate the 
weights. To use the _wt file produced by a previous UCODE regression, set Use_wt to yes. If 
Use_wt=yes and a _wt file does not exist, an error message is printed and execution stops. When 
statistics other than CV are used to calculate weights, or if observed values are used to convert the 
CV values to weights, the weights in the _wt file are the same with those calculated based on the 
observation_data input block. If this applies to all observations, Use_wt = no can be used by 
designation or default. 

Reg_GN_Control Input Block 

Keyword TolParWtOS functions as for UCODE_2005. It is included here for completeness and is 
described more thoroughly in the UCODE_2005 manual. Keyword TolParWtOSRenew is new.  

The basic situation is shown in Figure 3. The keyword definitions follow.  

If simulated values are used at the beginning of the parameter estimation when parameter values 
typically are changing a lot, the simulated values will change a lot and, if used to determine the 
weights, produce an unstable estimation process. Using the observed values until the parameter 
changes are smaller helps ensure the estimation process proceeds more smoothly. As regression 
approaches convergence, even small changes in the simulated values used to determine the weights 
could impede convergence despite the changes in simulated values being small. Thus, as 
convergence is reached, as evidenced by the change in parameters becoming small the simulated 
value used to determine the weight is no longer updated.  
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Figure 3. Conditions for using observed and simulated values to calculate weights when  of 
equation 1 can be a simulated value.  

The new keywords for the Reg_GN_Control input block are as follows. 

TolParWtOS  a value used to calculate A and B of Figure 3 as 

   A = TolParWtOS×TolPar and  

   B = (TolPar + 0.1×(TolPar × TolParWtOS – TolPar)).  

   Generally larger than 5.  Default=10. 

TolParWtOSRenew  Options: true, false. Determines what happens after the first time the maximum 
calculated parameter change is less than criterion B of Figure 3. 
Default=False. 

True: Weights based on simulated values are calculated using the following 
rules (A, B, and C refer to criteria listed in Figure 3). 

(1) They are recalculated using observed values after an iteration in which 
any parameter change is above the upper threshold A = TolParWtOS×TolPar, 

(2) Subsequently they are recalculated using simulated values whenever all 
parameter changes fall between the two thresholds {i.e., below [A = 
TolParWtOS×TolPar] and above [B = TolPar + 0.1×(TolPar × TolParWtOS – 
TolPar)]}, and   

(3) They are held constant whenever all parameter fractional changes are 
below the threshold [B = TolPar + 0.1*(TolPar * TolParWtOS – TolPar)] and 
any are above threshold C (TolPar).  

False: Once an iteration is reached in which all of the calculated parameter 
changes have fallen below (B = TolPar + 0.1*(TolPar * TolParWtOS – 
TolPar)), then the weights are held constant for all future iterations, even 
when subsequent iterations have maximum parameter value changes that 
exceed criterion B. 

 

CBA

Use 
observed 

value

Use most recent 
simulated value

Keep using  
previous 

simulated 
value

Regression 
converges

Value of the maximum fractional change in any parameter 
for a given parameter-estimation iteration tends to decrease 

as regression progresses toward convergence.  Criteria for 
decision points A, B, and C are determined by using values 

for which defaults are available.

iy~



Chapter 3: ENHANCED OBSERVATION WEIGHTING 
 

 18 

Observation_Groups and Observation_Data Input Blocks   
Keyword WtOSUse is new; WtOSConstant is included for completeness. 

WtOSUse  - OBS, ConvertOS, Sim, or None.  
OBS, use observed value in equation 1. 

ConvertOS, start using observed value and convert to the simulated value as 
regression approaches convergence. Performance is governed by 
TolParWtOS and TolParWtOSRenew of the Reg_GN_Controls input block 
SIM, use simulated values in equation 1 

NONE, use observed value with η=0.0 in equation 1.   
 
Default: if WtOSConstant=0.0, default is OBS; if WtOSConstant>0.0, default 
is ConvertOS. 

WtOSConstant the value of η used in equation 1. Default is η = 0.0   

Using the Modified Input 

User input that controls the weighting involves keywords WtOSConstant and TolParWtOS, which 
were defined for UCODE_2005. Use of these two keywords is backward compatible. One new 
keyword is defined:  WtOSUse. The letter sequence “WtOS” used in these keywords stands for 
“Weights calculated using coefficients of variations and Observed and(or) Simulated values”. The 
keywords perform as follows. 

If an observation is assigned WtOSConstant > 0 and StatFlag does not equal CV the program 
terminates with the message  

    “WEIGHTING BASED ON OBS&SIM VALUES REQUIRES StatFlag = CV”.  

UCODE_2014 is backward compatible as follows. If an observation is assigned StatFlag=CV, and 
the new variable WtOSUse is set to ConvertOS by designation or default, then UCODE_2014 
proceeds to use weights based on observed and simulated values as described for UCODE_2005.  

If StatFlag=CV, WtOSUse=ConvertOS, and TolParWtOSRenew=False, UCODE_2014 performs as 
shown in Figure 4.  

For example, if TolPar is set to the default of 0.01 for every parameter and TolParWtOS is the 
default 10, then the following sequence of values is used. 

• at the start of the regression, weights are based on the observed value.  

• after the calculated change for all parameters is less than 0.10, weights are based on new 
simulated values at each iteration.  
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• after the calculated change for all parameters is less than 0.019, weights are no longer 
updated with new simulated values for subsequent parameter iterations. This allows for 
stable conditions as the regression attempts to reach convergence. 

 

Figure 4. Calculation of weights when TolParWtOS>0, WtOSUse=ConvertOS, and 
TolParWtOSRenew=False. The criteria listed are used as shown in the figure to control 
whether weights are calculated using observations (obs) or simulated values (sim). 
Figure 3 shows the concept; this figure shows how the values of the keywords fit into 
the process. 

If an observation is assigned StatFlag=CV and the new variable WtOSUse is assigned as “OBS”, 
then UCODE_2014 uses one weight throughout the regression calculated with the observed value 
for the true value in equation 1 and η=WtOSConstant. 

If an observation is assigned StatFlag=CV, and the new variable WtOSUse is assigned as “SIM” 
then UCODE_2014 uses a different weight for every parameter-estimation iteration calculated with 
the simulated value for the true value in equation 1 and η=WtOSConstant. 

If an observation is assigned StatFlag=CV, and the new variable WtOSUse is assigned “NONE” 
then UCODE_2014 uses one weight throughout the regression calculated with the observed value 
for the true value in equation 1 and η=0.0. 

The weight calculations described above are controlled using keywords WtOSConstant and 
WtOSUse in the Observation_Data input blocks. When a conversion between using observed and 
simulated values to calculate weights is indicated, TolParWtOS of the Reg_GN_Controls input 
block is used to determine when during the regression the conversion takes place.  

Once regression converges, the final weight is considered the best reflection of observation error, 
and is used in all further calculations. 
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Chapter 4: SOLVING INVERSE PROBLEMS USING SVD 
Singular-value decomposition (SVD) provides a more convenient way to obtain a tractable 
regression problem when, as is common, parameter insensitivity and dependence make estimating 
all defined parameters infeasible. Compared to the process of identifying insensitive and dependent 
parameters using CSS and PCC and deciding what parameters to omit in an ad hoc process such as 
that described by Hill and Tiedeman (2007), SVD addresses these problems in a more robust 
manner. In addition, our limited unpublished testing and the results of Hill and Østerby (2004) 
suggest that the estimation space can have slightly higher dimension when it is defined using SVD 
parameters. That is, slightly more parameters can be estimated with SVD than using other methods. 

A disadvantage of SVD is that it can be a black box that obscures insights about important and 
unimportant process-model parameters and observations obtainable from the calculated 
sensitivities. Such insights are needed to understand consequences on model performance of choices 
made in model construction, detect model conceptualization and input errors, and guide data 
collection and model enhancement. Important insights might include, for example, identifying 
model parameters and observations that dominate simulated values of interest and contributors to 
calculated measures of uncertainty. Foglia et al. (2013) illustrate how what may seem like 
inconsequential decisions in model development can make large differences in predictions and 
measures of prediction uncertainty. 

The UCODE_2014 documetation and program are designed to make such insights as accessible as 
possible to the user. First, the background of SVD is presented in a way that we believe is clearer to 
non-mathemeticians than most presentations. While understanding of the rather complicated 
mathematics behind SVD is not necessary to use SVD, we hope this presentation is useful to 
interested readers. Second, UCODE_2014 allows SVD to be used in ways that provide greater 
insight to users than is commonly supported. For example, insensitive and selected dependent 
process-model parameters can be held constant during regression instead of the more common 
practice of holding null-space SVD parameters constant. The latter leads to changes in the values of 
all process-model parameters which makes it hard for the user to identify process-model parameters 
for which the observations and prior provide little information. Finally, sensitivity analysis methods 
that work well for models calibrated with SVD are discussed.  

To place the UCODE implementation of SVD and some aspects of this documentation in the 
context of other works, the following brief literature review is presented along with comments about 
other selected implementations of SVD. 

Using SVD to solve inverse problems has been considered, for example, by Jacobson (1985), 
Yenihayat (1996), Haber et al. (2000), Tonkin and Doherty (2005, 2009), Doherty (2010), Finsterle 
and Kowalsky (2011) and Aster et al. (2013). The estimated SVD parameters, which are defined 
below, are called super parameters by Tonkin and Doherty (2005). The method used here is similar 
to that used by others, except that a new option for calculating process-model parameter values 
from SVD parameters is presented and the suggested sensitivity analysis is more extensive than is 
common.  
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The SVD capability in UCODE will be suitable for problems in which constraints on process-model 
parameter values are not applied and when there are few to a moderate number of parameters 
(generally up to a few hundred parameters). When highly parameterized models developed with 
methods such as pilot points and Bayesian geostatistics are of interest, the programs PEST 
(Doherty, 2010; Doherty and Hunt, 2010b), PEST++ (Welter et al., 2012) and bgaPEST (Fienen et 
al., 2013) provide tremendous capabilities. A program that converts UCODE_2005 input files to 
PEST is available at the PEST website. 

The program iTOUGH2 (Finsterle and Kowalsky, 2011) has a method by which it automatically 
determines if a model is nonlinear enough that the singular vectors need to be renewed by 
recalculating process-model parameter sensitivities, and proceeds to recalculate them when needed. 
Such recalculation is computationally expensive so methods of detecting when it is needed are 
valuable. With UCODE_2014, the user needs to detect the nonlinearity using methods such as the 
modified Beale’s measure and then begin a new run of SVD to recalcate the sensitivities.  

In this work we use the terms “SVD parameters” and “SVD parameter transformation” in 
describing the SVD theory and methods. These terms are not used, for example, by Aster et al. 
(2012) and other more mathematically oriented publications. In part the terminology used by others 
reflects a more fundamental difference in terminology. In the other works listed (and all geophysical 
literature of which we are aware), the lexicon for using different parameter values is referred to as 
different models. In the lexicon used in this work, different models are distinguished by using 
different structural attributes such as boundary condition type, included processes, and parameter 
structure used to represent spatially and temporally distributed systems properties (such as pilot 
points, zones, and so on), and best-fit parameters are estimated for each of the different models. To 
help clearly refer to models that differ in the parameter values (as relevant to SVD) and those that 
differ in other ways (in the imposed boundary conditions, included processes, parameter structure, 
and so on), we have found the nonstandard terms “SVD parameters” and “SVD parameter 
transformation” to be useful. Using this lexicon, we can say that two models differ in the number of 
SVD parameters estimated for a given defined parameter structure  and then also talk about models 
that differ in other ways. Furthermore, we have found these non-standard terms to be useful when 
describing SVD to students who are not familiar with the underlying mathematics.  

The remainder of this section briefly defines singular value decomposition (SVD) and explains why 
SVD parameter transformation is used to estimate process-model parameters and how it is 
accomplished. Then step-by-step instructions for using SVD parameters in UCODE_2014 and a 
flowchart of the procedure are presented. Finally, a sensitivity analysis for use with SVD is 
described and discussed along with a computational example. 

Definition of Singular Value Decomposition (SVD) Parameters 

SVD parameters are defined as linear combinations of process-model parameters; that is, each SVD 
parameter is calculated by summing terms equal to a coefficient times a process-model parameter 
value. Thus, SVD parameter ak can be expressed as 

ak = dk,1×b1 + dk,2×b2 + ...+ dk,j×bj +...+ dk,NP×bNP      k=1,NP     (2) 
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where, 

NP = the number of adjustable process-model parameters which, by definition, also equals the total 
number of SVD parameters. 

dkj = the elements of singular vector k. 

bj = value of process-model parameter j. 

Using matrix equation formatting (for a description of matrix notation see a basic matrix algebra 
textbook or the web sites listed in Appendix H), equation 2 can be expressed as 

a = DTb              (3) 

where a is a vector of the NP SVD parameters (ak) on the left-hand side of equation 2, DT is an 
NP×NP matrix composed of the dkj elements on the right-hand side of equation 2, T takes the 
transpose of the matrix so that D has elements djk, and b is a vector of the NP bj process-model 
parameters on the right-hand side of equation 2.  

With SVD, the coefficients dkj are defined in a way that is very advantageous. The advantage occurs 
because the resulting SVD parameters are all independent of one another – there is no parameter 
dependence so that all correlation coefficients for SVD parameters are zero by definition. This is 
accomplished by making each row of matrix DT equal the elements of one singular vector. 
Calculation of singular vectors is described in the following section. 

The total number of SVD parameters is the same as the total number of process-model parameters, 
NP. The NP SVD parameters can be subdivided into SVD parameters that are estimated and those 
that are not. Estimated SVD parameters are those for which the related singular vectors have larger 
singular values. The number of estimated SVD parameters is NSVD, and generally NSVD < NP. 
The number of unestimated (called null-space) SVD parameters equals NP minus NSVD, or what is 
defined as NPnull in this work. 

Calculating Singular Vectors  

The coefficients dk,1, dk,2, …dkj,…dk,NP of equation 2 are the elements of the kth column of matrix 
D in equation 3. In SVD parameter transformation, these columns equal the elements of singular 
vectors which are calculated by applying SVD to the weighted sensitivity matrix. The description 
below is derived from Hill and Østerby (2003, Appendices A and B). A detailed treatment of SVD 
is provided by Golub and Van Loan (1996). A more accessible presentation is provided by Aster et 
al. (2012). 

Any rectangular matrix can be decomposed using SVD. Here, we consider the ND by NP matrix 
defined as the product of three matrices 

 ω½ XB              (4) 
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where, 

ω is an ND×ND weight matrix that may be diagonal or full. Weight matrices are symmetric and 
the square root of ω needs to be calculated such that it, too, is symmetric. 

X is an ND×NP sensitivity matrix with elements equal to ∂yi/∂bj, i=1,ND and j=1,NP, where yi is 
the simulated equivalent of an observation, prior information, or, possibly, regularization, and 
bj is a process-model parameter. The structure of a sensitivity matrix with observations and 
prior information is shown by Hill and Tiedeman (2007, p. 384). If regularization were 
included in the regression, it would be added to the X matrix in a manner similar to how prior 
information is added. X is evaluated at a given set of parameter values – usually the starting or 
estimated parameter values. 

ND equals the number of rows in sensitivity matrix X and it equals the number of observations 
plus the number of prior information and regularization equations. 

B is an NP×NP matrix with the parameter values at which X is calculated along the diagonal and 
zeros off the diagonal. This matrix form is needed for the scaling in equation 4. More 
commonly in this report, parameter values are listed in a vector referred to as b. If a parameter 
value is less than the value of ScalePval in the Parameter_Data input block of the 
UCODE_2014 main input file, UCODE_2014 uses the value of ScalePval in B. This avoids 
use of very small values, including values equal to zero.  

In many formulations of SVD the scaling by the parameter values is only done when process-model 
parameters are log-transformed. For log-transformed parameters, the process-model parameter is 
defined as pj, bj is defined as ln(pj), ∂ln(pj)/∂pj = 1/pj, and the sensitivities in X are defined using the 
chain rule as (∂yi/∂pj)pj = ∂yi/∂bj. The definition of SVD parameters and any SVD-related inference 
about important and unimportant parameters is different if the parameter is log-transformed or not. 
Further, if the parameters are not log-transformed the terms of eq. 4 are dimensional. 

Including B in eq. 4, as is done in UCODE_2014, creates a non-dimensional system of equations for 
calculating SVD parameters. Thus, results are consistent whether or not parameter values vary over 
many orders of magnitude, which commonly happens in environmental systems. One concern is 
that this scaling may not work well for parameters that change with an arbitrary chosen datum, as 
discussed in the beginning of Chapter 3. For most problems, the issue of parameters that vary over 
wide ranges is more common than parameters affected by an arbitrary datum, thus B is included in 
equation 4. 

The effect of not scaling by the parameter is displayed in the analysis of sensitivity indices reported 
by Tang et al (2007). In that work, the parameters were not log-transformed and parameter values 
varied over many orders of magnitude. The local sensitivity results, labeled as PEST results in the 
paper, are not comparable to global sensitivity methods because the parameter ranges defined in 
global methods accomplish essentially what the scaling of B accomplishes. That is, it makes the 
actual parameter value irrelevant and only the range of predictions produced by whatever parameter 
value range is chosen matters. In Tang et al. (2007), it can be seen that the parameter with the 
smallest values (LZPK) generally shows up as most important in the PEST results (Tang et al. 
Tables 3 and 4). The LZPK parameter is not very important in the global sensitivity analysis results 
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(Tables 5, 6, 7, and 8). LZPK would be less important if the sensitivities were multiplied by the 
parameter value. This is directly applicable to how sensitivities are scaled in equation 4. Thus, 
equation 4 is more likely to produce singular vectors that emphasize parameters in a way that would 
be consistent with global methods. 

SVD (singular value decomposition) is used to “decompose” the matrix shown in equation 4, which 
means that the matrix ω½ XB is expressed as a product of matrices with specific properties, as 
follows:  

ω½ XB = USDT             (5) 

where, 

U is an ND by ND matrix that is orthogonal so that UTU = UUT = IND. IND is an identify matrix 
of dimensions ND by ND; elements on the diagonal equal one and elements off the diagonal 
equal zero. Each column of U is called a left singular vector of ω½ XB. 

D is an NP by NP matrix that is orthogonal so that DTD = DDT = INP. Each column of D is called 
a right singular vector of ω½ XB.  

S is an ND by NP matrix with elements skk, k=1,NP equal to non-negative numbers (the singular 
values) and all other elements of the matrix equal to zero.  

For the kth SVD parameter defined by equation 2, the coefficients dk,1, dk,2, …dk,NP are, by 
definition, the elements of the right singular vector vk. Because the right singular vectors are 
orthogonal, SVD parameters are not correlated. This often makes SVD parameters easier to estimate 
than process-model parameters, which is one of the reasons that SVD parameter transformation is 
advantageous. 

The other reason that SVD parameter transformation is advantageous is the singular values in the S 
matrix of equation 5. Singular values tend to be large for SVD parameters that can be estimated and 
small for those that cannot be estimated, and thus provide a convenient way to identify which 
parameters to estimate. Here we briefly describe some basic properties of SVD; for additional 
information see Hill and Østerby (2003, Appendix A) and Golub and Loan (1996). 

For the matrices of concern in inverse problems no singular value is negative – they are all positive 
or zero. The decomposition of equation 5 is performed such that the singular values are ordered in S 
from largest to smallest, so that: 

s1 ≥ s2 ≥  …sNP-1 ≥ sNP            (6) 

Singular values can be so small that the associated SVD parameter cannot be estimated. In the 
extreme, small equals zero, but numerical error makes zeros rare in practice. In the absence of any 
numerical error, if all of the singular values are non-zero, then all NP columns of ω½XB are linearly 
independent. This means the NP process-model parameters do not suffer from extreme parameter 
correlation, and given sufficient sensitivity to the observations (this makes the singular values 
relatively large) all NP process-model parameters can be estimated uniquely based on the ND 
observations, prior information, and regularization. In practical application, “small” is larger than 
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zero. Commonly, the number of SVD parameters that have sufficient sensitivity to be estimated 
equals the number of singular values that are greater than about 10-5 to 10-6 times the largest 
singular value. For problems in which process-parameter correlation is not a problem, this is 
generally consistent with the number of parameters for which CSS values are greater than 10-2 times 
the largest CSS value (Hill and Østerby, 2003).  

When some singular values are very small, the matrix is said to be rank-deficient. If the rank of the 
matrix is considered to be r, r singular values are greater than what is considered to be a small 
singular value, and the singular values can be expressed as follows. 

s1 ≥ s2 ≥ … ≥ sr ≥ ε  sr+1 < ε   sr+2<ε  …  sNP < ε.       (7) 

If the matrix is rank deficient, (NP-r) columns of ω½ XB are linearly dependent. This means that 
only r parameters can be estimated and a null space of dimension NP minus r is defined. Thus in 
this work r = NSVD is the number of estimated SVD parameters. Often singular values diminish 
gradually and there is no clear break between singular values of estimated and null-space 
parameters. Following the suggestion above, commonly ε is set equal to about 10-5 to 10-6 times the 
largest singular value.  

In parameter space, this means the following. When r < NP, the right-singular vectors dr+1, …, dNP 
span the null space of ω½ XB. Using equation 2, the singular vectors define the linear combinations 
of the process-model parameters that form the parameter null-space.  

When r < NP, then the least-squares solution of Xb = y is not unique because any vector, d, from 
the null space can be added to the parameter solution b without changing the weighted least-squares 
objective function. Uniqueness requires either adding data (rows of ω½ XB; this would mean adding 
observations, prior information, or regularization), or setting (that is, not estimating) the values of 
NP minus r process-model or SVD parameters. Setting the values of process-model parameters 
corresponds to leaving out a column of ω½ XB. This could be implemented directly by setting 
Adjustable=no in the UCODE Parameter_Data input block, but with SVD a different approach is 
taken. Setting the values of SVD parameters commonly corresponds to not estimating some of the 
values of sk of equation 2, specifically those for which the right singular vectors are associated with 
singular values that are small. In UCODE, this is the default when SVD is used. An unique and 
useful alternative provided in UCODE_2014 is to assign values to NP minus r process-model 
parameters and solve for r SVD parameters. These methods of converting from SVD to process-
model parameter values are described below. 

In practice it is common that singular values span many orders of magnitude fairly continuously. It 
can be difficult to define the number of parameters to estimate and, therefore, the parameter null 
space. It generally becomes difficult to estimate SVD parameters with singular values less than 
about 10-5 or 10-6 times the largest singular value, so the null space is defined as the singular vectors 
with smaller singular values. This is consistent with suggestions made by Aster et al (2012), 
Doherty (2010), and others. 

Of interest is how the SVD parameters are composed of the process-model parameters. This can be 
displayed using stacked graphs of the SVD identifiability (ID) statistic (Doherty and Hunt, 2009). 
This statistic is described below in the section “ID Statistic and Singular Values”. 
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Converting from SVD Parameters to Process-Model Parameters 

Regression is used to estimate NSVD of the NP SVD parameters. During the estimation process and 
once estimation is completed, the NP SVD parameters, NSVD of which have been altered in the 
estimation process, are used to determine values of the NP process-model parameters. The process 
model is then run to obtain simulated values from which sensitivities and objective functions are 
calculated.  

NP equations are required to solve for the NP process-model parameters from the NP SVD 
parameters. NSVD of those equations need to be of the form of equation 2. NP minus NSVD is set 
to the variable NPnull. For the other NPnull equations, two alternatives are included in 
UCODE_2014. SVDupdate of the UCODE_Control_Data input block allows the user to choose 
between the two options. The two alternatives are as follows. 

(1) Maintain the NPnull SVD parameters with the smallest singular values at their starting values 
(equation 2 evaluated for the starting process-model parameter values). These parameters define 
what is called the parameter null-space in SVD. This is the most common alternative and is used 
by Aster (2012, p. 59), PEST and PEST++.  

• A disadvantage of this method is that in general all process-model parameter values 
change, which can be misunderstood by the user to suggest the existence of significant 
information in the data on all of the process-model parameters. Yet usually sensitivity 
analysis and evaluation of parameter correlation indicate that this is not the case. This 
motivates the second alternative used in UCODE_2014. 

 
(2) Maintain NPnull process-model parameters at their starting values.  

• This allows the process-model parameters least informed by the observations to be 
maintained at their original values. This makes it clear to users that the observations 
contribute little to estimation of these parameters. The choice of what process-model 
parameters to set is controlled either by a user-defined priority list or using composite 
scaled sensitivities (CSS) and parameter correlation coefficients (PCC). 

Results of numerical experiments conducted as part of documenting this version of UCODE are 
reported in Appendix D. For the problem considered, estimated process-model parameters are not 
affected much by what alternative is used. This makes sense because the process-model parameters 
set for option 2 are most likely significant components of the SVD parameters set in option 1. The 
importance of the choice is that by maintaining the values of selected process-model parameters, 
option 2 results clearly indicate to users which process-model parameters receive no orveery little 
information from the observations. Having the two options in UCODE_2014 provides a way to 
investigate their performance in a range of problems. 

The following provides a mathematical expression of the two alternatives.  

The process-model parameters are calculated from the SVD parameters by solving equation 3 for b, 
which produced the following equation:  

b= [DT]-1 a             (8) 
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In standard SVD theory, the matrix [DT]-1 would equal D because D would have orthogonal 
columns. However, it is kept in this more complicated form here because option 2 produces a 
matrix D that does not have orthogonal columns.  

Consider the typical situation for which the number of SVD parameters estimated, NSVD, is less 
than the number of defined process-model parameters, NP. Each time the SVD parameters are 
updated, ak of equation 2 is determined for NSVD equations and there are NSVD equations that can 
be used to solve for the NP process-model parameters. Yet NP equations are needed. NP minus 
NSVD equals NPnull. To define the other NPnull equations needed to solve for all of the NP 
process-model parameters, the two options above can be considered. DT matrices for the two 
options are illustrated in Figure 5 for a small problem. The two options can be described as follows. 

1. Figure 5a. Set NPnull unestimated (null-space) SVD parameters, ak (k=NSVD+1, NP), to 
their starting values and update all NP process-model parameters. The set NPnull SVD 
parameters are those associated with the smallest singular values. The starting ak values are 
calculated using the starting values of the process-model parameter values (bj of eq. 2) and 
the coefficients from the singular vectors (dk,j of eq. 2). Aster et al (2012, p. 59) discuss this 
approach with respect to linear problems; the approach used here is consistent with their 
approach as applied to nonlinear problems. This is also the method used in PEST (Doherty, 
2010) and PEST++ (Welter et al., 2012) to calculate process-model parameters from SVD 
parameters. 

 
2. Figure 5b. Only update NSVD process-model parameters. Leave NPnull process-model 

parameters equal to their starting values. The user can decide what process-model parameters 
to define in the Parameter_Data block using keyword SVDset or UCODE can identify them 
using CSS and PCC (the method is described in this chapter with the instrustions for the 
UCODE_Control_Data input block).  

 

Figure 5. Illustrative examples of matrix DT for the two ways of calculating the NP process-
model parameter values listed in vector b from vector a using equation 8. Here, NP=5, 
NSVD=3, and NPnull=2. For panel (a), vector a of equation 8 is composed of SVD 
parameter values and D is completely composed of the elements of singular vectors. 
The first NSVD=3 SVD parameter values are estimated, the last two remain unchanged 
– that is, they equal the same SVD parameter values calculated using the starting 
process-model parameter values. In general, all of the process-model parameter values 
change during regression For panel (b), vector a is composed of the NSVD=3 
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estimated SVD parameter values and two process-model parameter values. D is 
composed of the same first three rows, and the last two rows are defined such that the 
values of the third and fifth process-model parameters remain unchanged. 

New Keywords for using SVD in UCODE_2014 

SVD parameter transformation is controlled using new keywords in the UCODE_Control_Data, 
Reg_GN_Controls, and Parameter_Data input blocks.  

UCODE_Control_Data Input Block 

New keywords have been added to the UCODE_Control_Data input block: SVD, SVDphase, 
SVDstartpars, SVDnewvectors, SVDnumber, SVDratio, SVDupdate, and SVDprint. Their use is 
described in this section. If default values for the other new keywords are acceptable (which is often 
the case), specifying svd=yes is the only addition needed to the UCODE_Control_Data input block. 

SVD Options: no, yes. Default=no 

no:  SVD parameter transformation is not used.  

yes:  SVD parameter transformation is used. 

The other SVD keywords are used only if SVD=yes. Otherwise, they are ignored. As noted above, 
often the defaults for these keywords are satisfactory so that none of them need appear in the 
UCODE_Control_Data input block. The most commonly used additional keywords are SVDratio 
and SVDnumber. 

Once the NP process-model parameters with keyword adjustable=yes in the Parameter_Data input 
block have been transformed to NP SVD parameters, singular values can be used to determine 
which SVD parameters can be estimated. Large singular values are associated with SVD parameters 
that can be estimated. The number of SVD paramters to estimate equals NSVD. The SVD 
parameters that are not estimated form the SVD null space; there are NPnull=NP - NSVD such 
parameters. NSVD and NPnull are controlled by the user with keyword SVDratio or SVDnumber.  

SVDratio NSVD parameters associated with singular values that are larger than or 
equal to [SVDratio × (largest singular value)] are estimated. Default=1x10-6. 
The default is used if SVDratio is not entered and SVDNumber is absent or 
set to an invalid number  

SVDnumber NSVD is set to SVDnumber. The NSVD SVD parameters with the largest 
singular values are estimated. SVDNumber is ignored if a positive value of 
SVDratio is entered. Default=0. Valid numbers are integers equal to 1 
through NP, the numbers estimated .process-model parameters 

If an SVD UCODE run is repeated using, for example, different SVD control input or another 
change that would not alter the calculated sensitivities, SVDphase and possibly SVDstartpars can be 
used to save execution time. 
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SVDphase Options: new, continue. Default=new 

new: begin with a new UCODE run. This will calculate sensitivities from 
parameter information in Parameter_Data, use them to calculate singular vectors, and 
start an SVD assisted parameter estimation given the SVD settings provided by the 
user in the main UCODE input file, or their defaults if they are not specified. 

Continue: continue from a previous UCODE run. This will use parameter values 
and, usually, sensitivities and singular vectors calculated in a previous UCODE run 
and saved in data exchange files in the folder from which this continue-UCODE run 
is launched. An SVD assisted parameter estimation is started given the SVD settings 
provided by the user in the main UCODE input file, or their defaults if they are not 
specified. The parameter values and singular vectors used are specified using 
SVDstartpars and SVDnewvectors.  WARNING: Data in the data_exchange files 
will not reflect changes to the process model or UCODE input made by the user in 
the main UCODE input file subsequent to the initiation of the UCODE run that 
created the data exchange files. 

SVDstartpars Source of parameter values used to begin the simulation. 
Options: Parameter_Data, _paopt, _paopt_presvd 
Default depends on SVDPhase. If SVDphase = new, by default SVDstartpars 
= Parameter_Data. If SVDphase = continue, by default SVDstartpars = 
_paopt  

Parameter_Data:  Read values from the Parameter_Data input block of the UCODE 
main input file. If the Parameter_Values input block is present, values are 
read from it instead. Use of Parameter_Data is the default for 
SVDphase=new.  

_paopt: Read the most recent values produced by the previous UCODE run. These 
values are in the _paopt data-exchange file and could be (1) values from the 
Parameter_Data or Parameter_Values block if the previous run was a 
sensitivity run; or (2) the most recently estimated parameters if the previous 
run was a parameter estimation run conducted either with or without use of 
SVD.  Use of _paopt is the default for SVDphase=continue.  

_paopt_presvd: Read the values used to start the previous series of regression with 
SVD parameters. These values are in the _paopt_presvd data-exchange file. 
This option can be used to start the SVD parameter-estimation from the 
original parameters using different values for SVDnumber, SVDratio, 
SVDMaxChange. 

Data-exchange files have a filename prefix defined on the UCODE command line and filename 
suffixes that begin with an underscore, as noted. 

The following keyword SVDnewVectors is needed only to continue regression with SVD 
parameters defined using a new set of singular vectors. The existing SVD parameters can be used 
(SVDnewvectors=no), or the process-model parameter sensitivities can be recalculated and new 
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coefficients of the SVD parameters can be calculated (SVDnewvectors=yes). The new singular 
vectors could differ from the old ones for two reasons: (1) For nonlinear problems, sensitivities 
calculated with the new parameter values are likely to be different from the sensitivities that were 
calculated using the old parameter values and (2) the parameter values used for scaling in eq. 4 will 
be different. With SVDnewvectors=yes, sensitivities for all process model parameters are calculated 
every parameter-estimation iteration so that the time-saving aspect of using SVD is not realized. 
Indeed, execution times would be longer because sensitivities to SVD parameters would be 
calculated in addition to sensitivities to process-model parameters. In general, SVDnew vectors = 
yes is used only rarely to diagnose difficulties in SVD results. 

SVDnewVectors Options: no, yes. Default=no 
no:  Use original singular vectors calculated with the starting parameters.  

yes:  Use new singular vectors.  

The methods discussed above in the section “Converting from SVD Parameters to Process-Model 
Parameters” are controlled using the SVDupdate keyword. Briefly, NSVD of the NP SVD 
parameters are estimated. NP - NSVD=NPnull of the SVD parameters are not estimated. NSVD is 
determined using keywords SVDratio or SVDnumber as described above in this section. 
SVDupdate is used to determine if the NPnull parameters are SVD parameters with small singular 
values or process model parameters. If they are process model parameters, SVDupdate determines 
how they are to be selected. 

SVDupdate  Options: SVDall, Option2_SVDset, Option2_css_pcc. Default=SVDall. 
SVDall: all adjustable process-model parameters are updated using SVD parameters. 

The NPnull null-space SVD parameters are set to the SVD values calculated 
with the starting process-model parameter values. This is the first option 
listed in the previous section “Converting from SVD Parameters to Process-
Model Parameters”, and has been most commonly used in practice.  

Option2_SVDset: some process-model parameters are updated using estimated SVD 
parameters while the remaining process-model parameters maintain the value 
assigned at the start of the SVD parameter estimation. The process-model 
parameters that maintain their original values are assigned based on user-
defined values of SVDset, a keyword defined in the Parameter-Data input 
block description presented later in this chapter.  

Option2_css_pcc: some process-model parameters are updated using estimated SVD 
parameters while the remaining process-model parameters maintain the value 
assigned at the start of the SVD parameter estimation. The process-model 
parameters that maintain their original values are assigned based on 
parameter CSS and PCC values.  

For SVDupdate=Option2_SVDset, identification of the NPnull process model parameters that will 
maintain their starting value are chosen by UCODE with the user-defined value of keyword SVDset 
in the Parameter_Value input block. 
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For SVDupdate=Option2_css_pcc,  identification of the NPnull process model parameters that will 
maintain their starting value are chosen by UCODE as the least sensitive and selected highly 
correlated process-model parameters. These parameters are identified using composite scaled 
sensitivities (CSS) and parameter correlation coefficients (PCC). The procedure is described in the 
following text and uses two new keywords, SVDupdate_CSSRat and SVDupdate_CSSAbs. See 
Appendix E for an example. The list below results in insensitive parameters being included in the 
set of NPnull parameters before correlated parameters. To include correlated parameters first, set 
keywords SVDupdate_CSSrat and SVDupdate_CSSabs to zero. 

1. The first candidate process-model parameters to be potentially assigned to the set of NPnull 
parameters are insensitive parameters. These are determined as having a ratio (parameter 
CSS)/(maximum CSS) that is is less than the value of SVDupdate_CSSrat. The parameter 
with the lowest ratio is chosen first, and subsequent parameters are chosen with 
progressively larger ratios. If NPnull parameters are not identified in this step, parameters 
satisfying a second criteria related to the actual value of CSS are considered. 
 

2. The second set of candidate process model parameters to be potentially assigned as null-
space parameters are chosen from the parameters that remain after step 1. The parameters 
are chosen if their absolute values of CSS are less than SVDupdate_CSSabs, starting with 
the lowest absolute value. If NPnull parameters are not identified, parameters satisfying a 
third criteria related to parameter dependence are considered. 
 

3. The third set of candidate process-model parameters to be potentially assigned as being in 
the set of NPnull set null-space parameters are those for which parameter dependence is 
high, as measured using PCC. Of concern when considering parameter dependence is that 
PCC measures the dependence of two parameters but the parameters may be part of a larger 
set of dependent parameters. For example, if three parameters are dependent, PCC between 
all of them will be high and generally only one of the three parameters need to be set for the 
other parameters to be uniquely estimated. UCODE partially addresses this concern by 
considering sets of dependent parameters with up to three memberes. UCODE begins by 
identifying sets of three correlated parameters with correlations greater than or equal to 
SVDupdate_PCC. The parameter with the lowest CSS of the three is selected as a parameter 
to be set. If after identifying all the sets of three correlated parameters more parameters need 
to be identified, then parameters other than those involved in the three-way correlations are 
considered. Of these parameters, pairs of parameters with correlation greater than or equal to 
SVDupdate_PCC are identified and the parameter with the lowest CSS of each pair is 
selected.  
 

4. Finally, if additional parameters need to be identified they are selected starting with the 
lowest CSS of the remaining parameters and moving to higher CSS until the required 
number of parameters have been selected. 
 

SVDupdate_CSSrat Used to identify null-space parameters when SVDupdate=Option2_css_pcc. 
See text above to see how it it used. Valid numbers are greater than or equal 
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to 0 and less than 1. Reasonable values are close to 0.0.  
Default = 0.01 

SVDupdate_CSSabs Used to identify null-space parameters when SVDupdate=Option2_css_pcc. 
See text above to see how it it used. Valid numbers are greater than or equal 
to 0.0. Reasonable values are generally near 1.0. Default = 1.0 

SVDupdate_PCC The value of PCC used to identify correlated parameters when using 
SVDUpdate=Option2_css_pcc. Parameter correlations with values larger 
than or equal to SVDupdate_PCC are used as discussed in the steps listed 
above. Valid numbers are between 0 and 1. Reasonable values are less than 
but close to 1.0 (e.g. 0.9 to 0.995). Default = 0.97 

SVDprint Options: yes, no. Controls printing of the singular values and singular vectors to the 
fn.#uout file: No, do not print; yes, print. The singular values and singular 
vectors are always output to the _svd data-exchange file. Default=no. 

Reg_GN_Controls Input Block 

Three new keywords from the Reg_GN_Controls input block are used when SVD parameter 
transformation is used. In addition, existing keyword MaxIter is used to define the maximum 
number of parameter-estimation iterations. 

MaxIter  When SVD=yes, MaxIter equals the number of parameter-estimation 
iterations just as it does when SVD=no. Default=5. 

SVDPerturbAmt a value that controls the fractional amount SVD parameters are perturbed for 
determining sensitivity. This value applies to all SVD parameters. 
Default=0.01. 

SVDMaxChange a value that controls the maximum fractional change allowed within one 
parameter-estimation iteration for an SVD parameter. This value applies to 
all SVD parameters. This value is used as described by Hill and Tiedeman 
(2007, p. 385-389). Default=2.0. 

SVDTolPar   a value that determines when the fractional change in an SVD parameter 
value is small enough to declare convergence of the parameter estimation 
process. All parameters need to satisfy this criteria. The same value applies to 
all SVD parameters. Default=0.01. 

Parameter_Data Input Block 

One keyword is added to the Parameter_Data input block. Constraints defined in the 
Parameter_Data input block are ignored if SVD=yes. 

SVDset  an integer used when SVDupdate=Option2_SVDset in the 
UCODE_Control_Data input block. Default=0. 

Each parameter is assigned one value of SVDset.  
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SVDset=0 indicates the value of this parameter will not be set.  

SVDset greater than 0 indicates the order in which the process-model parameters are set 
until NPnull parameters have been selected. NPnull is determined using the SVDratio or 
SVDnumber keywords in the UCODE_Control_Data input block. The values are always 
positive integers. A value of 1 indicates the first parameter to set; 2, the second parameter to 
set; and so on. In the following example, Par3 would never be set, Par1 would be set first, 
and Par2 would be set second. . 

ParName  SVDset 
Par1     1 
Par2     2 
Par3     0 

 

If the user sets SVDset to the same integer for more than one parameter, UCODE terminates with 
an error message. If there is a gap in the input of integers (e.g. 1 is entered, 2 is skipped and 3 is 
entered) the gap is closed by decreasing higher values.  

The number of parameters that are set by UCODE equals the dimension of the SVD null-space. The 
dimension of the null-space equals the total number of process-model parameters for which 
adjustable=yes in the Parameter_Data input block (this number also equals the total number of SVD 
parameters) minus the number of estimated SVD parameters. The number of estimated SVD 
parameters is determined using keyword SVDratio or SVDnumber. If the number of parameters 
with SVDset>0 is less than the dimension of the SVD null-space, UCODE terminates with an error 
message.  

Depending on the input options, it may not be possible to determine the dimension of the null-space 
until after the sensitivity portion of an SVD run with SVDstartpars=Parameter_Data, so it is often 
advisable to provide all adjustable parameters a unique value SVDset.  Often parameters to be set 
are either less sensitive (smaller CSS values or first-order effects, for example), or are selected from 
sets of parameters that are more dependent (absolute values of PCC close to 1.0), or have small t-
statistics or total-order effects (measures that combine the effects of sensitivity and dependence). 

Flow chart showing how UCODE_2014 performs using SVD parameters 

The flowchart for UCODE_2014 when SVD parameters are used is shown in Figure 6.  
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Figure 6. Flowchart showing major steps in the UCODE_2014 parameter-estimation mode with 
SVD performance noted. Selected input blocks of the UCODE_2014 main input file and other input 
files are listed in brackets to help users control the indicated task. ‘Parameter blocks’ represents up 
to 7 input blocks used to define parameters (Parameter_Groups, Parameter_Data, 
Derived_Parameters, and the input blocks used to define prior information), ‘Observation blocks’ 
represents up to 3 input blocks used to define observations. Iteration# is the parameter-estimation 
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iteration number; parameter# is the parameter number. Colors used to emphasize loops. The central 
difference sensitivities mentioned at the beginning and end of the flow chart are calculated in a loop 
similar to that shown for forward difference, but the calculations are repeated for a backward 
difference as well. The sensitivity loop can produce central difference sensitivities; this is controlled 
by the user through keyword SenMethod in the Parameter_Data input block.  

Understanding Models Calibrated with SVD  
using Sensitivity Analysis 

The input instructions show how to use SVD to estimate parameters in UCODE_2014. SVD 
provides the opportunity to estimate parameter values that provide an optimized fit to observations 
with very little understanding by the user about insensitive and dependent parameters and important 
and unimportant observations. Users can assign SVD=yes in the UCODE_Control_Data input 
block, use defined default values for all other SVD-related keywords, and probably obtain 
regression results that fit the observations fairly well with reasonable parameter values. Many of the 
problems related to non-convergent regression are resolved through SVD because two major 
difficulties, parameter insensitivity and dependence that results in non-unique parameter estimates, 
are resolved by a subset of the parameters being quarantined to the SVD parameter null space. For 
inversions of nonlinear models, the SVD evaluation can be repeated with starting parameter values 
equal to optimal estimates from a previous SVD run to update the set of parameters that populate 
the null space.  

All users will be pleased to have model calibration proceed so easily. Some will wonder about the 
results and seek answers to questions like the following. What process-model parameters were most 
important to this obtained fit? What parameters, and, possibly, related aspects of the model, were 
not important? What observations are most important? Do any observations that are known to be 
problematic dominate the estimated parameter values? If the model is used for prediction, what are 
the major contributors to measures of prediction uncertainty and do they make sense? How do I tell 
if the process-model parameter sensitivities and the coefficients of the SVD parameters need to be 
recalculated? 

Sensitivity analysis can address these questions, and make inverse modeling more transparent and 
informative. Some useful sensitivity analysis methods are listed in Table 1. Also see, for example, 
methods and examples presented by Hill and Tiedeman (2007), Saltelli et al. (2208), Doherty and 
Hunt (2009, 2010a), Foglia et al. (2009, 2013), Hill (2010); Nolan et al. (2011), Borgonovo et al. 
(2012), Plischke et al. (2013), Rakovec et al. (2014), and Wainwright et al. (2014). Contributors to 
uncertainty of simulated results is addressed, for example, by Tiedeman et al. (2003, 2004), Saltelli 
et al. (2008, 2010), and Dausman et al. (2009).  

Here we briefly outline an analysis strategy and demonstrate it using results from Hill and Nolan 
(2011) and Hanson et al. (2012). When using UCODE, output for the analyses are available in data-
exchange files after each run of regression whether SVD is used or not. 

Only a few of the most common evaluations are presented and demonstrated in this chapter. The 
statistics are listed in Table 1. Evaluations not covered here include residual analysis, evaluation of 
model linearity, linear uncertainty associated with predictions, and calculation of correction factors 
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in support of nonlinear uncertainty evaluation. See Table 15 in the UCODE_2005 documentation 
for the programs used to conduct these evaluations. 

Table 1. Five sensitivity analysis methods for understanding models calibrated with SVD. 
Name Definition Comments and UCODE 

data-exchange filename 
suffix 

Reference 

ID for 
process-
model 
parameter 
j 

IDj = Σ=1,NPI (dj,)2     j=1,NP _svd_id  
Sum components from SVD 
parameters related to 
parameter j. Summation over 
all NP SVD parameters 
(NPI=NP) results in ID=1.0, 
by definition. Usually 
presented as bar charts with 
bars stacked by contributions 
from each of the NPI SVD 
parameters.  

Doherty and 
Hunt 2009, 
2010a;  
Hill 2010 

Singular 
Values 

Nonzero diagonal entries of S in 
eq. 5. All off-diagonal terms are 
zero. 

_svd  
Large values identify more 
dominant SVD parameters  

As above, 
plus Hill and 
Østerby 2004 

t-statistic tj = bj/(SDj)  
   = [B-1(V(b)/s2)B-1]jj}-½ 

   ={[B-1(s2(XTωX)-1)B-1/s2]jj}-½ 

bj and SDj are listed in _pc.  Regression 
texts such as 
Draper and 
Smith 1998 p. 
36-37.  

CSS CSSj = {(1/ND)[Σi=1,ND (DSSij)2]}½ 

DSSij = (∂yi’/∂bj)|b bj (ωii
1/2) 

_sc, _sc_svd, _sc_grp 
Approximately comparable 
global sensitivity analysis 
equivalent: first-order effects. 

Hill 1998; 
Hill and 
Tiedeman 
2007; Hill 
2010 

PCC PCCjk=vkj/[vjj
1/2×vkk

1/2] _pcc, _mc  
Approximately comparable 
global sensitivity equivalent: 
second-order cross-terms. 

Draper and 
Smith 1998. 
Hill and 
Østerby 
2004. Hill 
and Tiede-
man 2007.  

Symbols used in Table 1: 
ω, X, and B are defined for equation 4. 
Bj is the value of the jth process-model parameter. Commonly, this value is either the starting value or 

estimated value of the process-model parameter. It needs to be consistent with the set of process-model 
parameter values used to calculate the sensitivity matrix X. 

SDj is the standard deviation of the jth parameter value. It is calculated using linear theory as the square root 
of the diagonal of the parameter variance-covariance matrix, V(b)= s2(XTωX)-1. 

s is standard error of the regression. Its square, s2, is the calculated error variance of the regression. s2 is 
calculated as the value of the least-squares objective function divided by ND minus NP. ND is the number 
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of observation, prior information and regularization; NP is the number of parameters (defined after 
equations 4 and 2). 

V(b) is the calculated variance-covariance matrix for the process-model parameters, calculated as 
V(b)=s2(XTωX)-1. Diagonal terms of this NP by NP matrix are variances; off-diagonal terms are 
covariances. For more information see Hill and Tiedeman (2007, Chapter 7). The approximations required 
to obtain this equation for V(b) for nonlinear process models are described by Hill and Tiedeman (2007, 
Appendix C). 

vkj is a term from the parameter variance-covariance matrix, V(b). If j≠k, vkj is a covariance. If j=k, vkj is a 
variance. 

ID statistic and Singular Values 

ID statistics (Doherty and Hunt, 2009) clearly display how SVD-transformed parameters are 
composed of process-model parameters. The importance of the number of SVD parameters 
included, here termed NPI, is discussed in Appendix E. Figure 7 shows ID graphs for four different 
values of NPI. The ID statistic is closely related to the composite scaled sensitivity, as shown in 
Appendix E. 

An obvious choice is NPI=NSVD, so that NPI equals the number of estimated SVD parameters. For 
example, given NPI=NSVD, ID=0.8 for a given process-model parameter indicates that 80% of the 
process-model parameter is controlled by the estimated SVD parameters; a parameter with ID=0.01 
is controlled very little by the estimated SVD parameters.  

Commonly ID statistics are presented as stacked graphs such as those shown in Figure 7c. Figure 7c 
shows ID results for NPI=1, 4, 5, and 16 for a problem described by Hill and Nolan (2011).  

Figure 7a also shows a graph of the singular values for this problem. All SVD parameters could be 
estimated, which is consistent with the range of singular values shown in the graph of Figure 7a 
being only four orders of magnitude. 

Arrows between the table of singular vector components in Figure 7b and the contributions to the 
ID stacked graphs in Figure 7c highlight how the square of the singular vector components in 
Figure 7b relate to the stacked graphs of the ID statistic in Figure 7c. The singular vector 
components in Figure 7b are the same of the coefficients used to define the SVD parameters in 
equation 2. 
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Figure 7. SVD results for the denitrification model of Nolan et al (2010). (a) Singular values 
divided by the largest singular value, (b) components of the first four singular vectors, 
which are used to define the first four SVD parameters, and (c) Stacked graphs of the 
ID statistic, presented for NPI=1, 4, 5, and 16. NP=16 so, ID statistics all equal 1.0 for 
NPI=16. Arrows show how one squared component of the first singular vector 
contributes to the stacked graphs of ID statistics. The four graphs on the right are 
plotted using the _svd_id UCODE data-exchange file. (modified from Hill and Nolan, 
2011)  

Parameter t-statistic 

A graph showing results for the t-statistic are shown in figure 8b. The t-statistic reflects both the 
parameter sensitivity and the intercorrelations between parameters. 

The equation for the parameter t-statistic listed in Table 1 is scaled to be fit-independent. This is 
accomplished by using V(b)/s2 in the denominator. That is, dividing by the calculated error variance, 
s2, from the expression for the variance to obtain an expression that does not depend on residuals 
(observed minus simulated values).  
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Fit-independent means that the statistic is not calculated using residuals. Fit-independent statistics 
are useful because they can provide insight even for models that do not fit the observations very 
well. This is useful, for example, in the beginning of a model development project. Here, fit-
independence is achieved by dividing V(b) by s2 , where V(b) is defined in Table 1. SDj/s is 
referred to as standardized SD in the following discussion. Making the statistic fit-independent does 
not affect the relative values for a given set of parameters; the same value divides the t-statistics for 
all parameters of a given model. 

Process-model parameters with values of the t-statistic that are large relative to other model 
parameters are important to the model calibration data. Parameters with large t-statistics have small 
standardized SD compared to the parameter value. For example, if the t-statistic equals 10, the 
standardized SD is one-tenth the parameter value; if the t statistic equals 0.1, the standardized SD is 
ten times the parameter value. Parameters that are important to the observations and prior 
information are better estimated in that they have smaller linear confidence intervals; that is, values 
are estimated with considerable certainty. Linear confidence intervals on predictions generally are 
calculated using parameter values that are plus and minus about two standard deviations from the 
optimal values. 

Parameter values important to observations and prior information, as determined by the t-statistic, 
may or may not also be important to predictions. The connection to predictions is discussed by Hill 
and Tiedeman (2007, Chapter 8). Interest in improving the estimation of parameters generally is 
related to the importance of the parameter to predictions of interest. 

CSS and PCC 

Parameters identified by the t-statistic as being unimportant to observations and therefore poorly 
estimated by regression can suffer from insensitivity, parameter correlation, or both. Identifying the 
likely problem is commonly possible using the statistics CSS and PCC. A CSS graph is shown in 
figure 8a; PCC values are often reported in the figure captions of CSS graphs, as for Figure 8a. This 
example shows the very nice feature that CSS bar charts can be staced to show the contributions 
from different observations or sets of observations. This is accomplished as described in Appendix 
F. The calculation of the t-statistic does not lend itself to such apresentation because the matrix of 
sensitivities is inverted. This is the same characteristic that makes the t-statistic reflect both the 
sensitivity and the parameter interdependence. 

Parameters insensitive enough that values probably cannot be estimated can be identified as those 
with CSS less than 0.01 times the largest CSS calculated for any of the parameters. This applies 
whether or not the parameter is extremely correlated with any other parameter(s).   

If two or more parameters all have PCC absolute values greater than about 0.98, it is likely that one 
or more of the correlated parameters needs to be set to obtain a tractable regression problem.  

If SVD parameter transformation is used, CSS and PCC calculated for the process-model 
parameters can be used to understand the singular values and vectors, and the ID. These statistics 
are all closely related, as discussed in Appendix E. Parameters with small CSS and PCC absolute 
values close to 1.00 tend to dominate the SVD parameters with small singular values.  
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(a)                                                                 (b) 

  

Figure 8. (a) Composite scaled sensitivities (CSS) with bars stacked to reflect contributions 
from the five kinds of observations available for the test case (see Chapter 6 discussion 
of constructing plots like this using the _scgrp data-exchange file). (b) t-statistics for 
the log10 of each of the process-model parameters (obtained using the _pc data-
exchange file). For CSS and the t-statistic, large values identify important parameters. 
CSS is a first-order statistic and ignores parameter interactions (measured by PCC). 
The t-statistic includes the effects of parameter interactions. It appears that parameter 
values could be estimated uniquely, as indicated by PCC values all being less than 0.85 
and regressions starting from alternative starting values producing similar best-fit 
parameter values. [Produced using the example model presented in Hanson et al., 
2013]. 

Implications for Monitoring 

The sensitivity analysis can provide insight relevant to data collection. Insensitive parameters can 
only be estimated more precisely by adding more observations, prior information, or regularization 
directly relevant to the parameter in question.  

If correlation plays a significant role, improvement might also be attained by incorporating 
observations, prior information, or regularization on other parameters.  

Large absolute values of PCC indicate that great benefit might be obtained from improving the 
other parameter values. For example, in groundwater problems it is often possible to improve 
estimates of a hydraulic conductivity parameter by obtaining new data relevant to one or more 
recharge parameters because hydraulic conductivity and recharge are commonly correlated.  A more 
quantitative analysis of the worth of additional data can be pursued using the OPR, PPR, and OPA 
statistics calculated by the computer program OPR-PPR, for which UCODE_2014 provides most of 
the needed input files. 
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Uncertainty Evaluation 

Whether using process-model parameters or SVD-transformed parameters, uncertainty evaluation 
needs to account for the effects of both estimated parameters and also uncertainty related to null-
space parameters. The latter are generally dominated by insensitive or extremely correlated process-
model parameters. 

If all prior information on parameters has been included in the regressions conducted for model 
development, no change will be needed when uncertainty is evaluations. However, often parameters 
that are ill-informed by the observations, so that they are insensitive and(or) highly correlated, are 
defined values that are set during model depeloment. These parameters may be important to 
predictions and need to be activated for prediction simulations. To avoid overestimation of 
prediction uncertainty, the separate step of adding prior information for these parameters can be 
very important.Additional discussion about the importance of accounting for uncertainty derived 
from what are variously called null-space, unestimated, or nonessential parameters is provided, for 
example, by Anderman et al. (1996), Poeter and Hill (1997), Hill (1998, p. 16-17, 30), Ely et al. 
(2000), Hill et al. (2001), Hill and Østerby (2003), Tiedeman et al. (2003, 2004), Poeter et al. (2005, 
p. 26-27, 164, 173), Tonkin et al. (2007, p. 7, 24, 30, 68), Hill and Tiedeman (2007, p. 126, 159, 
172, 176, 180-181, 340),  Sobol’ et al. (2007), Hill (2010), and Doherty (2010). Readers are 
encouraged to consider those references for additional information. 
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Chapter 5: MARKOV-CHAIN MONTE CARLO (MCMC) 
METHODS FOR UNCERTAINTY EVALUATION 

Uncertainty analysis is important to using mathematical and numerical models to manage many 
types of systems, including environmental systems. For example, uncertainty as related to risk 
assessment is addressed by Borgonovo and Smith (2011), Tartakovsky (2013), and others. 

Markov chain Monte Carlo (MCMC) methods are important tools for evaluating uncertainty and 
performing other types of model analysis when the quantity of concern is not Gaussian distributed 
(that is, it does not have a normal probability distribution function (pdf)) (Shi et al, 2014). This 
often occurs for nonlinear models, and is often associated with competing local minima. Here the 
concept of competing local minima is stressed because unrealistic local minima often do not cause 
much of a problem. Restarting the regression from another location in parameter space often is all 
that is needed. In contrast, when many minima provide reasonable results, the problem of local 
minima is difficult, and global methods like MCMC become essential. 

MCMC produces uncertainty intervals for parameters and predictions. The underlying theory is 
Bayesian so the intervals are called credible intervals. In many circumstances they are similar in 
size to confidence intervals calculated using the linear or nonlinear methods described by Hill and 
Tiedeman (2007). See Box and Tiao (1992), Jaynes (1996), Bates and Watts (1980), and Lu et al. 
(2012) for additional information.  

MCMC methods tend to be computationally intensive – often requiring 10,000s to millions of 
model runs. Linear and nonlinear confidence intervals can be calculated using far fewer model runs. 
For example, linear confidence intervals can require a number of runs equal to the number of 
parameters plus one; typically no more than 100 parallelizable model runs. Nonlinear confidence 
intervals tend to require 1,000s of model runs. For many studies a useful strategy is to use the faster 
confidence intervals at first and progress to MCMC credible intervals later in the model 
development process if computer capabilities allow. UCODE_2014 supports such a progressive 
approach. The relation between MCMC credible intervals and linear and nonlinear confidence 
intervals is summarized in Table 3. Lu et al. (2012) demonstrate that model adequacy can be more 
important than the other restrictions. 

Table 2 notes that the sum of squared weighted residuals objective function used in UCODE_2014 
has an underlying Gaussian error assumption. This comes directly from the functional form of a 
Gaussian distribution. In MCMC, this means that the likelihood function has an underlying 
Gaussian assumption. Shi et al. (2014) show that using a Gaussian assumption means that MCMC 
uncertainty intervals are likely to be closer to the linear and nonlinear confidence intervals produced 
by UCODE than would occur otherwise. Further exploration of this interesting issue is beyond the 
scope of the present document. 
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Table 2. The three types of uncertainty intervals that can be produced using UCODE_2014, 
computational demands and parallelization opportunities, restrictions, and selected 
references. 

Interval 
type 

Common number of model 
runs and parallelization 

opportunity Restrictions Reference 

Linear 

1+ (2×NP). Commonly less 
than 100. The 2×NP model 
runs can each be done on 
separate processors. If there 
are enough processors, total 
execution time is equivalent to 
the time of two sequential 
forward model runs. 

- Process model 
adequately represents the 
system.1 
- Model not too nonlinear 
- Approximately 
Gaussian, unimodal pdfs 
for errors in observations, 
parameters, and 
predictions. 

Hill and 
Tiedeman 
(2007) 

Nonlinear 

Each interval limit requires the 
equivalent of a full regression 
run. This is commonly 100s of 
model runs. For each limit, NP 
model runs for each nonlinear 
regression iteration can be 
done in parallel. Each interval 
limit is calculated 
independently of other limits, 
so each can be calculated 
using a different set of cores. 

- Process model 
adequately represents the 
system. 1 
- Model not too 
nonlinear. 
- Approximately 
Gaussian, unimodal pdf 
for errors in observations. 
- Predictions are an 
adequately monotonic 
function of the 
parameters. 

Hill and 
Tiedeman 
(2007), 
Christensen 
and Cooley 
(2005), 
Cooley 
(2004) 

MCMC 

10,000s to millions. Chains 
can each be conducted on 
different cores. At least 3 and 
commonly up to NP chains are 
used. 

- Process model 
adequately represents the 
system. 1 
- Use of a weighted sum 
of squared residuals 
objective function in 
UCODE has an 
underlying assumption of 
Gaussian observation 
errors. 

Lu et al. 
(2012) and 
references 
cited 
therein. 

1 Tests for model adequacy are discussed by Hill and Tiedeman (2007), and many others. Recent 
studies of model adequacy include Doherty and Welter (2010), Gupta et al (2012), and Foglia et al. 
(2013). 

Example Results 

The performance of MCMC was evaluated by Lu et al. (2012). Here we present selected results 
from that work to demonstrate the utility of MCMC before proceeding to the details of its 
implementation in UCODE_2014. We use results from two analytical test cases and one 
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groundwater flow problem to illustrate these different types of uncertainty intervals and comment 
about their utility.  

The analytical test cases are not derived from environmental problems; they are easily designed to 
produce relevant nonlinearities. The first function is designed to be highly nonlinear; the second is 
mildly nonlinear. The two analytical test cases are defined as follows. 

Highly nonlinear test function:   y = x/a + sin (amx) + ɛ 

where a = 2, m = 0.1, and ɛ is white noise with mean zero and constant variance s2 = 1. Twenty 
samples of y are first generated with x = {1, 2, …, 20}, and subsequently corrupted using one 
realization of ɛ. This nonlinear function has local minima. For this nonlinear function, linear and 
nonlinear confidence intervals with no prior information and credible intervals with non-informative 
priors are calculated for y at x = 30 with known s2. 

Mildly nonlinear test function:   y = a + (0.49 – a)e-m(x-8) + ɛ 

where a = 0.4, m = 0.1, and ɛ is white noise with mean zero and constant variance s2 = 0.01. Forty 
samples of y are first generated with x = {8, 9, …, 47}, and subsequently corrupted using one 
realization of white noise ɛ. For this nonlinear function, nonlinear confidence intervals and credible 
intervals are calculated for y at x = 50. 

The goal is to identify the values of parameters a and m from the samples of y. The results shown in 
Figure 9 demonstrate the ability of the MCMC algorithm implemented in UCODE_2014 to explore 
multiple minima that often occur in highly nonlinear problems. 

The groundwater problem is shown in Figure 10, including the true system, which is known for this 
synthetic test case. Results from three parameterizations of the hydraulic conductivity field are 
presented: homogeneous (HO), three zones (3Z) and interpolated (INT). See the caption of Figure 
10 for comments about these parameterizations. Figure 11 shows uncertainty intervals calculated in 
the three ways available in UCODE_2014. The different types of intervals require very different 
computational effort. These results suggest the following: 

1. None of the uncertainty methods work well when the model is too much in error, as for the 
HO model. However, even the erroneous model performed reasonably well with the 18 
streamflow observations. Unfortunately, in general groundwater contributions to streams 
cannot be measured with the accuracy needed to use such streamflow observations given 
existing technology. 

2. Given the differences in predicted values between the three models, the difference in 
uncertainty intervals seems rather modest. This suggests that investing in considering 
alternative models can be more important than investing in considering more 
computationally intensive uncertainty measures. 

3. Measures of intrinsic nonlinearity are of some value in identifying when more 
computationally demanding uncertainty intervals are needed. 
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EXPLANATION 

 Realization from the middle 95% of 
generated values 

 Realization from the top and bottom 
2.5% of generated values 

 Limit of a credible interval from MCMC 
sampling calculated as the 2.5% or 97.5% 
value. For 1,000 realizations, that would be 
value 25 and 975 from the ordered set of 
1,000 values. 

̶  Contour line of the sum of squared 
weighted residual objective function. Each 
point along the line is calculated using the 
parameter values that can be read from the 
two graph axes. Thus, the range of values 
that can produce the same model fit can be 
determined from the figure. 

 Limit of an individual nonlinear 
confidence interval, calculated as the 
extreme high and low points of an 
objective function contour. Here the values 
in (a) and (b) of 18.3 and in (c) of 34.5 
were calculated using eq. 8.14 of Hill and 
Tiedeman (2007) with a student-t critical 
value; this is the same as eq. 16 of Lu et al. 
(2012). 

̶̶̶     ̶̶ Solutions of the function with the same 
simulated value as that produced at the 
uncertainty interval limit. 

Figure 9. The 95% individual nonlinear confidence and credible intervals for (a and b) the very 
nonlinear test function (dots in (a) are samples from MICA of Gallagher and Doherty, 
2007; dots in (b) are from DREAM used in UCODE_2014) and (c) the mildly 
nonlinear test function (from Lu et al., 2012). 
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Figure 10. (a) Modeling domain with the confining unit, Blue Lake, and Straight River, (b) the 
true horizontal hydraulic conductivity field (K field) with values from 6 to 150 m/d, 
and the calibrated K fields for (c) the three-zone model (3Z) with K2 up to 317 m/d and 
(d) the interpolation model (INT) with highest value 180 m/d. Panel (d) shows dots 
upon which linear triangular basis functions are constructed to interpolate the K field 
for INT. The hydraulic conductivities are estimated by regression at the sixteen 
numbered inner dots and at the three squares labeled A, B and C in (d); the hydraulic 
conductivities of the other seven squares without labels are not estimated. In (c) dots 
represent 27 wells where hydraulic heads are observed at the top and bottom of the 
system. Black dots (same as those in (d)) also have hydraulic conductivity 
measurements and yellow dots only have head observations; pumping occurs at wells 
P1 and P3 (blue dots), and drawdown is predicted at well P3 (from Hill et al., 1998; Lu 
et al., 2012). 
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Figure 11. Left column: Linear and nonlinear confidence intervals and nonlinear credible 
intervals (≤106, ≤1594, and 420,000 model runs, respectively). The red lines are the 
true values of the predicted quantity, which are known for this synthetic problem. Right 
column: Relative increase in width of linear and nonlinear confidence intervals to 
nonlinear credible intervals and measures of intrinsic nonlinearity. Results are 
presented for two predictions: (a) and (c) streamflow change at gauge site G2 and (b) 
and (d) drawdown of the water table at well P3. Here 2 or 18 observations of 
streamflow gain are used. In the left column, the horizontal lines represent true values 
of the predictions. The nonlinear credible intervals are calculated using the DREAM 
algorithm implemented in UCODE_2014.  

MCMC Procedure and Flowchart 

The flowchart in Figure 12 shows the steps for MCMC as implemented in UCODE_2014. 
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The MCMC runs are composed of chains – sequential sets of parameter values. In Figure 12, the 
steps starting at the second box and ending at the second to last box are conducted for each chain. 
Each parameter set depends on previous sets of values, which complicates parallelization of the 
MCMC algorithm. Parallelization can be accomplished by running multiple chains simultaneously 
on separate cores.  

MCMC typically is used to calculate the posterior probability distribution function (pdf) of the 
parameters and resulting pdf of predictions. It uses Bayes equation, which is expressed as (Papoulis, 
1991) 

p(b|y) ∝ L(b|y)p(b)            (9) 

where p(b|y) is the posterior distribution of model parameters b given the observations y, ∝ means 
proportional to, p(b) is the prior pdf on the parameters, and L(b|y) is the likelihood of the 
parameters given a set of observations. L(b|y) is equivalent to p(y|b), the probability of the 
observations given the parameters. 

In this work the likelihood function is constructed assuming Gaussian errors in the observations, 
which leads to the weighted least-squares objective function used by UCODE. The likelihood term 
in equation 9 includes only contributions from observations. For nonlinear problems, local minima 
can occur in the objective function surface and Gaussian observation errors do not tend to produce 
Gaussian errors in the predictions, even if the prior is Gaussian. MCMC is important for quantifying 
uncertainty in problems characterized by local objective function minima that compete with the 
global minima and significantly non-Gaussian prediction pdfs, such as multi-modal pdfs. 

For the prior pdf on the parameters, UCODE allows the user to select from 11 distributions. Ten of 
these distributions are for individual parameters: uniform, normal (also called Gaussian), log-
normal, beta, chi-square, inv-chi-square, scaled-inv-chi-square, gamma, inv-gamma, and 
exponential. Dependence between the parameter in the prior pdf is allowed only if a multivariate 
normal (Gaussian) distribution applies. 

The first parameter sample in each Markov chain is often drawn randomly from the prior 
distribution of parameters specified by the user. Alternatively, if a regression or sensitivity analysis 
run is available, it can be used to initialize the chain by setting flag UseRegResult=yes in the 
MCMC_Controls input block described later in this chapter. In this situation, the first parameter 
sample is drawn from a multinormal distribution with a variance-covariance matrix calculated based 
on linear assumptions, using a vector of mean values set to optimal parameter estimates read from 
the _paopt file and a parameter variance-covariance matrix read from the _mv file. The _paopt and 
_mv are filename suffixes for a file produced by UCODE. The prefix of the filename is defined on 
the UCODE command line. Our computer experiments show that for a unimodal problem, using 
regression results to initialize the chain can speed up convergence, resulting in MCMC converging 
within 1,000s of iterations (with one model run per iterations). Multimodal problems using 
regression results to initialize the chain may need a large number of runs to fully define the other 
modes and obtain MCMC convergence.    
 
After initializing the chain, subsequent parameter samples are generated based on the DREAM 
algorithm of Vrugt et al. (2008, 2009), which was coded in Fortran for UCODE_2014. A candidate 
sample is generated by the difference between current samples of different chains, and then the 
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candidate sample is accepted or rejected using the Metropolis rule. The MCMC simulation ends 
when the number of generated parameter samples achieves the amount set by the user through 
keyword MaxSamples. If the MCMC simulation ends without achieving convergence, more MCMC 
iterations are needed. Convergence is diagnosed using the Gelman-Rubin criteria (Gelman and 
Rubin, 1992). The simulation is thought to be not converged if the calculated value is greater than 
the threshold set by the user through keyword GelmanR. In this case, the user can continue the 
simulation by setting flag Restart=yes in the MCMC_Control_Data input block (see description 
below in this chapter). Then, a new MCMC run will continue from the place at which a previous 
MCMC run terminated. 
 
Thus, the procedure for an MCMC run can be described as follows, where additional detail is 
provided for starting chains:  

• Start the chain (second box in Figure 12) in one of three ways. 
o Start with a UCODE regression or sensitivity analysis run. If regression runs have 

been conducted with UCODE, uncertainty evaluation may require activating any 
parameters that were set during the regression, or for which prior information was 
defined to be more dominant than independent information justifies. See discussion 
in Hill and Tiedeman (2007, p. 131). This requires conducting a UCODE sensitivity 
mode run to produce _paopt and _mv files with consideration of all parameters that 
may be used in the next step. 

o Start with a MCMC run directly with first parameter samples drawn from the prior 
distributions defined in the MCMC_Prior_PDF input block. 

o If MCMC terminated without satisfying the Gelman-Rubin criteria specified using 
keyword GelmanR in the MCMC_Control_Data input block, start a new MCMC run 
using the final values from the previous run.  

• Run UCODE in MCMC mode, which does the following as shown in Figure 12. 
o Initialize MCMC. 
o Proceed through Markov chains using the DREAM algorithm. After the burn-in 

period (convergence is diagnosed using the value defined using the GelmanR 
keyword), generate parameter samples from the parameter posterior probability 
density function. The quality of the posterior distribution is determined by the 
number of MCMC runs conducted.  

o Simulate predictions for all generated parameter samples after convergence by 
setting flag MCMC_PREDICTION=yes.  
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Figure 12. Flowchart of MCMC capability in UCODE_2014 with the parameter generation 
UCODE run (called the MCMC run in the text) at the top and the prediction UCODE 
run (called the MCMC_Prediction run in the text) on the bottom. MCMC-specific parts 
are shown in red and UCODE input blocks other than those unique to MCMC shown in 
blue. Input blocks with keywords that control performance are listed in brackets. The 
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boxes with gray shading are repeated in each chain, where each chain is generally 
computed using a different core, thus forming a parallelization of MCMC.  

New Keywords and Input Blocks for MCMC 

Two new keywords in the UCODE_Control_Data input block and three new input blocks are used 
to implement MCMC. New input block MCMC_Controls controls the MCMC simulation. New 
input blocks MCMC_Prior_Groups and MCMC_Prior_PDF define the prior distribution. 

UCODE_Control_Data Input Block (required) 

Two keywords are added to the UCODE_Control_Data input block. 

MCMC   yes/no. Yes activates the MCMC capability to generate parameter 
samples which are saved in files with filename suffix._mcmc_par**, 
where ** is replaced by the chain index, i.e., 01, 02. Default=no. 

MCMC_PREDICTION   yes/no. Yes activates the MCMC capability in prediction mode to 
simulate prediction samples which are saved in files with filename 
suffix._mcmc_pred**, where ** is replaced by the chain index, i.e., 01, 
02. When MCMC_PREDICTION=yes, keyword MCMC also needs to 
be yes for MCMC prediction results to be calculated. Default=no. 

In some cases correct weighting of observations requires that Use_wt=yes in the 
UCODE_Control_Data input block (see Chapter 3 of this report). Use_wt=yes results in observation 
weights being read from the _wt data-exchange file instead of being calculated using input in the 
Observation_Data input block. The values in the _wt file will be different if the final weights are 
calculated using simulated values. Regression linear confidence intervals are calculated based on 
the final weights, which are listed in the _wt file at the end of a regression run of UCODE. To be 
consistent with the regression interval calculation, the weights used in the likelihood function 
calculation in MCMC should be read from the _wt file. 

MCMC_Controls Input Block (optional) 

MCMC_Controls input block supports eleven keywords by which performance of MCMC can be 
managed. All keywords have default values that are used if this input block is not found, as occurs 
if the input block is missing or the name is misspelled. 

The only keyword for which the value is not used when MCMC=yes is ItStartPred. When 
MCMC_PREDICTION=yes, four of the keywords are used: Nchain, MaxSamples, PrintStep and 
ItStartPred. Unused keywords are ignored. 

Nchain  Number of Markov chains (for the DREAM algorithm to work, make 
Nchain=3 or greater than half of the number of parameters, whichever is 
largest). Default=5. 
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Chains can be run in parallel using the processors defined for the UCODE parallel processing 
capabilities documented in Chapter 12 of the UCODE_2005 documentation. If enough processors 
are available, it is suggested that Nchain equal the number of parameters. When 
MCMC_PREDICTION = yes, Nchain must be specified if it was specified for the MCMC=yes 
model run used to generate the parameter values. For predictions, Nchain determines the number of 
parameter sample chains that are used to make predictions. It will generally equal the value set for 
the MCMC run, and cannot be larger. If a smaller value is specified in the MCMC_Prediction run, 
only some of the MCMC generated parameter values are used.  

MaxSamples  Maximum number of samples generated for each chain, including the burn-in 
period. To help obtain accurate results, Default=10000.  

In the example distributed with UCODE_2014 a small value of MaxSamples=20 is specified to 
allow users to quickly see the logistics of an MCMC run. Increase MaxSamples for all applications 
of MCMC.  

When MCMC_PREDICTION = yes, MaxSamples is used as follows. The parameter samples of 
each chain between iteration ItStartPred+1 and MaxSamples are used to make predictions. 
MaxSamples specified for an MCMC_PREDICTION run should not be larger than the value set for 
the associated MCMC run and needs to be larger than the value of ItStartPred defined below. 

The following three keywords, Npair, NCR, and JumpStep, are three parameters of the DREAM 
algorithm (Vrugt et al., 2008, 2009), and the values chosen affect the Markov chain convergence. 
Npair represents the number of pairs of chains used to generate candidate samples; NCR is the 
number of CR (crossover probability) values used to determine the subspace sampling strategy; and 
JumpStep defines the step interval after which the jump rate is set to a large value to enable jumping 
between different modes. 
 
DREAM accelerates chain convergence in the following ways:  
(1) DREAM generates a candidate sample using a differential evolution offspring strategy. It uses 
more than one pair of chains, which increases the diversity of the proposal and thus facilitates the 
updating of the proposal distribution to the target;  
(2) DREAM only updates selected dimensions (i.e., subspace sampling strategy) when a candidate 
sample is generated. This improves efficiency for high-dimensional problems because with 
increasing dimensions it is often not optimal to change all dimensions simultaneously;  
(3) DREAM adjusts the jump rate to a large value in a high frequency. This increases the chance of 
jumping between different modes and speeds up convergence. 
 
The above three ways of accelerating convergence are related to the three parameters, Npair, NCR, 
and JumpStep, respectively. Vrugt et al. (2009) shows that a value of Npair greater than 1 is slightly 
better and Npair=3 works well for most problems. NCR value should be larger than 1 to make the 
subspace sampling strategy more active. Vrugt et al. (2009) demonstrates that NCR=3 works well 
for most problems. JumpStep=5 is a good choice to adjust the jump rate; a higher value may reduce 
the chance of jumping between modes; a lower value may cause a small acceptance rate. 
 
The default values are heuristic. No theories indicate a best value of the three parameters. But many 
practical tests show that Npair=3, NCR=3, and JumpStep=5 works well for most problems. 
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Npair                          Number of pairs of chains to generate candidate samples. The δ value defined 
in equation (4) of Vrugt et al. (2009). Default=3. 

NCR                           Number of CR values which determines the subspace sampling strategy in 
DREAM algorithm. The nCR value used in Vrugt et al. (2009). Default=3. 

JumpStep  Step interval to reset jump rate to enable jumping between different modes of 
the posterior pdf. Default=5. 

UseRegResult            yes/no. Yes uses the multinormal distribution from the end of a parameter 
estimation run to start MCMC. Default=no.  

GelmanR            Gelman-Rubin convergence diagnostic criterion. The value specified is inter-
chain, so one value for each parameter is calculated regardless of the number 
of chains. Default=1.2.  

If the calculated Gelman-Rubin values are all smaller than the value of GelmanR, it is assumed that 
at that iteration MCMC has converged. The calculated Gelman-Rubin values are saved in a data-
exchange file with filename suffix _mcmc_grr. The iteration numbers at which the calculated 
Gelman-Rubin value is smaller than GelmanR are printed in the main output file of MCMC run 
with filename suffix #umcmc. Use the information from either file to determine convergence. After 
this iteration, all generated parameter samples can be used to make predictions, and the keyword 
ItStartPred defined below should be set to a value no smaller than this iteration number.  

PrintModelOutput   yes/no. Yes prints the corresponding simulated values of observations based 
on the parameter samples. The simulated values are saved in files with 
filename suffix._mcmc_sim**, where ** is replaced by the chain index, i.e., 
01, 02. Default=no. 

PrintStep                   Step interval to print calculated Gelman-Rubin values in data-exchange file 
with filename suffix _mcmc_grr, to print parameter samples in files with 
filename suffix._mcmc_par** and to print simulated values in files with 
filename suffix ._mcmc_sim**. Default=10. 

When MCMC_PREDICTION = yes, set PrintStep to the same value used in the associated MCMC 
run. 

Restart  yes/no. Yes restarts a new MCMC run at the place at which a previous 
MCMC run terminated. The samples are saved in the data-exchange file with 
filename suffix _mcmc_restart.  Default=no.  

If the previous MCMC run converged as indicated by word ‘T’ printed at the end of the file with 
suffix _mcmc_restart, all the generated parameter samples in the new MCMC run can be used and 
the Gelman-Rubin convergence information is not printed. If the previous MCMC run did not 
converge as indicated by word ‘F’ printed at the end of the file _mcmc_restart, the printed Gelman-
Rubin information still needs to be used to diagnose the convergence of the new MCMC run.    

ItStartPred             MCMC iteration number after which the parameter samples are used to 
simulate predictions. Its value should be set as the iteration number at which 
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chain convergence is reached or a larger value. This variable is only used 
when MCMC_PREDICTION = yes. Default=0.5*MaxSamples, where 
MaxSamples is the value set in MCMC prediction run. 

An example MCMC_Controls input block showing what keywords are used when in the 
UCODE_Control_Data input block MCMC=yes and MCMC_PREDICTION=no by designation or 
default. Unused keywords are ignored. 

 
BEGIN MCMC_CONTROLS KEYWORDS 
#Used for all MCMC runs 
Nchain=6 
MaxSamples=10000 
PrintStep=10 
Npair=3 
NCR=3 
JumpStep=5 
UseRegResult=no 
GelmanR=1.2 
PrintModelOutput=yes 
Restart=no 
#The following is only used when MCMC=yes and MCMC_PREDICTION=yes 
ItStartPred=5000 
END MCMC_CONTROLS 
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MCMC_Prior_Groups Input Block (optional) 

The keywords defined in the MCMC_Prior_Groups and MCMC_Prior_PDF input blocks may all 
be needed when MCMC=yes. When MCMC_PREDICTION=yes, only the keyword ParamName 
defined in the MCMC_Prior_PDF block is used. In both cases, the defaults can be used and this 
input block is always optional. 

Keywords in this input block include: 

GroupName  Name for a group of parameters (up to 12 alphanumeric characters including 
underscore, _, not case sensitive). Default=DefaultPrior. All parameters for 
which a multinormal distribution is defined need to be in the same group. 

CovMatrix  Name of the variance-covariance matrix of the group of parameters to which 
all parameters with a multinormal prior distribution need to belong. The 
matrix is specified in the Matrix_Files input block as described in Chapter 10 
of Poeter et al. (2005). CovMatrix only needs to be specified when PDFType 
is multinormal. For groups with other designations of PDFType, CovMatrix 
is not used. If table format is used for the MCMC_Prior_Groups input block, 
list CovMatrix as the last keyword in the table and for all other groups leave 
the field blank as shown in the example after the description of the 
MCMC_Prior_PDF input block. Please see more on CovMatrix just after 
Other keywords are discussed. 

Other keywords  Any keyword from the MCMC_Prior_PDF input block. Keyword values 
defined here are replaced if values are defined in MCMC_Prior_PDF. 

CovMatrix is needed when the prior distribution of a group of parameters is specified as 
multinormal. Only one variance-covariance matrix can be defined for all parameters for which prior 
pdfs are designated as multinormal. All parameters with multinormal distributions need to be 
assigned this GroupName and a block covariance matrix needs to be defined for the group using 
keyword CovMatrix.  

For listed parameters to be normally distributed and independent, do one of the following. 

(1) In the MCMC_Prior_PDF input block, define PDFType as normal and define the standard 
deviation using PDFVar2. 

(2) In the MCMC_Prior_PDF input block, define PDFType as multinormal and define the 
CovMatrix as diagonal for the independent parameters. This is accomplished by specifying 
nonzero values on the diagonal of the matrix, which are variances, and zeros for all off-
diagonal terms, which are covariances. This setup makes it easy to include correlations of 
some of the parameters – simply make some of the off-diagonal terms non-zero. If the 
correlated parameters are listed together in the MCMC_Prior_PDF input block, and 
parameter dependence occurs only between parameters within subsets, CovMatrix will be a 
block diagonal matrix.  

CovMatrix is defined by the user in a file read using the Matrix_Files capability described in 
Chapter 10 of the UCODE_2005 documentation. The names of the parameters having multinormal 
distribution and their mean values are defined in the MCMC_Prior_PDF input block. The first 
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parameter defined there as mutinormal is associated with the first row and column of CovMatrix, 
the second is associated with the second row and column, and so on. 

If Blockformat KEYWORDS is selected by designation or default, keywords associated with a prior 
PDF group in the MCMC_Prior_Groups input block need to follow the related GroupName either 
on the same line or a new line. The GroupName keyword needs to be the first keyword on a new 
line. 

If Blockformat TABLE format is selected, COLUMNLABELS are needed because there is no 
default column order for the MCMC_Prior_Groups input block. 

MCMC_Prior_PDF Input Block (required) 

The keywords for input block MCMC_Prior_PDF are as follows. “PDF” in the input block name 
stands for probability density function. Keywords MCLowerConstraint and MCUpperConstraint are 
required for an MCMC run. 

As noted above, the keywords defined in the MCMC_Prior_Groups and MCMC_Prior_PDF input 
blocks may all be needed when MCMC=yes, but when MCMC_PREDICTION=yes, only the 
keyword ParamName defined in the MCMC_Prior_PDF block is used. 

ParamName  Parameter name (up to 12 characters; not case sensitive) – a character string 
that is used in a template file (template files are described in the 
UCODE_2005 documentation, Chapter 11). Each parameter name needs to 
be unique. If MCMC_Prediction=yes, the names listed here has to correspond 
to a parameter defined for the MCMC=yes, MCMC_Prediction=no run. 

Naming convention for ParamName:  

1) The first character has to be a letter of the set (A-Z, a-z); and 

2) All remaining characters have to be a letter, digit, or member of the set:  

    _   .   :   &   #   @ (underscore, dot, colon, ampersand, number sign, at symbol).  

The restrictions are needed for the parameter names to be used in the equations defined in 
Chapter 13 of the UCODE_2005 documentation. 

GroupName  Group name (up to 12 characters; not case sensitive).  Each parameter needs 
to be a member of one group. Default=DefaultPrior. 

The following two keywords define lower and upper constraints for the parameters. To improve the 
convergence of MCMC, out-of-bound parameter values in MCMC samples are folded into the 
bound; that is, they are set to values between the bounding values. The value, which we refer to as 
x, is determined as follows: (1) if x<min, then new_x=max-(min-x); (2) if x>max, then 
new_x=min+(x-max). “min” is MCLowerConstraint; “max” is MCUpperConstraint. This approach 
was suggested by J. Vrugt (University of California Irvine, 2012, written commun.).  

Though MCLowerConstraint and MCUpperConstraint have default values, the defaults are very 
wide and generally are not useful. Designation by the user is strongly advised. 
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If the uniform distribution is used by default or designation using keyword PDFType, the 
constraints defined here are used as the bounds of the uniform prior distribution. In this case, 
MCMC generated values are constrained by the values specified using MCLowerConstraint and 
MCUpperConstraint. Any values designated for input variables PDFVar1 and PDFVar2 (see below) 
are ignored for parameters with a defined uniform prior distribution. 

MCLowerConstraint- Smallest reasonable value for this parameter. Default=-(Huge real number). 
In absolute value, commonly about 10-38.  

MCUpperConstraint- Largest reasonable value for this parameter. Default=+(Huge real number). 
In absolute value, commonly about 1038.  

PDFtype  The type of PDF. The eleven options are listed below. For additional 
information on these distributions, see Casella and Berger (2001). If 
multinormal is defined for parameters included in the definition of 
CovMatrix in the MCMC_Prior_Groups input block, the CovMatrix is used. 
Default=uniform. 

PDFtype PDFVar1 PDFVar2 
uniform lower bound upper bound 
normal mean std 
log-normal mean std 
beta first parameter α1  second parameter β1 
chi-square degree of freedom v1 -- 
inv-chi-square degree of freedom v1 -- 
scaled-inv-chi-square degree of freedom v1 1scale σ2 
gamma inverse scale β1 shape α1 
inv-gamma scale β1 shape α1 
exponential mean1 -- 
multinormal mean --2 

1 The value needs to exceed zero 
2 The variances and covariances are provided by CovMatrix in the MCMC_Prior_Groups input block. 

 

PDFVar1  Value of the first variable used to define the prior PDF, as indicated above. 
Default=-(Huge real number). In absoluate value, commonly about 1038.   

PDFVar2  Value of the second variable used to define the prior PDF. For those 
distributions defined by only one variable, this second variable is not used but 
a dummy value (i.e., zero used in the following example) still needs to be 
entered here. Default=+(Huge real number). In absolute value, commonly 
about 1038. 

 

UCODE_2014 initiates Markov chains by drawing parameter samples from the prior distribution if 
UseRegResult=no and Restart=no in the MCMC_Controls block.  Though PDFVar1 and PDFVar2 
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have default values for each distribution, their use is not recommended. It is strongly suggested that 
users define reasonable values for the distributions. 

Example of the MCMC_Prior_Groups and MCMC_Prior_PDF input blocks when MCMC=yes for 
a problem with one independent, uniformly distributed parameter and five multi-normal distributed 
parameters. 
BEGIN MCMC_Prior_Groups Table 
Nrow=2  Ncol=3   COLUMNLABELS 
GroupName      PDFType          COVMATRIX 
PriGP1         uniform          
PriGP2        multinormal        CovPrior 
END MCMC_Prior_Groups 

 
BEGIN MCMC_Prior_PDF TABLE 
Nrow=6  Ncol=6   COLUMNLABELS 
ParamName GroupName MCLowerConstraint MCUpperConstraint PDFVar1 PDFVar2    
LAKERCH    PriGP2          1.0d-8          1.0d0     8.054E-04     0   
KRB0       PriGP2          1.0d0           1.0d6     5.604E+03     0   
RCH        PriGP2          1.0d-8          1.0d0     8.918E-04     0   
KV         PriGP1          1.0d-8          1.0d0     1.0E-08    1.0E+00     
K1         PriGP2          1.0d-3          1.0d3     4.458E+01     0   
VANI1      PriGP2          1.0d-3          1.5d1     2.388E+00     0   
END MCMC_Prior_PDF 

 
BEGIN OBSERVATION_GROUPS TABLE 
  nrow=   3   ncol=3  columnlabels 
  GroupName       PlotSymbol    CovMatrix   
         1          1           CovObsHead 
         2          2           CovObsFlow 
         3          3 
END OBSERVATION_GROUPS 

 
BEGIN MATRIX_FILES TABLE 
  nrow= 3   ncol= 3  columnlabels 
  MatrixFile              Nmatrices 
  covmatrix.dat              1 
  obsmatrix_head.dat         1 
  obsmatrix_flow.dat         1 
END MATRIX_FILES 

File obsmatrix_flow.dat is listed below. See the UCODE_2005 documentation for formatting 
instructions and the file obsmatrix_head.dat distributed with UCODE_2014 for an example of 
compressed matrix format. 
CompleteMatrix CovObsFlow 
2 2  
74529   0 
0       4980038.56 
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Chapter 6: NEW RELATED PROGRAMS AND NEW AND 
CHANGED INPUT/OUTPUT PERFORMANCE  

New and Changed Related Programs 

New related computer programs and significant changes in existing programs used with 
UCODE_2005 or UCODE_2014 are listed briefly in Table 4. Some are also described briefly in the 
text. Please also see the listed references. 

Table 3. New computer programs designed to work with files produced by UCODE and existing 
programs with significant changes.  

Program  Documen-
tation 

Short description 

MMA Poeter and 
Hill (2007) 

Multi-Model Analysis for evaluating alternative ways to simulate 
system features and properties.  

OPR-PPR Tonkin et 
al. (2007) 

Calculates the Observation-Prediction (OPR) and Parameter-
Prediction (PPR) statistics. OPR can be used to identify 
observations important to predictions. PPR can be used to identify 
parameters important to predictions. Additional statistics produced 
by OPR-PPR include the Observation-Parameter (OPA) statistic, 
among others. See comments in text about relation to PEST. 

Sim_Adjust Poeter and 
Hill (2008) 

Identifies observations or predictions that have been omitted, or 
assigned a default value, by the process model, and provides user-
defined alternate simulated values or defaults. A sequence of 
alternatives also can be defined to accommodate situations in 
which earlier alternatives also are not produced by the process 
model. For example if the value for head in a cell of a groundwater 
model is omitted or has an unreasonable value for use in 
computing residuals because the cell is dry, the user can use 
Sim_Adjust to provide instructions for using the head in the 
underlying cell and if that cell is also dry, then the head in the cell 
underlying that, and so on.  

ModelMate Banta 
(2011) 

A Graphical User Interface to create UCODE input from 
MODFLOW2005 input files. To use ModelMate with other 
process models, template and instruction files need to be 
constructed separately. See text for an example ModelMate 
window. 

GW_Chart Hsieh and 
Winston 
2002 

A graphical post-processor that can graph results for many 
programs, including UCODE. Examples are provided in the text. 

Model 
Viewer 

Hsieh and 
Winston 
2002 

2- and 3-dimensional visualization of the sum of squared weighted 
residuals objective function. Examples are provided in the text. 

Residual_ 
Analysis 

Poeter et 
al. 2005 

Supports residual analysis for results prior to conducting SVD. A 
brief description is provided in the text. 
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Program  Documen-
tation 

Short description 

Concatonate_ 
IntConfPred 

This report Concatenates results from multiple runs to enable plotting of 
nonlinear confidence intervals. The capability is described in the 
text. 

MMA 

MMA (Multi-Model Analysis) uses output from multiple calibrated models. Results can be analyzed using a 
wide range of model discrimination criteria, including new user-defined criteria. AIC, AICc, BIC, and KIC 
are used by default. The analysis can also calculate posterior model probabilities and model-averaged 
confidence intervals on parameters and predictions. Prediction intervals also can be calculated. Several recent 
papers provide example of how the capabilities of MMA could be used and expanded. 

Foglia et al. (2013) evaluates groundwater models that differ in the boundary conditions, geologic 
framework, and recharge and hydraulic conductivity distributions. The used cross-validation to test how well 
a set of model selection criteria could identify more accurate models. Results suggest some predictive power 
in criteria based on model fit and number of parameters (AIC, BIC, and so on), and difficulties for this non-
linear model for criteria in which the sensitivities play a substantial rol (KIC). 

Wellman et al. (2014) integrate more aspects of geology into the inverse modeling than has 
typically been the case. When using MMA, the approach of Wellman et al. means that more 
variable aspects of the system can be considered through the inverse modeling, and one might 
expect fewer alternative models. The tradeoff between what to include in the inversion, for which 
variables are continuous, and what to include in MMA-like analysis, for which variables are 
discrete, is an exciting topic of future research. 

OPR-PPR 

In OPR-PPR, results are directly comparable to PREDUNC and PREDVAR results produced by 
PEST, as discussed by Fienen et al (2010). Comparable statistics are the same except for two things:  

(1) How percent change is calculated. OPR-PPR uses {100×(changed-base)/base} so that 0% 
means no change, negative values indicate a decrease, and positive values indicate an 
increase. PREDUNC and PREDVAR use 100× (changed/base) so that 100% means no 
change, values between 0.0 and just less than 100% indicate a decrease, and values larger 
than 100% indicate an increase.  

(2) In PEST, the programming that calculates PREDUNC and PREDVAR use numerical 
methods that better support highly parameterized models than does UCODE.  
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ModelMate, A Graphical User Interface for Inverse Modeling 

The Graphical User Interface ModelMate (Banta, 2011) can be used to organize parameters, 
obserevations, and predictions. It can create UCODE input from MODFLOW2005 input files.  It 
can also be used with other process models, but then the template and instruction files would need 
to be constructed separately and information to define observations and parameters would need to 
be entered using ModelMate menus. 

ModelMate can be obtained from the USGS software distribution site:  
http://water.usgs.gov/software/ModelMate/. 

 

Figure 13. ModelMate window showing title bar, menu bar, tool bar, and Status bar. Note the 
tables for Parameters, Observations, and Predictions. 

  

http://water.usgs.gov/software/ModelMate/
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GW_Chart for Enhanced Evaluation of Results 

The contents of many of the data-exchange files produced by UCODE can be plotted using 
GW_Chart. Examples are shown in Figure 14. GW_Chart is very useful during the course of model 
calibration. GW_Chart may not produce the formatting desired for publication quality graphs, and 
data-exchange files are formatted to enable use of alternative plotting programs such as Excel.  

GW_Chart can be obtained from the USGS software distribution site:  
http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html 

(A) Results from data-exchange file _ss, showing the progression of the sum of squared 
weighted residuals over the course of the parameter-estimation iterations. The number of 
observations is listed because observations can be omitted in some circumstances. 

 
(B) Results from data-exchange file _pa, showing the progression of the parameter values over 

the course of the parameter-estimation iterations. 

 
(C) Results from data-exchange files _scgrp, with bars of composite scaled sensitivities stacked 

to show the amount of information provided by five observation groups. This graph is 

http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html
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discussed further in the section “Parameter and Observation Importance: A New Plot Using 
Data Exchange File _scgrp”. 

 
(D) Results from data-exchange file _pc, with estimated parameter values (link dots), calculated 

confidence intervals on the estimated values (black lines), and pre-calibration reasonable 
ranges on the parameter values (gray boxes). 

 
Figure 14. Example graphs produced by GW_Chart. These graphs are from the test problem 
described in Hanson et al. (2013). 
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Model Viewer for Plotting Objective Function Surfaces 

Model Viewer (Hsieh and Winston, 2002), starting with version 1.2, can read a data-exchange file 
with filename suffix _sos and columns composed of the objective function value followed by values 
of two or three parameters. Results for three parameters from a Water Balance Model (McCabe and 
Markstrom, 2007) and part of the associated _sos file are shown in Figure 15.  

(A) 

 

(B) 
“Sum-of-Squared-Weighted-Residuals”  “rfactorin   “ “pfacSEPtoNOV” “pfacDECtoFEB” 
    481.288476                      0.100000000      0.900000000    0.900000000     
    481.718400                      0.100000000      0.900000000    0.904081633     
    482.177167                      0.100000000      0.900000000    0.908163265     
    482.668211                      0.100000000      0.900000000    0.912244898     
    483.179595                      0.100000000      0.900000000    0.916326531     
    483.726925                      0.100000000      0.900000000    0.920408163     
   . 
   . 
   .  

Figure 15. (A) Three-dimensional plots of an objective function. The figure in the lower right is 
cut away to show the region around the minimum value of the objective function, 
which appears in grey. (B) First 6 of 125,000 lines of the UCODE output file with 
filename extension _sos which was used to create the figures shown. The results are 
from the Water Balance Model (WBM) of McCabe and Markstrom (2007). The 

Cropped to show minima
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discontinuity stems from defining an inadequate burn-in period. The figures were 
produced using Model Viewer (Hsieh and Winston, 2002) 

Residual_Analysis 

Residual_Analysis, has been modified to allow for analysis of residuals from data-exchange files 
generated before implementing the SVD parameter estimation in addition to analyzing residuals 
from the final optimized values. The code is back compatible.  To use the new feature, provide a 
second argument “presvd” on the Residual_Analysis command line. Given that second argument, 
Residual_Analysis uses data exchange files with the additional _presvd extension.  These files 
include the following. 

fn._dm_presvd,  
fn._mv_presvd,  
fn._paopt_presvd,  
fn._su_presvd,  
fn._supri_presvd,  
fn._w_presvd,  
fn._wt_presvd, and  
fn._wtpri_presvd.  

where fn is replaced by the first argument on the Residual_Analysis command line 

The output from Resudial_Analysis is stored in files with the following extensions 

fn._rd_presvd,  
fn._rg_presvd,  
fn._rc_presvd,  
fn._rb_presvd, and  
fn.#resan_presvd.  

If the optional input file, fn.rs, is used, it needs to have the additional file extension, and thus would 
be fn.rs_presvd. 

CONCATENATE_INTCONFPRED 

CONCATENATE_INTCONFPRED is a program to concatenate multiple nonlinear confidence 
interval output files for post-processing. These files are produced when using the nonlinear intervals 
mode of UCODE (Poeter et al., 2005, Chapter 17).  

When calculating nonlinear uncertainty intervals, different runs of UCODE are often used to 
calculate different nonlinear interval limits because of lengthy runs and convergence problems. 
Each limit of each interval requires a regression, and each of these regression runs is totally 
independent. For example, if uncertainty intervals are being calculated for five predictions, 10 
regressions are needed. These can be calculated using 10 different runs of UCODE, each on a 
separate computer. CONCATENATE_INTCONFPRED helps accumulate these intervals into one 
file for easier polotting by GW_Chart or other software. 
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To facilitate these different runs, new files with date/time stamps in the filename are produced for 
files with extensions  
_intconf,  
_intconfpar,  
_intpred, and  
_intpredpar.  
The new file names are, for example, fn–2008_06_21–22.17._intconf.  

For each UCODE nonlinear uncertainty run, files  

fn._intconf,  
fn._intconfpar,  
fn._intpred, and  
fn._intpredpar  

are produced. As before, they contain the intervals calculated in the most recent run. To obtain a full 
list of interval limits, values from the time-stamped files can be moved into these files without the 
time stamps. Once this is accomplished, the nonlinear intervals can be plotted in graph form using 
GW_Chart.  

The new post-processing code Concatenate_IntConfPred can be used to merge output from the 
UCODE nonlinear interval mode.  After executing UCODE in the non-linear interval mode, a 
number of files are produced. The files of interest in this section are the time-stamped copies of the 
fn._intconf and fn._intpred files. These names could be, for example,  

fn –2013_03_08–14.34._intconf  

or  

fn –2013_03_08–16.25._intpred.   

Time-stamped output is created by the non-linear interval executions of UCODE because the non-
linear interval runs can be very long. Creating time-stamped copies of the most valuable output files 
prevents inadvertent overwriting of the results. These files are readily viewed in GW_Chart.  It is 
preferable to view all of the intervals of interest in one graph. However, typically numerous 
executions of the UCODE nonlinear interval mode are needed before all of the acceptable intervals 
are calculated. The code described in this section (Concatenate_IntConfPred) facilitates combining 
those time-stamped files into one file with a name that includes “concatenated” for easy 
identification, such as fn._concatenated_intconf or fn._concatenated_intpred.  

Numerous executions of the UCODE nonlinear interval mode are typically needed for various 
reasons.  For example, because the runs are expected to be long, only a few limits might be included 
the first run in order to assess the situation and get a better feel for appropriate settings. Let’s call 
that time-stamped file A. Some of the limits in that file may have converged to within an acceptable 
deviation from the goal, but others may not have converged, or may not be within an acceptable 
percentage deviation from the goal. Consequently another execution of the UCODE nonlinear 
interval mode might be undertaken with different criteria (e.g., more iterations using MaxIter and/or 
smaller tolerances for TolIntP, TolIntS, and/or TolIntY). Let’s call the resulting time-stamped file 
B. If most of those interval calculations converged within a reasonable percentage deviation of the 
goal, then yet another execution of the UCODE nonlinear interval mode might be undertaken with 
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additional items (i.e., parameters and/or predictions) and if both the upper and lower limits were not 
included previously, the limits that were not previously calculated might be included in this run. We 
will call the resulting time-stamped file C. Perhaps many more UCODE nonlinear interval mode 
executions will be made before the user is satisfied with all of the results. In addition to the 
variations described in this paragraph, the user may at times execute the UCODE nonlinear interval 
mode for confidence versus prediction limits and/or for individual versus simultaneous intervals for 
the same items.  Note that these choices are made for an entire UCODE nonlinear interval mode 
execution. Thus an entire time-stamped file will contain either confidence or prediction limits (but 
not both) and either individual or simultaneous intervals (but not both). It is not valid to mix 
confidence with prediction limits, or individual with simultaneous intervals. 

Once the user is satisfied with the set of nonlinear limits that are available in all of the time-stamped 
files, it is desirable to have all of the confidence limits in one _intconf file and/or all prediction 
limits in one _intpred file. That is when the Concatenate_IntConfPred program is executed.  The 
simple input file described below contains 1) the indication of whether confidence or prediction 
limits are of interest and 2) the root names of the time-stamped files to be merged. 

A number of issues may be encountered when merging the files. The potential issues and the action 
Concatenate_IntConfPred takes to resolve them are listed in the following Table. The code runs 
quickly so the user can identify the issues and address them in a short time. It is recommended that 
the user make a copy of all the time-stamped files in a separate folder because some of the solutions 
involve the user editing the time-stamped files. Maintaining copies elsewhere will prevent an 
inadvertent error that may cause loss of time while waiting for a UCODE nonlinear interval mode to 
run again. 

Execution  

The CONCATENATE_INTCONFPRED run command is of the form 

path:\ CONCATENATE_INTCONFPRED.exe  fnconcat 

where 

path:\    is the relative or absolute path to the CONCATENATE_INTCONFPRED.exe on 
your computer (alternatively you could specify this in your system path variable) 

fnconcat  is the filename prefix for the CONCATENATE_INTCONFPRED input and output 
files, which may, but does not need to be the same as that of the previous executions 
of UCODE (spaces are not allowed in fn, even on operating systems that allow 
spaces in filenames)  

Input Files for CONCATENATE_INTCONFPRED  

CONCATENATE_INTCONFPRED relies on previously generated data-exchange files that are file-
stamped copies of the fn._intconf and fn._intpred files. These names are for example, fn–
2013_03_08–14.34._intconf or fn–2013_03_08–16.25._intpred.  

A user-prepared input file named fnconcat.concatenate is needed to execute 
CONCATENATE_INTCONFPRED, where fnconcat is the root filename defined on the command 
line. It does not need to match the root filename of the earlier UCODE runs. The first line of this 
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file includes an indicator of whether confidence limits or prediction limits will be merged (either 
conf or pred, which are not case sensitive). Subsequent lines list the root names of the files to be 
merged.   

Example of input the CONCATENATE_INTCONFPRED program: 
pred 
ex1–2013_03_08–23.17 
ex1–2013_03_08–14.34 

Output Files for CORFAC_PLUS 

Each run of CONCATENATE_INTCONFPRED produces two output files: the main output file 
with file extension #concatenated._int* and a data-exchange file with file extension 
_concatenated._int*. The * is replaced by ‘conf’ or ‘pred’ depending on the word on the first line of 
the input file, fnconcat.concatenate.  The * is replaced by ‘conf’ when the first line reads conf and 
‘pred’ when it reads pred. 

The CONCATENATE_INTCONFPRED main output file, with file extension #concatenated._int* 
echoes the information as it is read from the list of time-stamped files and reports errors with 
suggestions for correcting the situation. 
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Table 4. Potential problems with Concatenate_IntConfPred files and suggested actions. 
Potential Problem Concatenate_IntConfPred Action and Suggested 

User Action 
A listed time-stamped file is not found. After checking for the existence of all the listed 

time-stamped files, the program terminates and lists 
the files that did not exist. 

The same item and limit is repeated in 
the time-stamped files, but all associated 
information is identical. 

This means that calculations for the limit were 
repeated for more than one run of UCODE. The 
item is listed in the main Concatenate_IntConfPred 
output file (file name suffix starts with #), the 
situation is ignored and the program continues. 

The same item (name and limit, i.e. 
upper or lower) is repeated and any 
aspect of associated information differs. 
For example, this will occur in the 
common situation in which UCODE has 
been run in the nonlinear interval mode 
for the same item and limit but with 
more iterations or a different closure 
tolerance. 

After reading all files and items, an error message is 
written to both output files along with a list of all 
items with identical name and limit (i.e., upper or 
lower), but different associated information and the 
associated time-stamped files. The program 
terminates. The user is advised to either revise the 
list of files provided to Concatenate_IntConfPred in 
the input or remove the unwanted limits from the 
time-stamped files. 

The first line of the input file is ‘conf’ 
and the header of a time-stamped file 
reads PREDICTION LIMT, or the first 
line of input is ‘pred’ and the header of a 
time-stamped file reads CONFIDENCE 
LIMT. 

After reading all files in the list, an error message is 
written, offending files are listed in both output files 
and the program terminates. The user should 
remove the offending files from the list of files in 
the Concatenate_IntConfPred input file. 

All limits are not of same type (for 
example, limits for individual and 
simultaneous intervals are reported). 

After checking all files, an error message is written 
to the UCODE main output file and the associated 
time-stamped files. The program terminates. The 
user can determine the offending files as those in 
the Concatenate_IntConfPred main output file (#) 
that are followed by the message “!!!! MIXED 
INDIVIDUAL and SIMULTANEOUS LIMITS 
!!!!”. The user is advised to either revise the list of 
files provided to Concatenate_IntConfPred in the 
input or remove the unwanted limits from the time-
stamped files. 

A lower and upper limit is included for 
the same item name but the upper limit is 
lower than the lower limit. 

All files and items are read. The item name and file 
name of each occurrence of LowerLimit > 
UpperLimit is written to the main (#) 
Concatenate_IntConfPred output file.  The program 
terminates. The user is advised to either rerun those 
intervals or remove them from the time-stamped 
files. 
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CONVERT_PEST_PRIOR_INFO 

CONVERT_PEST_PRIOR_INFO is a program that reads a pest file, finds the prior items and uses 
them to create a UCODE Linear_Prior_Information input block. This allows the PEST capabilities 
to create prior information for parameters defined at pilot points to be used in constructing UCODE 
input files. For models with more than about a hundred parameters, the support for highly 
parameterized models provided by PEST is likely to reduce execution time relative to UCODE. On 
the other hand, UCODE has sensitivity analysis statistics that might be useful in some 
circumstances. 

The command line needed to run the program CONVERT_PEST_PRIOR_INFO is  

convert_pest_prior_info.exe    name-of-pest-file    base-name-of prior-items-in-pest-file 

The two arguments are as follows. A set of input and output files are provided with the UCODE 
distribution in a directory called convert_pest_prior_info.  

Name-of-pest-file Full name of the PEST main input file. This is also used to create the name of 
the files with the UCODE Linear_Prior_Information input block. The new 
file name is created by appending “.out” onto the input specified for name-of-
pest-file. 

In the example distributed with UCODE the name of the PEST main input file is “06-upestrun-
p.pst” and the file containing the UCODE Linear_Prior_Information input block is named 06-
upestrun-p.pst.out. 

base-name-of prior-items-in-pest-file  Base name for prior items to be written using the 
program convert_pest_prior_info. 

The program only converts prior information for which the base name matches this keyword. In the 
example distributed with UCODE the base name is “r”. 

A short summary of what was done is in the output file ConvertPestPriorInfo.#out. 

Changed UCODE Input/Output Performance 

This section describes changes in the UCODE data-exchange files, and changes to the input blocks 
that make up the main input file that are not described in the previous sections. The latter includes 
changed functionality of some keywords and some new keywords. Two input blocks are involved in 
the changes. All changes are minor and will affect few users. Some of what is documented here was 
implemented in versions of UCODE_2005. Version numbers for these changes can be found in the 
history file of the UCODE_2005 distribution. 

The changes are implemented such that UCODE_2014 is fully backward compatible.  

Modified Data-Exchange Files 

There is one new data-exchange file and changes to two others. 
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Parameter and Observation Importance: A New Plot Using Data Exchange File _scgrp 

The _scgrp data exchange file was changed so that stacked graphs of CSS, such as that shown in 
Figure 16 could be plotted. The change is simply adding the number of observations in each group. 
This allows a more useful graphical display of how observations contribute to the sensitivities 
calculated for each parameter than the original display supported by previous versions of 
MODFLOWP (Hill, 1992), MODFLOW-2000 (Hill et al, 2000), and UCODE_2005, and used by 
Barlebo et al. (1998). Like any graph of composite scaled sensitivity, the results are for individual 
parameters and do not display the consequences of parameter correlation. The effects of parameter 
correlation can be evaluated using other statistics such as leverage, Cook’s D, and DFBETAS. 

Figure 16 shows how the new method is used to display the contributions of five types of 
observations to the estimation of 10 parameters. In this sample problem, particle tracking is used to 
produce simulated equivalents for four types of field observations typically derived from 
concentration measurements and provided through the new MODPATH-OBS program (Hanson et 
al., 2013):  

1. direction of transport (called proximity observations in the figure),  
2. travel time (only available once the basic direction of transport is simulated correctly), 
3. “concentrations”, used in this work to approximate PCE concentrations, but often used to 

simulate water age, and 
4. source of water, which generally is supported by data identifying the source areas of 

recharging water. 

The stacking shown in Figure 16 is a useful way to depict observation contribution to parameter 
sensitivity. The calculations and data-exchange files behind the stacked graphs are described in 
Appendix F. The units of the observations are listed in the figure; the observations are normalized 
as a step in producing the graph. 

Data-Exchange File fn._eig 
The _eig data-exchange file is produced when keyword EigenValues is yes in the 
UCODE_Control_Data input block. Data-exchange file fn._eig contains eigenvalues and 
eigenvectors of the parameter posterior variance-covariance matrix (which is in the _mv data-
exchange file) scaled by the parameter values. Small eigenvalues are associated with more 
important eigenvectors; large eigenvalues are associated with less important eigenvectors. More 
sensitive parameters tend to dominate more important eigenvectors.  
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Figure 16. Figure produced using the _scgrp data-exchange file. This figure was produced using 
GW_Chart (Winston, 2000) 

 
The eigenvectors are the same as the singular vectors produced in SVD; the eigenvalues equal the 
reciprocal of the square of the singular values.  

For UCODE_2014, the format of the fn._eig file has been changed to facilitate user reading of the 
file. Although data-exchange files are primarily intended for computer processing, users often view 
the files and the new format makes it easier to see the association between the eigenvalues and their 
associated vector elements. The file is presently formatted as shown in Figure 17. Previously the 
eigenvalues were listed as the first column of the file, making it less clear that each eigenvalue is 
associated with one eigenvector. 

 
“Variance-Covariance Matrix of the Parameters scaled by parameter 
values: Eigenvalues and Eigenvectors” 
                                           “EIGENVALUE            1” 
 “EIGENVALUE FOR EACH VECTOR  “            0.2165814084099306E-01  
 “PARAMETER FOR EACH VECTOR ELEMENT “      “EIGENVECTOR            
 HK_1                                      -0.7148319210731826     
 K_RB                                      -0.2397959977006962E-02 
 VANI                                       0.7405157406540819E-16 
 VK_CB                                     -0.2452155814601121E-02 
 HK_2                                      -0.1241457555251904     
 RCH_1                                      0.1794793381884821     
 RCH_2                                      0.6643632740324659     

Figure 17. Part of an example _eig file, including the header line (here shown on two lines) and 
the first two columns. 

Time Stamps for Nonlinear Uncertainty Output 

When calculating nonlinear uncertainty intervals, different runs of UCODE are often used to 
calculate different intervals limits because of lengthy runs and convergence problems. To facilitate 
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these different runs, new files with date/time stamps in the filename are produced for files with 
extensions _intconf, _intconfpar, _intpred, and _intpredpar. The new file names are, for example, 
fn–2008_06_21–22.17._intconf. For each UCODE nonlinear uncertainty run, files with extensions 
_intconf, _intconfpar, _intpred, and _intpredpar are still produced. As before, they contain the 
intervals calculated in the most recent run. To obtain a full list of interval limits, values from the 
time-stamped files may need to be moved into these files without the time stamps. Then the 
nonlinear intervals can be plotted using GW_Chart. The new program Concatenate_IntConfPred 
allows this to be done as part of a batch file, thus reducing the chance of error. 

Modified Keywords and Input Blocks 

Changes have been made to the UCODE_Control_Data and Reg_GN_Control input blocks. 

UCODE_Control_Data Input Block 

DataExchange. The keyword DataExchange is now always set to Yes. A designation of no is 
ignored. 

New Keyword:  Reactivate. Reactivate governs performance of UCODE when the regression 
converges, or the regression fails to converge and stats_on_nonconverge=yes. The original 
UCODE_2005 functionality is described below under Reactivate=no.  

Reactivate                 Final, Starting, and No. Default=Final.  

Final: all parameters (including omitted parameters) are set to the values associated 
with the iteration having the lowest sum-of-squared-weighted-residuals. The 
final sensitivities and statistics are generated for the parameters that were 
defined as adjustable at the start of the regression. 

Starting: as for Reactivate=final except that omitted parameters are set to their 
starting values. This method has the advantage of using values for omitted 
parameters that are more likely to be in the middle of their expected range. 
However, the use of a mixed set of parameter values (that is, starting values 
for the omitted parameters and altered values for the other parameters) 
generally results in a model fit that is worse than the lowest sum-of squared-
weighted residuals achieved during regression. It is advisable to repeat the 
regression with the omitted parameters set to adjustable=no. To bring this to 
the attention of the user UCODE prints warning messages if the resulting 
sum-of-squared-weighted-residuals is larger than the lowest sum-of-squared-
weighted-residuals identified during the regression. 

No:  all parameters (including parameters omitted at the end of the regression run) 
are set to the values associated with the iteration having the lowest sum-of-
squared-weighted-residuals. The final sensitivities and statistics are generated 
only for the parameters that were active for the iteration with the lowest sum-
of-squared-weighted-residuals.  



Chapter 6: New Related Programs and New and Changed Input/Output Performance 

 74 

Reg_GN_Controls Input Block  

New Keywords:  Scaling, OmitWeight.  

New keyword Scaling influences the trust region regression algorithm accessed using keyword 
TrustRegion, which is described in the UCODE_2005 documentation (Poeter et al., 2007, p. 63). 
Scaling=no adds the option to not scale the least squares matrix. Scaling of the matrix is described 
by Hill and Tiedeman (2007, p. 72). Not scaling the matrix may improve regression performance 
when the regression is not able to reduce the objective function value (Dennis Gay, and Welch, 
1981 and our own experience). 
 
Scaling Yes, No. Default = Yes  
  Yes:  scaling is used. 
  No :  scaling is not used. 
 

A new keyword OmitWeight allows the user to control how observations are omitted. The omission 
is accomplished by reducing the value of the weight: the weight is made so small that the 
observation does not affect the regression. As discussed in the UCODE_2005 documentation 
(Poeter et al., 2005, p. 62), the use of keyword OmitDefault to define numbers which, when 
encountered as a simulated value, indicate that the observation is to be omitted from the regression. 
The program Sim_Adjust can be used to define alternative simulated values; for example, in 
groundwater models if the observation cell goes dry, Sim_Adjust can be used to tell UCODE to use 
the head in the underlying cell. If no alternative values are defined or none can be simulated, the 
situation can be controlled using OmitDefault.  

Previously, the weight was reduced without the possibility of user intervention, but situations have 
occurred when the defined procedure did not produce a sufficiently small weight. The default 
procedure has now been changed to be more robust. In addition, the user has been provided the 
ability to control the applied weight using the new keyword OmitWeight. 
 

OmitWeight  the weight used for omitted observations. Default = 1E-70 

Multiplying OmitWeight times the OmitValue needs to produce a value that 
is small relative to most the other weighted residuals. 
 

The OmitValue functionality is intended to allow the regression to continue through parameter sets 
for which a few observations are not be calculated. If the final estimated parameter values result in a 
simulation that is unable to produce simulated values for any observations, inspection of those 
observed and simulated values is advised.  
 
For UCODE calculation of some statistics, such as the standard error of the regression, AIC, BIC, 
KIC, linear and nonlinear confidence intervals, and so on, the value of observations used (often 
called N or ND in the equations) will include the omitted observations. Elimination of these 
observations from the data set by including them in an observation group for which UseFlag = no or 
removing them from the data set is required to obtain correct calculation of the affected statistics. 
This generally requires an additional sensitivity analysis mode run, but is not expected to occur 
frequently. 
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Chapter 7: USING A MATLAB MODEL WITH UCODE,  
by Marc J. Rubin1 and Allan K. Haas2 

Many scientists and engineers use MATLAB to perform a variety of analyses, and as such there is 
likely to be a substantial reservoir of MATLAB code that could be useful to UCODE users.  In this 
chapter, we show that it is rather straightforward to combine these powerful tools by running a 
MATLAB model from UCODE.  For this application, MATLAB is run without its usual GUI. 
UCODE becomes the controlling program and makes calls to run MATLAB.  UCODE calls 
MATLAB multiple times, adjusting the values of the MATLAB model input parameters for each 
MATLAB call based on the designations in the UCODE main input file and a constructed UCODE 
template file. Results are read from MATLAB text-file output using a UCODE instruction file.  

When running with UCODE, the MATLAB GUI is not present but the executed MATLAB code 
could still produce graphical displays and other useful results. It may be desirable for the user to 
employ MATLAB generated graphics and other displays to confirm the MATLAB model integrity 
and provide additional input.  Using MATLAB graphics will slow down the execution.  Therefore, 
it is recommended that MATLAB run graphics free during analyses requiring multiple forward 
model calls conducted by UCODE.   

The process makes use of the command line options and execution that MATLAB provides.  
Briefly, the MATLAB execution command is placed in a Microsoft batch file, which UCODE then 
calls to run the MATLAB model. The MATLAB model is configured to work with the input and 
output file structure that UCODE requires; that is, input and output files need to be ASCII files and 
associated UCODE template and instruction files need to be constructed and the filenames listed in 
the UCODE main input file Model_Input_Files and Model_Output_Files input blocks.  The 
combination of these files construct a very simple, flexible, and robust communication interface 
between the two main software facilities, allowing operational arguments and data to be exchanged 
between them.  Finally, the MATLAB model needs to call MATLAB’s “exit;” command when the 
model completes.  This causes MATLAB to terminate and return system control to UCODE.   

Two preparatory steps are needed before MATLAB can be used with UCODE.  First, as stated 
above, existing or new MATLAB codes must be modified or constructed to conform to UCODE 
file interchange requirements.  Second, the MATLAB-UCODE interface files must be configured.  
After these file preparations, the three steps outlined below are needed to operate MATLAB from 
UCODE without the MATLAB graphical user interface (GUI). The following presents the 
statements and arguments that are available to run MATLAB (without its typical GUI), from 
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UCODE. Step one also provides an example using iTOUGH2 instead of UCODE to give users 
another example of how MATLAB programs can be used with inverse modeling software..   

Step One: Running a MATLAB Model from the Command Line 

Before discussing how to run a MATLAB model from UCODE, one must first understand how to 
run a MATLAB model from the command line.  From a Window’s command line, the following 
command will run a MATLAB script named “model” (i.e., model.m): 

CMD> MATLAB –r model             

where MATLAB is the full executable path of MATLAB and model is a MATLAB script (i.e., 
“model.m”) that is within MATLAB’s path.  The –r command line option forces MATLAB to run 
the command or script that follows.  To make MATLAB run faster, other command line options are 
added: 

CMD> MATLAB –nosplash –nodesktop –r model                      

The –nosplash command line option disables MATLAB’s startup splash screen and the –nodesktop 
option disables MATLAB’s Java based graphical user interface (GUI). 

The command used by iTOUGH2 to run MATLAB is as follows, where what is on two lines here 
would appear on one line (S. Finsterle, written commun. 2014)  

“matlab -nodesktop -nosplash -nojava -wait -automation –r” 

"run('c:\path\to\myMATLABCode.m'); exit” 

Step Two: Running a MATLAB Execution Command from a Microsoft Batch File 

The command needed to execute the MATLAB model is specified in the run.bat file which contains 
the following line. 

CALL MATLAB –nosplash –nodesktop –wait –r model             

MATLAB’s –wait command line option forces the batch script to wait until the MATLAB process 
terminates, which is crucial for MATLAB to work with UCODE.  To reiterate, the MATLAB 
model MUST abide by UCODE’s input and output file requirements.  Additionally, the MATLAB 
model MUST call MATLAB’s “exit;” command to allow the MATLAB process to terminate. 

Step Three: Modify UCODE_main.in 

In the Model_Command_Lines input block of the UCODE main input file, call a Microsoft batch 
script named “run.bat”, which contains the command to execute a MATLAB model from the 
command line.  The line in the input block will look like this: 

Command = ‘run.bat’   



 Chapter 8. LINKING UCODE WITH A PROGRAM RUN THROUGH A GRAPHICAL USER 
INTERFACE 

 77 

Chapter 8: LINKING UCODE WITH A PROGRAM THAT IS RUN 
THROUGH A GRAPHICAL USER INTERFACE,  

by Assaf Wunsch1 
As an example of a program run through a graphical user interface (GUI) in a MS Windows 
environment, this section focuses on HYDRUS. 

The finite-element software HYDRUS (from PC-Progress) has become a popular tool for 
simulating saturated and unsaturated flow in the subsurface. A 1-dimensional (1D) calculator 
(Šimůnek et al., 2005) is available for free; the 2D/3D version, which enables complex domain 
geometries (Šimůnek et al., 1999), is not. HYDRUS has a built-in inverse simulation feature, both 
in the free and the paid versions. However, only parameters related to flow (hydraulic conductivity, 
van-Genuchten parameters, dispersivity, etc.) can be optimized. In addition, the user has little 
control over the settings of the optimization calculation itself, such as convergence criteria and 
incremental change of each parameter during iterations. This guide is therefore intended for users of 
HYDRUS who wish to take advantage of some of the complex features of UCODE, or optimize 
parameters in HYDRUS that are not directly related to the intrinsic flow properties of the porous 
media (for example, boundary conditions and reaction rates).  

The basic steps are as follows. 

a) Construct a model as usual using the HYDRUS GUI. 
b) Proceed as described below to do the same HYDRUS run using a batch file and 

create the needed input files. Ensure that the batch file process is producing the same 
simulation results as obtained when using the GUI. 

c) For UCODE, use the batch file and construct the needed template and instructions 
files. 

d) Run HYDRUS using UCODE. 

The following sections provide specific instructions for accomplishing these steps. 

Calling HYDRUS from UCODE 

One of the appeals of HYDRUS is its GUI. However, running HYDRUS simulations from UCODE 
requires executing HYDRUS from the command prompt, or through a batch file. Here the batch 
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files for running HYDRUS are described. The location and name of the batch files should be 
defined in the “MODEL_COMMAND_LINES” block of the main UCODE input file. 

HYDRUS 1D 

An example of a batch file for running HYDRUS 1D on a MS Windows operating system is given 
below: 

------------ run_hydrus_1D.bat ------------ 

cd\ 
cd program files 
cd pc-progress 
cd hydrus-1d 4.xx 
h1d_calc C:\Hydrus_simulations\1d\col\my_simulation 
 
------------ end file --------------------------- 

In this example, the first four lines simply point to the directory that contains the HYDRUS_1D 
executable, and this can be done in a different way. Notice the syntax of the last line in the batch 
file: “h1d_calc” refers to the HYDRUS_1D executable, “h1d_calc.exe”; the term 
“my_simulation” refers to the HYDRUS project file “my_simulation.h1d”. Generation of the 
project file is discussed below. 

HYDRUS 2D/3D 

An example of a batch file for running HYDRUS 2D/3D is given below: 

------------ run_hydrus_2D.bat ------------ 

cd\ 
cd program files 
cd pc-progress 
cd hydrus 1.xx 
h2d_calc.exe 

------------ end file --------------------------- 

As with the previous example, the first four lines simply redirect the path to the location of the 
HYDRUS 2D executable, and the last line contains the executable itself. However, notice that the 
project name itself is missing. To instruct HYDRUS 2D to run a specific project, there needs to be a 
file called “level_01.dir” in the directory which contains the HYDRUS 2D executable (for the 
example above, the pathname of the file would be “c:\program files\pc-progress\hydrus 
1.xx\level_01.dir”). The file “level_01.dir” needs to contain the project directory. For example, it 
might be:  
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------------- “level_01.dir” --------------- 

c:\hydrus_simulations\2d\H3D_My_2D_Simulation 
 
------------ end file ----------------------- 

where “My_2D_Simulation.H3D” is the name of your project. Unlike in the HYDRUS 1D 
example, here the directory where all the project files are kept is listed, not the main project file 
(i.e., not the directory that contains the actual “.H3D” file).  

 

HYDRUS Input Files 

By default, HYDRUS collapses and compresses all the text and non-text input and output files 
when a project is closed. To keep the project files in a directory where you can view them when the 
project is closed, you need to change some settings in HYDRUS. When starting a new project, the 
following menu appears, requiring the user to assign a project name, description etc. Under 
“Working Directory” choose “Permanent” instead of “Temporary”. That will keep the project files 
accessible on your hard drive. 

 

Important note: Do not forget to change the content of "level_01.dir" – i.e., the location 
of the HYDRUS project - when switching from one project to another. Otherwise the 
same project will be optimized again and again. When you are done with the optimization, 
the file “level_01.dir” can be deleted. 
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Most of the HYDRUS input parameters are located in a file called “Selector.in”, both in the 1D and 
the 2D/3D versions. This file should be used to create a template file as described for the UCODE 
“MODEL_INPUT_FILES” input block.  

HYDRUS Output Files 

HYDRUS produces several output files, some are text files (ASCII) and some are not. The text files 
can be used to provide UCODE with simulation results. In the UCODE input file, HYDRUS text 
output files can be listed in the “MODEL_OUTPUT_FILES” input block. HYDRUS output text 
files commonly of interest include, for example, the cumulative fluxes across boundaries 
(“cum_Q.out”) or mean velocities (“v_Mean.out”). In HYDRUS 1D, most of the output data is 
stored in “T_Level.out”. However, the most useful output file is probably the output file for the 
observation nodes that are “planted” in the model, as discussed in the following sections.  

HYDRUS 1D Observation Node Output 

Data recorded for the observation nodes is kept in the output file “Obs_node.out”. Observation 
nodes are identified in “Obs_node.out” by their location in the 1D model. Node numbers in 
HYDRUS 1D start with “1” at the top model boundary, and increase linearly until the bottom model 
boundary is reached. An observation point that is located on node 29 will simply be called “Node 
(29)” in the output file.  

HYDRUS 2D/3D Observation Node Output 

Data recorded for selected observation nodes is kept in the output file “Obsnod.out” (notice the 
omission of the underscore and the letter “e” in the file name relative to the equivalent HYDRUS 
1D output file). As in the 1D version, observation nodes are identified by the node number. 
However, the assignment of node numbers in a finite-element mesh is complex, and does not follow 
rules such as incremental increase from domain top to bottom, left to right etc. Therefore, the user 
should make sure to identify the node number using the HYDRUS 2D/3D GUI. 

Instruction Files for UCODE 

Instruction files contain output-specific instructions, enabling UCODE to obtain simulated values 
that are then compared to observed values. The instruction files for HYDRUS can be constructed 
like any other instruction files described in the UCODE manual. A crucial aspect for matching the 
correct observation to the correct model output is consistency in the output files. However, the 
default in HYDRUS is to print output at defined time-step intervals, rather than at a defined 
simulated time interval. For example, output may be written every 10 time steps, rather than every 
hour of simulated time. Time step lengths are calculated internally and depend on the flow 
conditions. For example, the simulation may require using very small time steps when a stress is 
imposed in the simulation, and these time steps may become larger, or “relax” over time. Printing 
intervals every set number of time steps therefore does not generally produce output at the same 
times for different runs, and coordination with observations is generally difficult and sometimes 
impossible. Output files may be of different lengths for different sets of parameter values; results 
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from a given simulated time may not always appear in the same line in the output file. To create 
output files that are consistent in length, modify the output settings in HYDRUS as follows.  

HYDRUS 1D Output Time Stepping 

Output settings are found in the “Print Information” menu: 

 

In this menu, un-check “T-Level Information” and instead check “Print at Regular Time Interval”. 
In the box next to “Time Interval” type the time interval for output, for example every 0.1 days. 
Notice that data printed according to “Print at Regular Time Interval” is different from the data 
printed according to “Print Times”. Generally, the data printed at simulation times set in “Print 
Times” is more detailed, whereas the data printed at simulation times set in “Print at Regular Time 
Interval” is mostly parameter averages. The user should refer to the HYDRUS 1D manual for a 
complete list of the types of data that are stored according to each of these options. Also, when 
observations are at different times that are not regularly spaced, it may be necessary to interpolate 
values to the observation time. This can be accomplished as described in the UCODE instructions 
for the Derived_Observations input block.  
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HYDRUS 2D/3D Output Time Stepping 

The output settings are found in the menu “Output Information”: 

 

In this menu, un-check “T-Level Information” and instead check “Interval Output”. In the box next 
to “Time Interval” type the time interval for output, for example every 0.1 days. Notice that 
“Interval Output” is different from the “Print Times” table on the right-hand side of the menu. 
Generally, the data printed at simulation times set in “Print Times” is more detailed, whereas the 
data printed at simulation times set in “Interval Output” is mostly parameter values averaged across 
the entire domain. The user should refer to the HYDRUS 2D/3D manual for a complete list of the 
types of data that are stored according to each of these options. 
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Chapter 9: CALIBRATION AND ANALYSIS OF A 
GROUNDWATER MODEL FOR THE FAUX VALLEY 

SYNTHETIC FLOW SYSTEM: AN INSTRUCTIONAL REPORT 
A common goal of modeling is to provide accurate predictions and clear guidance for future 
planning. What models do is apply conservation principles to conceptual models. Thus, models 
can quantitatively test ideas about properties and processes in a manner not available for 
complex systems by any other method. While this contribution to the toolbox of understanding 
natural systems is important, work over the last 30 years has shown that models typically do not 
achieve the level of prediction accuracy and skill that was idealized at one time. This leads to the 
question: What are reasonable goals for modeling environmental systems? We suggest that a 
major goal is to provide insights into system performance using data and models. To this end, the 
goal of model analysis is to increase model transparency and. Here, transparency means 
understanding what system features are likely to be important and unimportant, including 
identifying dominant parameters, important observations, and controlling processes. Testability 
means designing models and data collection such that as many aspects of the model as possible 
can be tested as meaningfully as possible, and is sometimes called falsifiability. A second way of 
looking at transparency is to identify what model aspects are and are not testable using available 
data.  

In this Chapter, we use a model of a synthetic groundwater flow system to demonstrate how a 
report might be written that uses inverse methods and associated analyses to address the goals of 
transparency and testability. The advantage of using a synthetic system is that results simulated 
in a variety of ways can be compared to “true” values. While in this chapter we mostly seek to 
provide an example report, additional guidance and comments are also included. Generally, the 
content in a given report would be tailored more closely to the study conducted, and the 
additional comments would not be part of a published modeling report. Other recent examples of 
modeling reports include those distributed through the USGS Ground Water Resources Program 
(GWRP) and can be found at http://water.usgs.gov/ogw/gwrp/activities/gw-avail.html.  

Introduction 

This report describes an investigation of groundwater flow in the Faux Valley conducted using 
the U.S. Geological Survey groundwater flow model MODFLOW (Harbaugh, 2005) to simulate 
the system. The available observations include 10 heads and one measure of groundwater flow to 
the river under pre-stressed conditions.  

For prediction, the following questions are considered for a future time after the flow system has 
adjusted to a proposed new pumping well: 

(1) Will the drawdown at the southeast corner of the domain decline by more than 20 meters 
(m)? With 20 m of drawdown, local domestic wells will start to go dry and the local 
municipality will need to consider the expensive proposition of extending city water 
supplies to the area.  

http://water.usgs.gov/ogw/gwrp/activities/gw-avail.html
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(2) Will the head at the pumping well decline to less than 80m? At this level the saturated 
thickness of aquifer 1 would be only 30 m at the well screen; less is considered to be 
problematic. 

(3) Will the 2.2 m3/s pumping rate cause groundwater flow to the stream to be less than 4.0 
m3/s, which is the minimum required flow?   

Conceptual Model of the Groundwater Flow System and 
Hydrogeologic Framework 

Groundwater flow in the system is thought to occur as illustrated in Figure 18a. Without 
pumpage, the main inflow is areal recharge and the main outflow is discharge to the stream.  

The valley consists of a fluvial deposit underlain by a fine-grained lacustrine deposit, which is 
underlain a sequence of deltaic deposits derived from the bordering highlands. The bottom 
deltaic deposit is 50 m thick, the lacustrine deposit is 10 m thick, and the top layer is bounded 
above by a phreatic water table. There is geologic evidence of more transmissive material 
through the center of the surficial fluvial deposits and that the deeper aquifer increases in 
hydraulic conductivity with distance from the stream and proximity to the adjoining highlands. 

Simulation of the Groundwater Flow System 

The Faux Valley flow system is simulated using MODFLOW, which is composed of packages 
that can be used to simulate different parts of the system. The packages used to simulate this 
system are shown in Figure 18b. The model grid is shown in Figure 19 and is composed of 18 
rows and 18 columns. All model cells are 1,000 m by 1,000 m. Thus, the simulated area is 
18,000 m by 18,000 m. 

The model layers are defined using the hydrogeologic layers shown in Figure 18. The results 
shown here are from final runs for which the top of the system is simulated as a phreatic water 
table. For initial model calibration runs, the top model layer thickness was approximated using 
the observed heads. Setting the thickness of free-surface model layers using observed heads is a 
useful way to reduce execution time during model calibration (Sheets et al., 2014).  

This work considers two models of the Faux Valley flow system, which differ in how the 
hydraulic conductivity of the top model layer is parameterized. The models are steady state – 
reflecting calibration conditions with no pumpage and prediction conditions after pumping has 
occurred for an extended period of time. 
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(a)                                                                                           (b) 

 

Figure 18. Conceptual model of (a) the groundwater system and (b) the MODFLOW 
Packages used to simulate its features, including River (RIV), Recharge (RCH), 
General-Head Boundary (GHB), Layer Property Flow (LPF), and pumping (MNW). 

 

Figure 19. Model grid, location of features simulated using the MODFLOW River (RIV), 
General-Head Boundary (GHB), and Multi-Node Well (MNW) Packages, and 
location of the 10 wells with observed heads. 
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(a) 

 

 

(b) 

 

Figure 20. Definition of the hydraulic conductivity of model layer 1. (a and b) The two 
parameters defined for model B.  

Model Calibration 

The models are calibrated using UCODE; PEST was used to simulate a highly parameterized 
version of a similar system, as reported by Hill (2008). For the two alternative models 
considered, parameter values are modified to achieve the best match between observations and 
their simulated equivalents; independent information on the parameter values can also be 
included. The match is quantified using the following objective function: 
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(10) 

The first term on the right includes head observations, the second includes flow observations, the 
third includes independent information on the parameters (referred to as prior information), and 
the fourth includes a different kind of independent information on the parameters, which is 
generally referred to as regularization. Sometimes prior information and regularization are 
combined in a single term; for highly parameterized models it often is useful to use different 
terms as shown here. The variables in equation 10 are defined as follows: 

HK_1_1
HK_1_2
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b  is a vector of parameter values. 
S(b)  is a symbol used to represent the objective function. It is written to show that the objective 

function value for a given model and a given set of observations and prior information 
changes as the parameter values change. 

ih is an index that identifies a head observation. 
iq is an index that identifies a flow observation. 
ip is an index that identifies a piece of prior information. 
ir is an index that identifies one regularization expression. 

nh is the number of head observations. 
nq is the number of flow observations. 
npr is the number of prior information. 
nreg is the number of regularization expressions. 

ωih is the weight for head observation ih. 
ωiq is the weight for flow observation iq. 
ωip is the weight for prior information ip. 
ωir is the weight for regularization expression ir. 
β is a multiplier of all the weights on regularization. 
hih is head observation ih. 
qiq is flow observation iq. 
Pip is prior information ip. 
Rir is the value of regularization ir. 

ℎ𝑖𝑖ℎ′ (𝒃𝒃)  is the simulated equivalent of head observation ih. 
𝑞𝑞𝑖𝑖𝑖𝑖′ (𝒃𝒃)  is the simulated equivalent of flow observation iq. 
𝑃𝑃𝑖𝑖𝑖𝑖′ (𝒃𝒃)  is the simulated equivalent of prior information ip. 
𝑅𝑅𝑖𝑖𝑖𝑖′ (𝒃𝒃)  is the simulated equivalent of prior information ir. 

Equation 10 shows weighting that can be expressed as one multiplier for each additive quantity. 
In some cases, more complex weighting requires that a weight matrix be used. In such 
circumstances, equation 10 needs to be expressed in matrix notation as 

S(b)=(y-yʹ(b))Tω(y-yʹ(b)) + β(R-Rʹ)Tωr(R-Rʹ)        (11) 

where 
y  is a vector of observations and prior information. 
yʹ(b)  is a vector of simulated equivalents of the quantities in y. 
ω  is a weight matrix on observations and prior information.  
β is defined for equation 1. 
R is a vector of regularization values. 
Rʹ is a vector of regularization equations which are a function of the parameter values. 
ωr  is a weight matrix on regularization values.  
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Equation 11 is equivalent to equation 10 if the weight matrices ω and ωr are diagonal – that is, 
only terms along the diagonal are nonzero. For the problem discussed in this section equation 10 
is used. 

Adequacy of the calibrated model is tested based on (1) model fit to observations, (2) 
reasonableness of estimated parameters, (3) whether observations and parameters important in 
the calibration seem appropriate given the conceptual model and model construction, (4) whether 
the parameters important to the predictions of interest are informed by the available observations 
and prior information. The importance of observations and parameters is evaluated using 
sensitivity analysis. 

If highly parameterized methods such as pilot points are used to parameterize a model property 
such as hydraulic conductivity, the overall model fit is often prescribed, and thus model fit 
becomes a less useful indicator of model adequacy. It thus becomes very important to carefully 
consider the other measures of model adequacy when using highly parameterized methods.  

The sensitivity results presented in this report evaluate the importance of observations to defined 
parameters, the importance of parameters to the fitting of observations, the importance of 
parameters to predictions, and the importance of observations to predictions. Results are 
presented for two types of sensitivity analysis: local methods and a “spider plot” produced by a 
basic sensitivity analysis conducted by increasing and decreasing the parameter values by a 
defined amount. The spider plot is presented because some readers may find it easier to 
understand. 

Observations and Weighting 

The calibration observations are based on measurements taken before the onset of pumping. 
They reflect long-term average unstressed conditions, and are considered to be at steady-state. 
The observations include one head measurement from each of the ten wells (Figure 19 and 20b) 
and one flow. The head observations are distributed spatially, and are referred to as hd01.ss 
through hd10.ss. The flow observation is the measured gain in flow from the groundwater system 
along the entire length of the river and is referred to as Flow01_1. 

The weighting of observations and prior information in equations 10 and 11 serves two 
complementary purposes. First, the weighting makes each term dimensionless, so that summing 
them into one scalar, S(b), is meaningful. Second, a larger weight makes a given term more 
important in the objective function. As discussed by Hill and Tiedeman (2007, guideline 6 and 
Appendix C), these purposes and the theoretical requirement for the lowest variance parameter 
estimates are all satisfied if the weighting is error-based, meaning that it is based on an analysis 
of errors in the observations. Like many other works (for example, Mroczkowski et al., 1997; 
Oliver et al., 2008; Foglia et al., 2009, Renard et al., 2011; Tiedeman and Green, 2013), this 
work uses error-based weighting.  

In error-based weighting, the weights of equation 10 equal the reciprocal of the error variance. In 
UCODE, the user can input the weight, square-root of the weight, variance, standard deviation, 
or coefficient of variation. The program will use the provided information to calculate the 
weight. To convert the coefficient of variation to a weight requires that it be multiplied by the 
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related observed or simulated value. There is some debate about whether the best value to use is 
observed or simulated; in the runs for this chapter observed values are used. Chapter 3 of this 
documentation describes the enhanced capabilities UCODE_2014 provides when a coefficient of 
variation is used.  

For the Faux Valley study, the sources of error in heads include errors in measuring the water 
level in the well (standard deviation about 0.015 m) and errors in the elevation of the well head 
(standard deviation 0.33 m). To add these sources of errors, square the standard deviations to 
obtain variances and add the variances (it is not accurate to add standard deviations). This 
produces head observation variances of 0.109225 m2, standard deviations of 0.33, and weights of 
about 10. 

The flow gain of 5.77 m3/s is measured by calculating the difference in upstream (4.80 m3/s) and 
downstream (10.57 m3/s) measurements of streamflow. Error in each of these streamflow 
measurements contributes to the error in the flow gain. Carter and Anderson (1963) suggest that 
streamflows can be measured with errors that have standard deviations equal to about 5% of the 
flow under ideal circumstances. When errors are expressed as a percent, the associated fraction, 
here 0.05, is the coefficient of variation. Using Carter and Anderson (1963) as guidance, a 
coefficient of variation for the flow gain is calculated from the coefficients of variation for the 
streamflows. The standard deviations of the upstream and downstream measurements are 
0.05×4.80 m3/s=0.24 m3/s and 0.05×10.57 m3/s=0.53 m3/s, respectively. Squaring and summing 
these standard deviations yields a total variance of 0.34 m6/s2 for the flow gain. Taking the 
square root and dividing by the 5.77 m3/s flow gain yields a coefficient of variation of 0.10.   

For the UCODE_2014 input files, the head standard deviation of 0.33 m and the flow coefficient 
of variation of 0.10 are entered and the weight is calculated by the program.  

If PEST were being used, the user must enter the weights in the input file. From an error-based 
perspective, PEST defines a weight as the reciprocal of the error standard deviation, so that it 
equals the square-root of the weight in UCODE. Thus, in PEST the value to enter for the weight 
for each head observation would be 1/0.33049=3.026. The value to enter for the weight of the 
flow observations would be 1/(5.77×0.10)=1.73, where 5.77 is the observed flow. 

Parameters 

Two alternative conceptual models are considered for the Faux Valley, and are denoted models 
A and B. They differ in how the hydraulic conductivity of the water table aquifer is 
parameterized. Model A has seven defined parameters; model B has eight defined parameters. 
All of the defined parameters are described below, starting with those that are the same in all 
models. The parameters are described in the context of the MODFLOW Package in which they 
are defined. 

Parameters Common to all Models 

For all models, three parameters are defined in the Layer Property Flow (LPF) Package to 
produce the hydraulic-conductivity distribution of the confining unit and confined aquifer. 
Parameter HK_2 multiplies a geologically based linear variation in model layer 2 that results in 
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the simulated hydraulic conductivity increasing from the value defined under the river, which 
equals HK_2, to nine times HK_2 at the system boundary farthest from the river. Parameter 
VK_CB equals the hydraulic conductivity of the confining bed. VANI equals the vertical 
anisotropy of layers 1 and 2. 

Two parameters are defined in the Recharge (RCH) Package. Each defines the areal recharge 
rate in one of the two recharge zones shown in Figure 18. Parameter RCH_1 equals the recharge 
in zone 1. Parameter RCH_2 equals the recharge in zone 2. 

One parameter is defined in the River (RIV) Package, and is named K_RB. To explain K_RB, 
consider that the River Package calculates flows between the groundwater system and the river 
as  

qi=Ci(HRIVi – hi)           (12) 

where 
qi   is the calculated flow for grid cell i. 
Ci   is the conductance that relates a head difference to a flow rate. 
HRIVi  is the specified water level in the river in grid cell i. 
hi  is the head in the groundwater system adjacent to the river in grid cell i. 
 
Parameter K_RB is used to define the conductance as  

Ci=(K_RB × areai)/thicknessi          (13) 

where areai is the area of the river within grid cell i. While this formulation suggests that the 
value of K_RB can be related to the hydraulic conductivity of the river bed, Mehl and Hill 
(2010) suggest that the value is grid-scale dependent. This means that if the grid is refined or 
made coarser at the river, K_RB would need to be recalibrated. 

Parameters that Vary between Models 

Model A has one parameter used to control a homogeneous hydraulic-conductivity distribution 
in the top model layer. The hydraulic conductivity of this layer equals the value of parameter 
HK_1 in the MODFLOW LPF Package and the UCODE main input file. Calibration efforts 
began with model A and evidence of significant model error was revealed by misfit to 
observations and unrealistic estimated parameter values. This led to development of model B. 
Some sensitivity analysis results from model A are provided in this report. 

Model B differs from model A in that two hydraulic-conductivity parameters are used to define 
the distribution in model layer 1, as shown in Figure 20. Parameter HK_1_2 covers the region 
where the river was likely situated earlier in the Holocene Epoch. The sediments in this region 
are thought to be coarser than those in the region to which parameter HK_1_1 applies.  

Prior information 

Independent information exists for all of the parameters, as shown in Table 5. 
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Table 5. Starting values and lower and upper reasonable values of model B parameters, based 
on field information.1 

Parameter 

Lower 
reasonable 
value2 

Starting value 
(also used as 
prior value) 

Upper 
reasonable 
value2 

Log 
transform 
(base 10 of 
prior value, 
if applicable) 

Standard 
deviation 
designated for 
prior (applies to 
log transform if 
applicable) 

HK_1 (m/s)      
  Low K area   9.6×10-5   3.0×10-4   9.5×10-4 -3.52 0.25 
  High K area   9.6×10-4   3.0×10-3   9.5×10-3 -2.52 0.25 
HK_2  (m/s)   4.0×10-6   4.0×10-5   4.0×10-4 -4.40 0.5 
VANI (---)   0.8   1.0   1.2 -- 0.1 
VK_CB  (m/s)   1.0×10-8   1.0×10-7   1.0×10-6 -7.00 0.5 
K_RB  (m/s)   1.2×10-4   1.2×10-3   1.2×10-2 -2.92 0.5 
RCH_1 (cm/yr) 16 32 48 -- 8 
RCH_2 (cm/yr) 47 63 79 -- 8 

1 In a real report field information needs to be described to justify the listed values. 
2 Here, lower and upper reasonable values are calculated by, respectively, subtracting and adding two standard 
deviations to the starting parameter value. For log transformed parameters, calculations are performed using 
transformed values and then converted to native values.  

The information in Table 5 can be used in three ways for model calibration (Hill and Tiedeman, 
2007, p. 288-290). The approach used generally depends on whether or not the observations 
provide ample information on the parameter, as indicated using the sensitivity analysis graphs 
presented in the following section of this report. Inadequate information can result from 
parameter insensitivity or correlation. For prediction uncertainty evaluation, the best way to 
include the prior information may differ from that used in model calibration. The three options 
for using the information are:  

1. Calibrate without defined prior information. Compare the upper and lower reasonable values 
with estimated parameter values to check whether the estimated values are realistic. 
Unrealistic parameter values can indicate model error.  

2. Include the independent information as prior information in the objective function. This is a 
Bayesian approach to model calibration. 

a. In regression, the advantage of depending on prior information instead of parameter 
constraints is to produce parameter estimates that are close to a central value instead 
of at the extremes of the range of likely values.  

b. If the observations contain abundant information about the parameter, comparing 
options 1 and 2 provides a way to evaluate whether there is a contradiction between 
the prior information and the observation data. Larger differences in the parameters 
estimated by the two different options indicate greater contradiction and greater 
likelihood of model error or some problem with the prior information and how the 
parameters are defined.  

c. Option 2 often is used to enforce reasonable values of parameters for which 
unrealistic values are estimated when using option 1. The existence of these errant 
parameter values is considered to indicate model error. Adding the prior information, 
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and not addressing the possible model error, may or may not enhance the predictive 
skill of the model. This important concern is beyond the scope of the present work.  

3. Use the prior information to set the parameter value and exclude the parameter from the 
regression.  

a. This can make the regression runs shorter and can be a useful approach if the 
parameter is provided inadequate information from the observations, as indicated by 
small values of composite scaled sensitivity (CSS) and(or) large absolute values of 
parameter correlation (PCC).  

b. Option 3 is useful for model calibration but is not advisable for parameter or 
prediction uncertainty analysis. When quantifying uncertainty, parameters need to be 
reactivated and prior information added if available. This allows the uncertainty of 
the parameter to be appropriately accounted for when evaluating prediction 
uncertainty. 

Initial Sensitivity Analysis to Identify Important Observations and 
Parameters 

Regression and model fit are often dominated by a limited number of observations and a few of 
the defined parameters. Identifying important observations and parameters can help guide model 
calibration and provide insight about simulated processes. Also, it can be used to focus additional 
effort on reviewing or improving the observation measurements, the conceptual model, and the 
model parameter definition. 

The initial sensitivity analysis for the Faux Valley model was conducted using model A (with 
homogeneous model layer 1) and the starting parameter values from Table 5. Dominant 
observations and important parameters were identified using leverage, fit-independent parameter 
t-statistics, and CSS (defined in the section “Definition of Statistics, Including Equations” at the 
end of this report), as shown in Table 6. The leverage results suggest the dominance of the 
streamflow gain observation and the heads in layers 1 and 2 under the river (hd01 and hd07), 
and, to a lesser extent, hd04 and hd09. The CSS and t-statistics show that the hydraulic 
conductivity of the top model layer and the two recharge rates are the most important parameters. 
These measures also suggest that the available observations do not support estimating the value 
of VANI, and might not support estimation of K_RB, VK_CB, and HK_2.  

On the basis of the leverage results, additional field work was conducted to confirm that 
boreholes 01, 04, 07, and 09 (Figure 19) were constructed and operating as expected. For 
example, borehole optical televiewer logs were run to confirm that the well screens were open to 
the reported depths and were not clogged.  
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Table 6. For model A, important observations identified using leverage and important 
parameters identified using the fit-independent version of the parameter t-statistic 
and CSS. In all graphs, larger bars identify more important quantities. 

Question, Answer, and Action Graph1,2 

Question: Which observations potentially dominate one or 
more of the estimated parameter values?  

Answer: Flow01_1 and hd07.ss, with leverage equal to 1.0, 
are potentially important to one or more of the estimated 
parameter values. Observations hd01.ss, hd04.ss and hd09.ss 
also have high leverage. 

Action: Check for and reduce errors in the measurements and 
simulation related to these important observations. 

 
Question: Which parameters are most important to fitting 
the observations? Equivalently, which parameters are 
provided the most information by the observations?  

Answer: HK_1, RCH_2, and RCH_1 are the most important 
parameters. 

Action: If additional parameters will be defined, consider 
aspects of the system related to the most important 
parameters. For example, HK_1 might be replaced with more 
than one parameter. 

 
Question: Which observation groups contribute knowledge to 
each parameter? 

Answer: The heads in the lower and upper aquifers 
contribute to each of the important parameters similarly.  

The small contribution of the flow observation contradicts its 
large importance as indicated by leverage. This suggests the 
importance of the flow is in reducing parameter dependence 
(correlation), because leverage accounts for this dependence 
whereas CSS does not.  

Action: The flow contributes to the unique estimation of 
many parameters. Checking and improving the flow 
observation and its simulation is a high priority. 

 

1 Equations for the plotted quantities are provided in the section “Definition of Statistics, Including Equations”.  
2 Leverage and t-statistic include the effects of parameter correlation (parameter interactions) as determined by 
linear theory. CSS does not. 

0

1

2

3

4

HK
_1

K_
RB

VA
N

I

VK
_C

B

HK
_2

RC
H_

1

RC
H_

2PA
R

A
M

ET
ER

 IM
PO

R
TA

N
C

E,
 

B
A

SE
D

 O
N

 F
IT

-I
N

D
EP

EN
D

EN
T 

   
T-

ST
A

TI
ST

IC
 (I

N
C

LU
D

ES
 P

C
C

)

PARAMETER NAME

ModelA_SA_ucode._so 

ModelA_SA_ucode._scgrp 



Chapter 9: CALIBRATION AND ANALYSIS OF A GROUNDWATER MODEL FOR THE 
FAUX VALLEY SYNTHETIC FLOW SYSTEM: AN INSTRUCTIONAL REPORT 

 94 

Use of Regression to Estimate Parameter Values 

UCODE was used to estimate parameters by a modified Gauss-Newton (Levenburg-Marquardt) 
method. For Model A, the value of VANI was fixed at its starting value because it is not 
informed by the observations (Table 6). One recurring problem during the regression was that 
the estimate of recharge near the hillside, RCH_2, was consistently smaller than the estimate of 
recharge near the river, RCH_1. This is in contrast to infiltration data showing that in the Faux 
Valley recharge is larger near the hillside (see range of reasonable values in Table 5).  

When these difficulties were encountered with calibration of model A, alternative conceptual 
models were considered. The importance of HK_1 in initial model A (Table 6) and similar 
results for calibrated model A suggested that the observations provided enough information to 
represent layer 1 using more than one parameter. The geologic information discussed in the 
“Parameters” section led to development of model B, which represents layer 1 with two 
hydraulic conductivity zones (Figure 20).  

For model B, the values of unimportant parameters VANI, K_RB, and VK_CB were also fixed 
during the calibration. An alternative is to add prior information for these parameters, but setting 
the values reduced the calibration execution time. This was of little consequence for this small 
problem and is demonstrated here because it can be greatly advantageous for larger models. An 
attempt at estimating the remaining five parameters (HK_1_1, HK_1_2, HK_2, RCH_1, RCH_2) 
produced poor regression performance. The CSS calculated at the initial values for these 
parameters showed that HK_1_2 was least important (Appendix D, Table D-3, column 1). 
Therefore, prior information was added on this parameter, using its starting parameter value 
shown in Table 5, which led to a tractable regression. The estimated parameter values for model 
B are listed in Table 7. 

Analysis of Calibrated Model Fit and Parameter Values 

The calibrated model is analyzed by evaluating the parameter estimates, the model fit to 
observations and measures of leverage, influence, and parameter importance. 

The parameter estimates are compared to reasonable parameter ranges in Table 7. The estimates 
for HK_1_2 (High K area of HK_1), RCH_1, and RCH_2 are each slightly larger than the upper 
limit of their respective reasonable range. This suggests a mild degree of model error. Notably, 
HK_1_2 has prior information (recall that it was needed to obtain convergence of the regression) 
and the prior value is at the center of the reasonable range, but the HK_1_2 estimate is not close 
to that value. The poor fit to the prior is related to the circumstance that both the prior and 
observation Flow_01_1 reduce the extreme correlation of all model parameters except VANI. 
This is discussed below in the context of Figure 21.    
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Table 7. Estimated parameter values (blue circles on figures), reasonable ranges (wide gray 
bars; from Table 5), and 95% linear individual confidence intervals (black lines) for 
model B. 

Parameter 
Estimated or 
fixed value 

 

HK_1 (m/s)  
  Low K area   2.60×10-4 
  High K area   1.13×10-2 
HK_2  (m/s)   3.18×10-4 
VANI1 (---)   1.0 
VK_CB1  (m/s)   1.0×10-7 
K_RB1  (m/s)   1.2×10-3 
RCH_1 (cm/yr) 49.8 
RCH_2 (cm/yr) 80.7 
  

1Parameter is fixed in regression. 

Parameter uncertainty is modest and consistent with prior information for HK_1_1 and HK_2 
(Table 7). In contrast, uncertainty is very large for HK_1_2, RCH_1, and RCH_2, indicating 
these estimates are not well constrained by the available observations. For the recharge 
parameters, the lower limits of the confidence intervals are negative. Such unrealistic limits can 
result from using linear confidence intervals, which are defined simply as the estimated 
parameter value plus and minus a term that is a function of the parameter standard deviation (Hill 
and Tiedeman, 2007, p. 138). Nonlinear confidence intervals (Hill and Tiedeman, 2007, p. 139) 
or Markov chain Monte Carlo (MCMC) methods (Chapter 5) are alternatives for computing 
uncertainty that use model simulations to explore parameter space, and generally do not result in 
unrealistic confidence limits. Nonlinear confidence intervals require about ten times more model 
runs than the linear confidence intervals, while MCMC requires orders of magnitude more runs.  

Model fit is assessed by evaluating components of the objective function defined in equation 10. 
This includes comparing observations and their simulated equivalents, and prior information 
values and their estimated equivalents. It also includes evaluating the regularization, if used, 
including the value of β.  

For model B, Table 8 shows that the standard error (s) equals 7.6 and its confidence interval does 
not include 1.0. An advantage of using error-based weighting is that this provides a meaningful 
test of model fit, as follows. If the model fit is consistent with the assumptions used in specifying 
the weights on the observations, and the model is a correct representation of the true Faux Valley 
flow system, then the expected value of s is 1.0. Because s is larger than 1.0 and its entire 
confidence interval also is greater than 1.0, the model fit is significantly worse than expected 
given the assumptions associated with the weights. Given that the statistics used to calculate the 
weights are thought to accurately quantify the error in the observed heads, flows, and prior 

ModelB-PMP._pcModelB-PMP._pc 
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information, the larger-than-expected value of s indicates significant model error. The analysis of 
the weighted residuals can help with determining the sources of this error.  

Table 8. Fit to observations for model B.  
Observation Observed Model B (PMP) 

Name value Simulated Residual Weighted Res. 
hd01.ss 100.25 100.31 -0.06 -0.19 
hd02.ss 149.41 148.70 0.71   2.16 
hd03.ss 163.46 164.43 -0.97  -2.93 
hd04.ss 153.75 148.70 5.06   15.32 
hd05.ss 160.36 163.76 -3.40  -10.31 
hd06.ss 148.90 148.53 0.37   1.13 
hd07.ss 103.77 103.28 0.49   1.47 
hd08.ss 163.87 164.55 -0.68  -2.07 
hd09.ss 180.67 179.33 1.34   4.06 
hs10.ss 160.80 162.27 -1.47  -4.46 

Flow01_1 -5.77 -6.75 0.98 1.69 
Measures of model fit     

Standard error1 and its 
(confidence interval)  7.6 

(5.0;15.5) 
2S(b) 521,896 406 
3S(b)obs 521,896 401 
4(S(b)obs)/(nh+nq))1/2 32 6.1 

1The unbiased estimate of the standard error, calculated as [S(b)/(n-p)]1/2. n is the total number of observations and 
prior information (nh+nq+npr for eq. 10; here the value is 12). p is the number of parameters estimated, which is 5. 
Confidence intervals are calculated as described by Hill and Tiedeman (2007, p. 96, eq. 6.2).  
2Calculated as shown in eq. 10. 
3Calculated with observations only and no prior. 
4Biased estimate of the standard error that is commonly presented; provided here for comparison. It is always 
smaller than the unbiased estimate of the standard error.  
5Calculated for the starting parameter values in Table 5. S(b) equals S(b)obs because the starting value of HK_1_2 
equals its prior value. 
 

The fit to individual observations and prior information is examined using weighted residuals 
(Table 8 and Figure 21). Ideally, weighted residuals are randomly distributed when plotted 
against simulated values (Figure 21b) and on maps of the model domain (Figure 21c). Non-
randomness, or bias, is an indication of model error. For the Faux Valley model, there are very 
few observations. This makes assessment of randomness difficult, because a small sample size 
from a truly random distribution can appear nonrandom. The weighted residuals for the heads 
and prior appear to be evenly distributed above and below a value of 0.0 on Figure 21b, although 
there may be some bias indicated by head weighted residuals that are mostly negative (simulated 
values larger than observed values) for simulated values between about 160 m and 170 m. This is 
also apparent on Figure 21c, where in both layers, weighted residuals are mostly positive near 
the river, negative in the central columns of the model, and positive close to the hillside. In both 
layers, most of the negative residuals are in an area corresponding to that where HK_1_2 applies 
in layer 1. This suggests that there might be error in model B related to how zones are used to 
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represent hydraulic conductivity in layer 1, and raises the question of whether zones are the best 
parameterization method. Further field characterization of the fluvial aquifer could be conducted 
to guide improved representation of this hydraulic property. 

(a)                                                          (b) 

 
(c) 

  

Figure 21. Model B: (a) Observed versus simulated values, (b) weighted residuals and 
unweighted simulated values, and (c) spatial distribution of weighted residuals over 
the model domain. In model layer 1, the unshaded model cells are where HK_1_1 
applies and the gray shaded cells are where HK_1_2 applies.  

In the calibration, the flow observation and the prior information on HK_1_2 both reduce the 
extremely high parameter correlations that would occur if head observations alone were used to 
calibrate the model. The fit to the flow and the prior reflect this role. The regression minimizes 
their contributions to the objective function by estimating parameter values that produce a 
negative weighted residual for one of these data (the prior), and a positive weighted residual of 
similar magnitude for the other (the flow) (Figure 21b).    

Leverage and Cook’s D (Hill and Tiedeman, 2007, p. 134-136) can help identify individual 
observations or prior information that dominate the parameter estimates (Table 9). Flow01_1, 
hd09.ss, and hd07.ss are each potentially (identified by leverage) as well as actually (identified 
by Cook’s D) important to the parameter estimates. Flow01_1 is influential because of its role in 
preventing extreme parameter correlations, and hd09.ss is influential because of its proximity to 
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the hillside, where simulated heads are generally more sensitive to the hydraulic conductivity and 
recharge parameters than at locations near the river.  

HK_1_2_PR has moderate leverage because this prior information potentially controls the value 
of parameter HK_1_2. However, the actual influence of HK_1_2_PR is much less than its 
potential influence. This prior information is important to achieving a stable regression, but the 
particular prior value specified does not appear to strongly affect the parameter estimates. This is 
consistent with the result that the estimated value of HK_1_2 (1.13×10-2 m/s) is not close to the 
prior value (3.0×10-3 m/s).  

Comparison of the leverage for model A initial parameter values (Table 6) and for model B 
optimal estimates (Table 8) illustrates that by fixing the values of three parameters in the 
regression for model B, the importance of hd01.ss is diminished. Head observation hd01.ss is 
directly beneath the river (Figure 21c) and has high leverage when all parameters were active 
(Table 6) because it dominates estimation of K_RB. With the value of K_RB fixed in the model 
B regression, hd01.ss no longer plays that role. 
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Table 9. For calibrated model B, observations important to the estimated parameters identified 
using leverage and Cook’s D, and estimated parameters most important to fitting the 
observations identified using CSS. Parameters fixed in the regression (VANI, VK_CB, and 
K_RB) are not included in this evaluation. In all graphs, larger values indicate greater 
importance. 

Question, Answer, and Action Graph1,2 

Question: Which observations are potentially 
important to the estimated parameter values?  

Answer: Top three: Flow01_1, hd09.ss, hd07.ss.  

Action: Check for and reduce errors in the 
measurements and simulation related to these 
important observations. 

 

 
Question: Which observations are actually 
important to the estimated parameter values? 
(Actual in that the observed values are 
considered.) 

Answer: Flow01_1, hd09.ss, hd07.ss. 

Action: Same as for leverage, though hd07.ss is 
less important than the leverage suggested it 
might be. 

 
The horizontal line equals the critical value above which an 
observation is considered important. 
Cook’s D for hd09.ss and Flow01_1 are 13.5 and 22.2. 

Question: Which observation groups contribute 
information about each parameter? 

Answer: The heads in the lower and upper 
aquifers contribute similarly to each of the 
important parameters.  

The small contribution of the flow observation 
contradicts its large importance as indicated by 
leverage and Cook’s D. This suggests the 
importance of the flow is in reducing parameter 
dependence (correlation).   

 
1 Equations for the plotted quantities are provided in the section “Definition of Statistics, Including Equations”.  
2 Leverage and Cook’s D include the effects of parameter correlation (parameter interactions) as determined by 
linear theory. CSS does not. 

 



Chapter 9: CALIBRATION AND ANALYSIS OF A GROUNDWATER MODEL FOR THE 
FAUX VALLEY SYNTHETIC FLOW SYSTEM: AN INSTRUCTIONAL REPORT 

 100 

Model Limitations 

The model analyses suggest that model B is limited in its ability to predict quantities that depend 
on the vertical anisotropy, hydraulic conductivity of the riverbed, vertical conductivity of the 
confining bed, and the hydraulic conductivity HK_1_2 in the upper aquifer. These aspects of the 
system are not well supported by the available observations, and so the values used in the model 
for these parameters depend mostly or entirely on independently determined estimates. 
Quantities of interest that are sensitive to these parameters might not be simulated reliably with 
model B. Such quantities could include, for example, advective transport of chemical 
constituents in recharge water that migrate from the upper aquifer through the confining bed into 
the lower aquifer, and then migrate back to the upper aquifer and discharge through the riverbed. 

The hydraulic conductivity HK_1_1 in the upper aquifer, the hydraulic conductivity of the lower 
aquifer, and recharge are provided more information by the observations. However, the final 
estimates of some parameters are at or a little beyond the limits of reasonable ranges. This 
suggests caution be exercised in using model results, and that collection of additional data to 
improve the model would be helpful. Strategies for such data collection are discussed in the 
section “Supplementary Model Analyses.” 

The models are developed using head and flow data. Generally, models calibrated with one type 
of observation are not able to simulate other kinds of processes well. For example, this model 
may not be able to simulate transport very well, in part because there are no calibration 
observations that provide information about porosity parameters. 

Prediction of Head, Drawdown, and Flow 

As noted in the Introduction, the following water resources management questions are 
considered for a future time after the flow system has adjusted to pumping 2.2 m3/s in a proposed 
new production well: 

(1) Will the drawdown at the southeast corner of the domain decline by more than 20 m? 
With 20 m of drawdown, local domestic wells will start to go dry and the local 
municipality will need to consider the expensive proposition of extending city water 
supplies to the area.  

(2) Will the head at the pumping well decline to less than 80 m? At this level the saturated 
thickness of aquifer 1 would be only 30 m at the well screen; a head less than the 80 m 
level is considered to be problematic.  

(3) Will the 2.2 m3/s pumping rate cause groundwater flow to the stream to be less than 4.0 
m3/s, which is the minimum required flow?   

Model B is used to simulate the effect of the proposed pumping, and to analyze the predicted 
drawdown, head, and flow corresponding to the management questions. The pumping well is at 
row 9, column 10 of the model grid (Figures 18 and 19) and the desired pumping rate is 2.2 m3/s. 
The MNW Package is used to represent pumpage, so the simulated pumping rate could be less 
than this value, but in the simulations discussed here the full rate is achieved. For convenience, 
in this synthetic problem the predicted head in the pumping well is assumed to equal the head 
simulated in the model cell containing the well, so that the OBS package of MODFLOW-2005 
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can be used to define this prediction. The MNW Package calculates the in-well head, and this 
simulated quantity could alternatively be used as the prediction. 

The predictions for model B are listed in Table 10. All predictions meet the management criteria. 
These predictions are uncertain in part because there is uncertainty in the parameter values. This 
uncertainty can be propagated to uncertainty in the predictions, through the model. Prudent use 
of the model to help guide decisions about the proposed pumping well includes considering not 
only the predicted values, but also the uncertainty in these values. Next, the model is used to 
calculate the prediction uncertainty caused by parameter uncertainty.     

Table 10. Predicted values for model B under pumping conditions All predictions meet the 
associated management criterion. 

Description of prediction  Management criterion.  
Prediction needs to be… Model B 

Drawdown in the southeast corner, in meters less than 20 17 

Head at the well, in meters greater than 80 144 

Flow to the stream, in m3/s less than -4.0 (absolute 
value greater than 4.0) -4.5 

Prediction Uncertainty 

For the prediction uncertainty analysis, all model B parameters are activated and prior 
information is specified on all parameters, so that realistic parameter uncertainty is translated to 
the calculation of prediction uncertainty. The prior values and associated standard deviations are 
listed in Table 5. The prediction uncertainty measures therefore reflect the information the 
observations provide about the parameters as well as all prior information.  Linear confidence 
intervals on the predictions are shown in Figure 22. The results of Lu et al. (2012) suggest that 
linear intervals may provide a reasonable measure of uncertainty in many groundwater flow 
problems.  
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Figure 22. Predictions from model B (dark blue circles), their linear individual 95 percent 
confidence intervals (black lines) and plus and minus one standard deviation (wide 
gray bars), and the management criteria noted as colored lines. (a) Results for all 
predictions. (b) Results for FlowPred_2 expanded so that the confidence interval 
ranges are more visible. In MODFLOW, flow out of the groundwater system (here, 
flow to the river) is negative, so the management criterion is that flow must be less 
than -4.0 on the graph (greater than 4.0 m3/s must flow to the stream).  

The prediction uncertainties raise a serious concern with respect to decisions about drilling the 
new pumping well. For the drawdown and flow predictions, about half of their respective 
confidence intervals violate the management criteria, and for the flow prediction, the confidence 
interval is especially large. Given these results, prudent next steps might include a phased 
implementation of the pumping that includes monitoring of the streamflow and drawdown or 
collection of additional field data to improve model predictions. Collecting such data, and using 
it in the modeling analyses, could help increase confidence that implementing the new pumping 
would not cause too much drawdown or depletion of streamflow. Additional prediction analyses 
can be conducted to identify what new field data would most reduce the prediction uncertainty. 
For the flow system considered here, these analyses are described in the section “Supplementary 
Model Analyses.”  

Summary and Conclusions 

A model of the Faux Valley groundwater flow system was developed to evaluate the effect of 
pumping in a proposed new production well that would tap both the upper and lower aquifers in 
the valley. The flow system with this pumping must comply with several management criteria, 
which stipulate that there be at least 4.0 m3/s discharge from the upper aquifer to the river, and 

ModelB-Prediction_ucode._linp ModelB-Prediction_ucode._linp 
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that the water table at the pumping well and in the southeast corner of the valley be greater than 
specified minimum levels. 

Calibration and analysis of the Faux Valley model showed that the available hydraulic head and 
river discharge observations support estimation of recharge and of horizontal hydraulic 
conductivities in some portions of the aquifer, but do not support estimation of other system 
properties, including the vertical hydraulic conductivity of the confining bed and the riverbed.  

The calibrated model was used to simulate the proposed pumping and to predict flow, head, and 
drawdown corresponding to the management criteria.  Results indicated that all the predicted 
quantities met the associated management criteria. However, including the 95-percent confidence 
intervals for these predictions in the analysis revealed a high degree of uncertainty in the flow 
and drawdown predictions, and the possibility that these predictions would violate the criteria.  

The prediction analysis prompted use of the model to identify potential new observation data and 
flow system characterization activities that would help to reduce the prediction uncertainty and 
lead to a more definitive conclusion about whether the management criteria would be violated.  
This evaluation is described in the “Supplemental Model Analyses” section, and showed that it 
would be beneficial to collect new head data at several existing wells, and a new river discharge 
observation, under conditions of pumping at a modest rate in existing monitoring well 03. These 
potential new observations ranked as important to all three predictions of interest. The model 
evaluation also showed that among the parameters, further characterization of the hydraulic 
conductivity HK_1_1 in the upper aquifer would most reduce the prediction uncertainty. The 
next steps for this study will be to collect the new observations and new aquifer characterization 
data identified as most important to the predictions.   

Epilogue: The True System 

For this synthetic model, the true system properties and dynamics are known. The representation 
of all model parameters in the true system is the same as in models A and B, except for the 
hydraulic conductivity of model layer 1, as shown in Figure 23. For example, the configuration 
of recharge zones, the thicknesses of model layers, and the location of the river in the true system 
are the same as shown in Figure 18, and the pattern of increase hydraulic conductivity in layer 2 
away from the river is the same in the true system as in models A and B.  

The true hydraulic conductivity values in both model layers and all model parameter values are 
shown in Figure 23. Parameter values for model B are also presented. Model B values do not 
match true values for four reasons: (1) there was error added to the head and flow data used for 
calibration, (2) model B could not represent the distribution of hydraulic conductivity in layer 1 
correctly, (3) prior information on the parameters was inconsistent with true values, and (4) some 
parameter values were not well informed by the head and flow observations.  The only actual 
model error is the inability to represent the variation of hydraulic conductivity in model layer 1; 
the other three reasons for the parameter values being different can be accounted for by the error 
model, which for this model included the assumption of Gaussian errors with a variances 
consistent with the observation and prior information weighting. The analysis of weighted 
residuals for calibrated model B (text following Table 8) correctly indicated  model error in 
model B. Notably, the fit of the calibrated model is still poor overall, as measured by the 
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standard error of 7.6 (Table 8). A value close to 1.0 would have suggested that model fit was 
consistent with the a priori defined error model. 

Comparison of the true parameter values with those estimated for model B shows that the 
estimate of HK_2 is about an order of magnitude too large, and the recharge estimates are each 
about 10 cm/yr too large (Figure 23).  

In the true system, the drawdown and flow predictions violate the management criteria (Figure 
23). In the calibrated model, these predictions barely satisfy the criteria. The uncertainty analysis 
provides ample warning that this might occur in the true system. Any management decision that 
uses this uncertainty analysis will explicitly consider the risk involved in drilling the new 
production well and pumping at a rate of 2.2 m3/s. 

 
Parameter  
[1Fixed in regression] 

 
True  

Estimated, 
model B 

HK_1 (m/s)  Variable  
  Low K area     2.62×10-4 
  High K area     1.02×10-2 
HK_2  (m/s)  4.4×10-5   3.17×10-4 
VANI1 (---)  1.0   1.0 
VK_CB1  (m/s)  2×10-7   1.0×10-7 
K_RB1  (m/s)  1.0×10-3   1.2×10-3 
RCH_1 (cm/yr)  40 50.6 
RCH_2 (cm/yr)  70 80.7 
Prediction  Criterion True  Simulated  
Drawdown in the southeast corner (m) < 20 21 17 
Head at the well (m) > 80 134 144 
Flow to the stream (m3/s) < -4 -3.4 -4.5 

Figure 23. True K field for the upper and lower aquifers (on the left and right, respectively), 
and true values of estimated parameters and predictions compared to model 
equivalents. Gray shading indicates predicted value violates management criterion.  
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Supplementary Model Analyses 

In this section, we mostly present analyses that were considered during and after the model 
calibration process but were not included in the main report, to simplify the presentation. This is 
common – rarely are all analyses presented in the report. In certain circumstances some of these 
could be presented in the main part or an appendix of published reports to emphasize important 
points or conclusions. Generally, decisions about what to include need to be tailored to the goals 
of the particular modeling study. Results of identifying important potential new data are also 
presented in this section; when such analyses are conducted the results are generally included in 
the main report. 

Initial Sensitivity Analysis 

In the course of model calibration, graphs such as those in Table 6 are produced many times as 
initial sensitivity analysis is conducted for different sets of parameter values. Inspecting results at 
different parameter sets is important because large differences suggest model nonlinearity that 
could make these analyses unrealiable. Some additional graphs are shown in Table D-3. Here we 
present two more, showing leverage and CSS calculated using the lower reasonable values from 
Table 5. In all cases the important and unimportant observations and parameters identified are 
the same or very similar. This suggests the utility of these computationally frugal analysis 
methods. 

    

Observations can have high leverage (and high potential for controlling estimated parameter 
values) and parameters can have high t-statistics (and good prospects of being estimated) 
because of sensitivity or parameter correlation. An understanding of which of these contribute to 
the results shown in Table 6 can be obtained using analyses such as those shown in Table 11. 
Understanding the roles of parameter insensitivity and correlation is useful to understanding 
simulated system dynamics (and judging whether they are reasonable) and determining how to 
obtain estimates for the defined parameters. For example, if a parameter is insensitive, the 
parameter might need to be set to a fixed value or might need prior information. If a parameter is 
correlated with one or more other parameters, often only one of the parameters needs to be set or 
have prior information added. 
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The DSS (Table 11) show that the streamflow gain observation dominance does not stem from 
sensitivity (note the small DSS values for Flow01_1; this is also reflected in the small 
contribution of the flow observation to the stacked CSS graphs of Table 6). This means that it is 
dominant because the flow is important to reducing parameter correlation, which in turn means 
that the flow dominates the estimation of more than one parameter. Indeed, a sensitivity analysis 
run conducted without the flow observation shows extreme parameter correlation (PCC=1.00) 
for all of the parameters except VANI (Hill and Østerby, 2003). This suggests that any error in 
the flow observation will affect many of the estimated parameter values, and emphasizes the 
likely importance of any opportunity to reduce the error of this observation or obtain additional 
streamflow gain or loss observations under different flow conditions so that one observation is 
not so dominant. Similarly, comparison of the leverage (Table 6) and DSS (Table 11) results 
shows that the dominance of hd01.ss and hd07.ss is likely because of their roles in reducing 
parameter correlations.  
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Table 11. For model A, the role of parameter sensitivity and correlation as measured by 
dimensionless scaled sensitivities (DSS) and parameter correlation coefficients 
(PCC). 

Question Graph1 

Question: Is an observation rated as important 
using leverage (Table 6) because it contributes to 
parameter sensitivity, contributes to reducing 
parameter correlation (thus improving parameter 
uniqueness), or both? 

Answer: Large leverage, large DSS for at least 
one parameter: observation contributes to 
parameter sensitivity and maybe parameter 
uniqueness. hd05.ss and hd09.ss contribute to 
parameter sensitivity. 

Action: Large leverage, small DSS for all 
parameters: observation contributes to 
uniqueness. hd01.ss, hd07.ss, and Flow01_1 
contribute to parameter uniqueness. 

Dimensionless scaled sensitivity (DSS) 

 
Question: What parameters are most dependent 
(cannot be estimated uniquely with given data)? 

Answer: Results from two sets of parameters 
indicate different interrelations. This suggests no 
pervasive dependence given the observations 
used. Hill and Østerby (2003) show that for a 
similar model using heads alone, there is 
pervasive extreme dependence for all parameters 
except VANI. 

Action: Information on a highly correlated 
parameter can be obtained through measurements 
of that parameter or through collection of new 
observation data that reduce the correlation. For a 
pair of highly correlated parameters, consider 
fixing the parameter value that is least uncertain 
on the basis of independent information.  

Parameter correlation coefficient (PCC)       
calculated at values from Table 5: 

                                                           Lower reasonable 
                    Starting values                       values 

 
1 Equations for the plotted quantities are provided in the section “Definition of Statistics, Including Equations”.  

Sensitivity analysis can also be used to detect model input errors. For example, observations 
mistakenly placed in cells with constant-head boundaries can be identified because all leverage 
and DSS values for such observations will equal zero.  

Analysis of Calibrated Model Fit and Parameter Values 

Dimensionless scaled sensitivities (DSS) and DFBETAS calculated at the optimal parameter 
values are shown in Figure 24. These measures can be used together to identify observations that 
reduce parameter correlation because DSS does not account for parameter correlations, while 
DFBETAS does account for them. The DFBETAS statistics (Figure 24b) identify four important 

ModelA-SA_ucode._sd 
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quantities (in that DFBETAS exceeds the critical value (Hill and Tiedeman (2007), p. 136) for at 
least one parameter): hd05.ss, hd07.ss, hd09.ss, and Flow01_1. Of these observations, hd07.ss 
and Flow01_1 have no large DSS values, indicating that these observation are important because 
they prevent large parameter correlation.  

(a)                                                                        (b) 

   

Figure 24. Identifying important observations and prior information for calibrated model B, 
using (a) dimensionless scaled sensitivities (DSS) and (b) DFBETAS. DSS does not account for 
parameter correlation or prior information, whereas DFBETAS includes the effects of both 
correlation and prior.   

 

Analyses for identifying parameter importance are shown in Figure 25. The effect of the 
estimated parameters on the observation-only objective function is shown in Figure 25a using a 
basic sensitivity analysis. Most of the parameters are varied by dividing and multiplying by a 
factor of two, while vertical anisotropy values of 0.8 and 1.2 are considered. Parameter 
importance measured by CSS is shown in Figure 25b. CSS is calculated by any UCODE 
sensitivity analysis or regression run. The CSS and the basic sensitivity analysis produce 
identical rankings for the four most important parameters. In order of decreasing importance, the 
parameter rankings are: HK_1_1, RCH_2, RCH_1, HK_2.  
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(a)  

 
                                                   (b)                                                              (c) 

 

Figure 25. The importance of all defined parameters to observations only (without prior 
information) calculated at model B optimal parameter estimates. (a) Objective-
function values produced by changing parameter values from the optimal estimates. 
Most parameters (marked by * in the legend) are changed by dividing and 
multiplying by 2. VANI has low and high values of 0.8 and 1.2. (b) Composite 
scaled sensitivities (CSS) calculated with all parameters activated. The bars are 
colored to match the line colors in (a) so that results can easily be compared for each 
parameter. (c) Parameter correlation coefficients (PCC). This graph shows only 
parameter pairs with PCC magnitudes ≥ 0.85. Values close to 1.0 indicate parameter 
dependence.  

The basic sensitivity analysis (Figure 25a) shows that many of the parameter sets produce very 
poor model fits. The objective function value measuring fit to observations increases to >10,000 
for several of the parameter changes, while the value at the optimal parameter estimates is 401 
(S(b)obs in Table 8). Values of the objective function are dimensionless, but gain meaning by 
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noting that the objective function would be 7.0 if the model fit were consistent with the 
weighting used. This is because the value of the calculated error variance, s2, would be 1.0 in this 
circumstance, and s2=S/(nh+nq+npr-np) where np is the number of parameters. Therefore the 
large objective function values produced by the parameter changes shown in Figure 25a clearly 
indicate that some unrealistic parameter values are used in the basic sensitivity analysis. It also 
raises the issue of how large is too large, with respect to the objective function produced by this 
sensitivity analysis. To address this issue, consider the objective function value used to calculate 
nonlinear confidence intervals. This can be calculated using equation 8.14 of Hill and Tiedeman 
(2007, p. 178) as 

S(b) + s2 × critical value          (14) 

For a 95% individual confidence intervals, the critical value equals about 2.0. For calibrated 
model B, S(b)=405 (Table 8) and S(b)/7=s2=58. Multiplying by a critical value of 2 gives a value 
for equation 14 of 521. Values larger than 521 can be thought of as very large. In Figure 25a the 
objective function for the four most important parameters (HK_1_1, HK_2, RCH_1, and 
RCH_2) clearly exceeds this threshold, suggesting that the parameter values used in the analysis 
are unrealistic. 

Figure 25c shows that there are no parameter pairs that are highly correlated, even with all 
parameters activated and no prior information (PCC for the conditions of the model calibration 
run are smaller and are shown in Appendix D, Table D-3). While numerical issues may 
sometimes cause calculated PCC to be too small (Hill and Tiedeman, 2007, p. 58-59), it is 
known for this inverse model that the presence of the flow observation prevents the parameters 
from being extremely correlated, as discussed earlier. The results in Figure 25c also show how 
PCC can dramatically vary when calculated at different parameter values (also illustrated by Hill 
and Tiedeman, 2007, p. 58, fig. 4.2). These results are very different from those calculated for 
model A at two different sets of parameter values and with no prior (Table 11). The results also 
indicate that splitting HK_1 into two parameters for model B does not increase the dependence.  

Prediction Uncertainty 

In this work prediction uncertainty such as displayed in Figure 22 is quantified by the common 
approach of propagating the uncertainty of the parameters to the predictions. Here, the 
propagation is accomplished using linear inferential theory, which includes some assumptions 
not required by methods such as MCMC, as discussed in Chapter 5 of this documentation. 
Briefly, linear inference depends on the model-simulated predictions being approximately linear 
functions of the parameters within the range of parameter uncertainty considered. Further, it 
depends on the errors being approximately Gaussian. Lu et al. (2012) discuss and test these 
assumptions.  

Understanding sources of prediction uncertainty thus requires consideration of the parameter 
uncertainty and the dependence of the predictions on the different parameters. For methods such 
as MCMC this is equivalent to the requirements of (i) considering the range of parameter values 
to define and (ii) calculating the prediction with different sets of parameter values. Generally, if a 
prediction is highly dependent on a parameter that is uncertain, prediction uncertainty will be 
relatively large. 
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Parameter uncertainty can be investigated using measures of information that the observations 
provide on the parameters, as discussed for Figure 25. Parameters with more information 
provided by observations tend to be less uncertain. Parameter uncertainty can be measured more 
quantitatively using confidence intervals such as those shown in Table 7 and in Figure 26a-b. 
The 95% linear individual confidence intervals shown are a direct, though not complete, measure 
of the uncertainty propagated to prediction uncertainty using linear inference. These parameter 
confidence intervals are calculated with the variances of the parameter variance-covariance 
matrix. The linear prediction confidence intervals are calculated with the parameter variances as 
well as their covariances.  

The confidence intervals in Figure 26a-b differ from those in Table 7 in that they are calculated 
with all parameters activated and prior information on all parameters. These calculation 
conditions are important when propagating parameter uncertainty to prediction uncertainty, so 
that the propagation includes all model parameters, and includes parameter support provided by 
the independent information and by the observations.  

The dependence of predictions on parameters is examined in two ways in Figure 26. Figure 26c 
shows prediction scaled sensitivities for which large absolute values identify parameters 
important to the predictions. Figures 26d-f show a basic sensitivity analysis that identifies the 
same parameters as being important to the predictions. Figures 26c-f suggest that the predictions 
are dependent on HK_1_1 and the two recharge parameters, but depend very little on parameters 
HK_1_2, HK_2, VANI, K_RB, and VK_CB.  

Readers familiar with Bayesian theory will wonder why the a posteriori parameter confidence 
intervals of Figure 26a-b are larger than the reasonable ranges. The reasonable ranges are 95% 
confidence intervals which are consistent with the prior information used for the uncertainty 
analysis of model B. Typically, Bayes theory allows the observations to reduce the uncertainty of 
parameters from that defined using the prior information. Yet here, the uncertainty has increased.  

The reason for the increase is that the methods used in this work treat prior information 
differently than in Bayesian methods. Instead of being treated as known, it is treated as a 
hypothesis. If simulated results do not match the observations very well and the fit requires 
parameters to deviate from the prior values significantly, the prior information is considered 
potentially less applicable to the model as constructed than was originally thought. A regression 
standard error of 1.0 would have indicated that preconceived notions of model accuracy and 
observation and prior accuracy were consistent. In this work the standard error of the regression 
is 7.6 (Table 8), indicating inadequacies in the flow model, in the error model used to quantify 
uncertainty in the observations and prior information, or all of these. As a result, the methods 
used increase the uncertainty of the prior information. The result is that the a posteriori 
confidence intervals are larger than the a priori confidence intervals for this problem. 

 



Chapter 9: CALIBRATION AND ANALYSIS OF A GROUNDWATER MODEL FOR THE 
FAUX VALLEY SYNTHETIC FLOW SYSTEM: AN INSTRUCTIONAL REPORT 

 112 

                                 (a)                                     (b)                                      (c) 

  

                        (d)                                                         (e)                                          (f) 

    

Figure 26. Investigating the sources of prediction uncertainty. (a and b) Parameter estimates 
(blue dots), 95% linear individual confidence intervals (black lines) calculated with 
prior information on all parameters, and reasonable ranges (gray bars). The 
uncertainty quantified in the parameter confidence intervals is propagated to 
calculate prediction confidence intervals. This propagation is examined in (c-f). (c) 
Parameter importance to predictions as measured by prediction sensitivities scaled 
by the calculated parameter standard deviation divided by the prediction value. If 
the absolute value of the scaled sensitivity is large and the parameter confidence 
interval in (a) or (b) is large, that parameter significantly contributes to the width of 
the prediction confidence interval. (d, e, and f) An alternate way of measuring 
parameter importance to predictions, showing changes for each prediction produced 
by changing the parameter values one at a time or all together. Most parameters 
(marked by * in the legend) are changed by dividing and multiplying by 2. The 
management criteria for the predictions are marked by a dot-dash line, and 
confidence interval limits are the solid black lines. In (d) and (f), the line for K_RB 
covers the lines for several other parameters. Panels (a) and (b) suggest that for 
some parameters the factor of two change is too small.  
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Using the Model to Evaluate Potential New Data Collection 

In some circumstances modelers are asked to evaluate what new data might be useful for 
improving the predictions. This section provides an example of how this question could be 
addressed for the flow system and predictions considered. It includes evaluation of (i) potential 
new head and flow observations and (ii) potential new independent information about flow 
system properties related to the model parameters. These analyses are conducted using the OPR-
PPR software (Tonkin et al., 2007), briefly described in Chapter 6. 

Potential New Observations 

A cost effective approach for obtaining new head observations is to collect them at the existing 
monitoring wells under flow system conditions that involve a change in hydraulic stress 
compared to the conditions for which steady-state model B was calibrated. The predictive 
scenario includes a new pumping well. A scenario that might yield information valuable to the 
predictions is to collect new observations under conditions of pumping from one of the existing 
monitoring wells. Data collection under these conditions would be an efficient method of gaining 
information about the effects of pumping before committing to the expense of a new production 
well. Well 03 in the upper aquifer and well 08 in the lower aquifer (Figure 19) were selected for 
this analysis because they are each close to the proposed location of the new production well. 
Because of well construction considerations and because each monitor well is open to only one 
aquifer, unlike the proposed multi-aquifer production well, the sustainable steady-state pumping 
rate in these monitor wells is likely be lower than the proposed production well pumping rate of 
2.2 m3/s. Thus, for evaluating the value of new field data, a rate of 1.0 m3/s is simulated for well 
03, and a rate of 0.5 m3/s is simulated for well 08.  

For the condition of steady-state pumping in well 03, potential observations include heads in all 
monitor wells except well 03, and discharge along the entire river reach. Similarly, for the 
steady-state pumping in well 08, potential observations include heads in all wells except well 08, 
and discharge to the river. The analysis uses the OPR (observation-prediction) statistic (Hill and 
Tiedeman, 2007, p. 171-174; Tonkin et al., 2007) to assess the reduction in prediction 
uncertainty that would occur by adding the potential observations. The statistics are calculated 
for the cases of (1) adding the observations individually (Figure 27a), and (2) adding the 
observations in two groups, one group corresponding to all observations collected during 
pumping of well 03, and the other corresponding to all observations during pumping of well 08 
(Figure 27b). 

Results show that a given observation or group tends to have a similar degree of importance to 
all three predictions, and that head and flow observations for the scenario of pumping monitor 
well 03 are more important to the predictions than are the observations for the scenario of 
pumping well 08 (Figure 27). The results also show that it is not necessary to monitor heads at 
wells 01 or 07 during either of these scenarios, as these observations are unimportant to the 
predictions. 

The predictions are most sensitive to HK_1_1 and the two recharge parameters (Figure 26c). 
Sensitivities for the potential observations to the recharge parameters (not shown) tend to be 
slightly larger for the case of pumping well 03 at 1 m3/s than for the case of pumping well 08 at 
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0.5 m3/s (if both aquifers were confined, these sensitivities would be identical; however, the 
system is simulated as unconfined). These larger recharge sensitivities appear to be a main factor 
contributing to the result that observations potentially collected during pumping of well 03 rank 
as more important than those potentially collected during pumping of well 08.  

(a)                                                             (b) 

   

Figure 27. The importance of potential new observations to each prediction, as measured by 
the OPR (observation-prediction) statistic. Here, OPR measures the percent 
decrease in the prediction standard deviation produced by adding (a) an individual 
observation or (b) a group of observations. Group 1 includes all head and flow 
observations potentially collected during pumping of well 03, and Group 2 includes 
all heads and flows potentially collected during pumping of well 08. 

The OPR statistic is defined as a percent decrease in prediction uncertainty. However, best 
practice for this statistic involves using it to rank potential observation importance in a relative 
manner. After any new observation data are collected, these data will most likely be used, along 
with the existing observations, to recalibrate the model. When the recalibrated model is used to 
update the predictions and their uncertainty, it is likely that the reduction in uncertainty will 
differ from the percentages shown in Figure 27. 

Potential New System Information 

The PPR (parameter-prediction) statistic (Hill and Tiedeman, 2007, p. 166-170; Tonkin et al., 
2007) is used to evaluate the importance to the predictions of collecting additional field data 
about flow system properties related to the model parameters. The analysis assumes that 
independent information about a property is collected that results in a specified percent reduction 
in the uncertainty of the prior information on the associated parameter. Here, a 10 percent 
reduction in uncertainty is used.  

Results show that among the eight flow system parameters, collecting new information about 
HK_1_1 would be most beneficial to reducing prediction uncertainty (Figure 28). Collecting 
recharge information close to the hillside also would be quite beneficial for reducing uncertainty 
in predicted head in the pumping well. However, the prediction uncertainty analysis showed that 

ModelB-OprAdd-IndividualObs._opr 
ModelB-OprAdd- 
ObsGroups._opr 
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the uncertainty in the flow and drawdown predictions were the most problematic, in terms of 
assessing whether the proposed production-well pumping would violate the management criteria. 
Given this, the PPR results suggest that hydrogeologic field work would best be focused on 
better characterizing the area of the upper aquifer where HK_1_1 is defined. In practice, this 
additional characterization could then be used to refine the representation of the hydraulic 
conductivity distribution in the upper aquifer, improve the prior value for HK_1_1, and (or) 
reduce the uncertainty on this prior (i.e., reduce the standard deviation used to calculate its 
weight).  

     

Figure 28. The importance of model parameters to the predictions, as measured by the PPR 
(parameter-prediction) statistic. Here, PPR measures the percent decrease in a 
prediction standard deviation produced by a ten-percent reduction in the uncertainty 
of the prior information on each parameter.  

Definition of Statistics, Including Equations and Comments on 
Meaning and Use 
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where  
b′ is the set of parameter values optimized using all observations; 
b(i)  is the set of parameter values that would be estimated if just the ith observation is omitted; 
X is a matrix of sensitivities (see Hill and Tiedeman, 2007, p. 69); 
ω is the weight matrix of equation 11 augmented with the prior information weight matrix 

(see Hill and Tiedeman, 2007, p. 384); 
NP is the number of estimated parameters; 
σ2 is the variance of the regression; 
ri is the ith weighted residual divided by its standard error, calculated as fi/[σ(1-hii)1/2]; 
fi  is the ith weighted residual of the regression with all observations; and 
hii is the leverage of the ith observation. 

ModelB-ppr._ppr 
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Observations with Cook’s D greater than the critical value strongly control one or more 
of the estimated parameter values. Cook’s D includes the effects of model fit, so is often 
said to be a measure of actual importance, while leverage is said to be a measure of 
potential importance. Often the parameters shown to be important by Cook’s D are a 
subset of the observations shown to be potentially important by leverage. Cook’s D 
includes the effects of parameter correlation. 

CSSj = ((∑i=1,nobs DSSij
2)/nobs)1/2, where nobs is the number of observations. CSS stands for 

composite scaled sensitivity. Measures parameter importance to observations, and thus 
how well the parameter is informed by observations. Larger values indicate more 
important parameters. Does not include effects of parameter intereactions 
(correlation). Can be stacked to show observation contribution to each parameter. 

DSSij = ωi
½ bj (∂yi/∂bj), where ωi is the weight for observation i, bj is the value of parameter j, 
and ∂yi/∂bj is the derivative of the simulated equivalent of observation yi with respect 
to parameter bj. DSS stands for dimensionless scaled sensitivity. Larger absolute 
values indicate more information is provided by the observation for the parameter. See 
Hill and Tiedeman (2007) for discussion of issues such as what happens when bj is 
zero, the weight matrix is full, and so on. 

Leverage = xi
T(XTωX)-1xi. , where X is a sensitivity matrix with elements equal to ∂yi/∂bj, and xi 

is a row of X. ω is defined after equation 11. Leverage includes the effects of 
parameter correlation. Leverage is fit-independent in that model fit for observations is 
not included in its calculation. Values range from 0.0 to 1.0. Observations with 
leverage close to 1.0 can control one or more of the estimated parameter values.  

PCCjk = Vjk/(Vjj 
½Vkk 

½), where Vjk=(XTωX)-1
jk. PCC stands for parameter correlation coefficient. 

Values vary from -1.0 to 1.0. Absolute values near 1.0 indicate high parameter 
correlation. 

t-statistic, scaled to be fit-independent, equals the parameter value divided by the fit-independent 
version of the parameter standard deviation. For parameter j, the parameter standard 
deviation is calculated as [s2(XTωX)-1

jj]1/2. It is made fit-independent by dividing the 
quantity in brackets by s2. In this work, these values were calculated with all 
parameters being native. That is, none are log-transformed. Combining results for 
transformed and native parameters can produce results that do not clearly identify 
important and unimportant parameters. 
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Appendix A: Connection with the Jupiter API and Other Open-
Source Software 

The JUPITER API [Joint Universal Parameter IdenTification and Evaluation of Reliability 
(JUPITER) Application Programming Interface (API)] is documented by Banta et al. (2006, 2008).  
New capabilities of UCODE_2014 are programmed using JUPITER API modules listed in Table A-
1.  

Table A- 1. JUPITER API modules, conventions, and mechanisms used to program the new 
capabilities in UCODE_2014. 

[The modules listed are described in Banta et al. (2006).] 
Module Authorship 
Datatypes Banta 
Global Data Banta and Doherty 
Utilities Banta, Doherty, and Poeter 
Basic Banta and Doherty 
Model Input-Output  Doherty and Banta 
Dependents  Banta and Poeter 
Equation  Doherty 
Sensitivity  Banta and Poeter 
Statistics  Poeter, Hill, and Banta 
Prior-Information Banta and Poeter 
Parallel Processing Banta 
Conventions and Mechanisms Authorship 
Parameter-Value Generation Hill, Banta, Poeter, and Doherty 
Input and Output Specifications (including matrices) Banta, Doherty, Hill, and Poeter 
Input Block Names and Keywords Doherty, Poeter, and Banta 
Data-Exchange Files  Poeter, Banta, and Hill 

MCMC was programmed in part by Dan Lu and in part using available public domain software, as 
shown in Table A-2. 

Table A- 2. Subroutines used to implement MCMC in UCODE. 
File dream.f90: All subroutines programmed by Dan Lu 
Files rnglib.f90 and pdflib.f90: All subroutines are from 
http://people.sc.fsu.edu/~jburkardt/f_src/rnglib/rnglib.html with minor revisions by Dan Lu  

Reference 
Banta, E.R., Poeter, E.P., Doherty, J.E., Hill, M.C., 2006, JUPITER API: U.S. Geological Survey 

Techniques and Methods 6-E1, 268p. URL: 
http://water.usgs.gov/nrp/gwsoftware/jupiter/jupiter_api.html  

 
Banta, E.R., Hill, M.C., E.P. Poeter, J.E. Doherty, and J. Babendreier, 2008, Building model 

analysis applications with the joint universal parameter identification and evaluation of 
reliability application programming interface (JUPITER API): Computers and Geoscience, 34: 
310–319. doi:10.1016/j.cageo.2007.03.016 

http://people.sc.fsu.edu/%7Ejburkardt/f_src/rnglib/rnglib.html
http://water.usgs.gov/nrp/gwsoftware/jupiter/jupiter_api.html
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Appendix B: Files Produced by Using the Filename Prefix 
Specified on Command Lines from UCODE and Its Post-

Processors 
Several new files are produced using the fn filename prefix specified on the command line.  For 
completeness and convenience, file extensions for all of the files are listed in Figure B-1 in 
alphabetical order with main output files listed first followed by data-exchange files. 

 

Table B- 1. Files produced by UCODE_2014, RESIDUAL_ANALYSIS, 
RESIDUAL_ANALYSIS_ADV, LINEAR_UNCERTAINTY, MODEL_LINEARITY, 
MODEL_LINEARITY_ADV, and CORFAC_PLUS, and named using the fn prefix 
specified on the command line, in alphabetic order by letter in the file extension.  

[File extensions that begin with # are main output files and are listed first. File extensions that begin with an 
underscore identify data-exchange files and are listed at the end of the table. Light gray shading identifies 
files produced by an auxiliary code to UCODE_2014; dark gray shading identifies files new with 
UCODE_2014. ‘iteration’ refers to parameter-estimation iteration. * is replaced by ‘conf’ for results related 
to confidence intervals or ‘pred’ for results related to prediction intervals.]  

Extension 

 
Brief description  

(see also Tables 16-22, 24-28, 34, 35 of 
UCODE_2005 Manual) 

 

Content1 Use1 

The following are main output files for the listed auxiliary codes 
#corfac_* CORFAC_PLUS 35 34 
#linunc       LINEAR_UNCERTAINTY 26 -- 
#modlin MODEL_LINEARITY 27 -- 
#modlinadv MODEL_LINEARITY_ADV -- -- 
#resan  RESIDUAL_ANALYSIS 24 -- 
#resanadv RESIDUAL_ANALYSIS_ADV -- -- 
The following are UCODE_2014 main output files for the listed modes 
#ucreateinitfiles Sensitivity-analysis with CreateInitFiles=yes -- -- 
#umcmc  MCMC simulation for parameter samples -- -- 
#umcmc_pred MCMC simulation for prediction samples -- -- 
#umodlin Test-model-linearity -- -- 
#unonlinint_* Nonlinear-uncertainty -- -- 
#uout Forward, sensitivity-analysis, parameter-estimation -- 28-30 
#upred Prediction 20 33 
#usos Evaluate-objective-function -- -- 
The following are data exchange files 
_b1 Parameter sets for _b2 19 -- 
_b1adv* Parameter sets for _b2adv* 35 34 
_b2 Values simulated using parameter sets from _b1 19 -- 

_b2adv* Values simulated using parameter sets from _b1adv* 35 34 
_b3* Parameter sets for _b4* 35 34 
_b4* Values simulated using parameter sets from _b3* 35 34 
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Extension 

 
Brief description  

(see also Tables 16-22, 24-28, 34, 35 of 
UCODE_2005 Manual) 

 

Content1 Use1 

    
_cf* Correction factors  35 34 
_cfsu Sensitivities used by CORFAC_PLUS 35 34 
    
_dm Information about model structure, fit and parsimony 21 -- 
_dmp Information about predictions 21 -- 
_dm_presvd6 Copy of _dm based on parameters used to start SVD 21 ra 
    
_gm Observation groups 16 -- 
_gmp Prediction groups 20 -- 
    
_init As for _paopt evaluated at other parameter values 15 -- 
_init._mv As for the _mv file evaluated at other parameter values 15 -- 
_init._su As for the _su file evaluated at other parameter values 15 -- 
_init._supri As for the _supri file evaluated at other parameter values 15 -- 
    
_int* Nonlinear intervals 35 34 
_int*par Parameter values at nonlinear interval limits 35 34 
_int*wr Weighted residuals at nonlinear interval limits   
    
_linp  Predictions and their linear confidence intervals 26 -- 
#linunc       LINEAR_UNCERTAINTY main output file 26 -- 
    
_mc Parameter correlation coefficient matrix 19 30 
#modlin MODEL_LINEARITY main output file 27 -- 
#modlinadv MODEL_LINEARITY_ADV main output file   
_mv Parameter variance-covariance matrix 19 30 
_mv_presvd6 Copy of _mv based on parameters used to start SVD 19 ra 
    
_mcmc_par## Parameter samples of chain## -- -- 
_mcmc_sim##   Simulated values of chain##   
_mcmc_grr Gelman-Rubin R statistics -- -- 
_mcmc_pred## Prediction samples of chain## -- -- 
_mcmc_restart Information to restart the MCMC run -- -- 
    
_nm Weighted residuals, probability plotting positions 16 31 
_os Unweighted simulated and observed or prior values  16 31 
    
_p Predictions 20 -- 
_pa Parameter values for each iteration  19 -- 
_paopt 6 Information for all defined parameters 19 -- 
_paopt_presvd 6 Copy of _paopt based on parameters used to start SVD 19 svd/ra 
_pasub Parameter values for each iteration  19 -- 
_pc 6 Information for estimated parameters 19 30 
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Extension 

 
Brief description  

(see also Tables 16-22, 24-28, 34, 35 of 
UCODE_2005 Manual) 

 

Content1 Use1 

_pcc Large parameter correlation coefficients (≥ 0.85) 18 30, 31 
_pr Prior information equations 16 -- 
_pv Prediction variances 20 -- 
    
_r Unweighted residuals (observations and prior) 16 31 
_rb  DFBetas statistics for each observation and parameter 24 32 
_rb_presvd  DFBetas statistics for results used to start SVD 24 32 
_rc  Cook’s D statistic for each observation 24 32 
_rc_presvd  Cook’s D statistic for results used to start SVD 24 32 
_rd Ordered uncorrelated random numbers  24 32 
_rd_presvd Ordered uncorrelated random numbers for results used 

to start SVD 24 32 

_rdadv Results of RESIDUAL_ANALYSIS_ADV -- -- 
_rg Ordered correlated random numbers  24 32 
_rg_presvd Ordered correlated random numbers for results used to 

start SVD 24 32 

    
_s1 One-percent scaled sensitivities 18 30, 31 
_sc Composite scaled sensitivity 18 30, 31 
_sc_svd6 Decomposition of CSS using SVD of scaled [wt^0.5][X] -- -- 
_sc_svd_presvd6 Copy of _sc_svd based on parameters used to start SVD -- -- 
_sd Dimensionless scaled sensitivities  18 30, 31 
_so Sensitivity summary by observation, including leverage 18 30, 31 
_sos Parameter values and resulting value of the sum of 

squared weighted residuals objective function.  19 -- 

    
_sppp Prediction sensitivity scaled by Param5/PredValue4 20 -- 
_sppr Prediction sensitivity scaled by Param5/RefValue3 20 -- 
_spsp Prediction sensitivity scaled by PSD2/PredValue4 20 -- 
_spsr Prediction sensitivity scaled by PSD2/RefValue3 20 -- 
_spu Unscaled sensitivities for predictions 20 -- 
    
_ss Sum of squared weighted residuals by iteration 19 31 
_su Unscaled sensitivities for observations 18 -- 
_su_presvd6 Copy of _su based on parameters used to start SVD 18 ra 
_summary Summary of regression progress -- -- 
_summary_presvd Summary of regression progress for run to start SVD -- -- 
_supri Unscaled sensitivities for prior information 18 -- 
_supri_presvd Copy of _supri based on parameters used to start SVD 18 ra 
_svd Singularvalues and vectors of [wt^0.5][X]{b} matrix -- -- 
_svd_presvd Copy of _svd based on parameters used to start SVD -- -- 
_svd-id SVD-ID statistics for a range of SVDnumber -- -- 
_svd-id_presvd Copy of _svd-id based on parameters used to start SVD -- -- 
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Extension 

 
Brief description  

(see also Tables 16-22, 24-28, 34, 35 of 
UCODE_2005 Manual) 

 

Content1 Use1 

_w Weighted residuals, observations and prior information 16 31 
_w_presd Copy of _w based on parameters used to start SVD 16 ra 
_ws Simulated equivalents and weighted residuals for 

observations and prior information 16 31 

_wt Weights for observations 17 -- 
_wt_presvd Copy of _wt based on parameters used to start SVD 17 ra 
_wtpri Weights for prior information  17 -- 
_wtpri_presvd Copy of _wtpri based on parameters used to start SVD 17 ra 
_ww Weighted simulated equivalents in relation to weighted 

observations or prior information 16 31 
1 Tables in the UCODE_2005 report that describe the file contents and suggest how to use it. A --, indicates 
the content or use of the file is not described in a table. Svd indicates the file is needed to start a subsequent 
SVD parameter estimation. Ra indicates the file is needed to execute Residual_Analysis on the residuals of 
the run used to start the SVD. 
2 Parameter Standard Deviation. 
3 Reference Value from Prediction_Data block. Scaled sensitivity is set to zero if this number equals zero. 
4 Predicted Value. Scaled sensitivity is set to zero if this number equals zero. 
5 Parameter Value. 
6 These data-exchange files are not generated from JUPITER API subroutines; they are part of 
UCODE_2014. 
 



Appendix C. Distributed Directories 

 127 

Appendix C: Distributed Directories 
UCODE_2014 and the post-processors can be downloaded from the web site listed in the preface. The 
operating system is listed for each compiled downloadable executable file. When uncompressed, a 
directory is created with four subdirectories. The directory is named wrdapp\ucode_2014. The 
subdirectories are listed in Table C-1.  

Table C- 1. Contents of the directories distributed with UCODE-2014. 
Subdi-
rectory Contents 

bin Executable file. 
doc This documentation and the UCODE_2005 documentation, in PDF format. 
src Fortran source files organized into 11 directories. All source files are named 

with the extension “f90”. Except for directory API-MODULES, each directory 
contains a file named readme.txt that lists the modules needed to compile the 
code to which the directory is dedicated. The subdirectories are: 
API-MODULES: Jupiter API modules used in the codes listed below. 
UCODE_2014: Files unique to UCODE_2014. 
JRUNNER: Files unique to the computer code JRUNNER, which needs to be   
                    run on machines to be used for parallel computations. 
Eight directories each named for one of the other codes documented in this 
report or the UCODE_2005 report. Each of the directories contains the files 
unique to the code involved. 

test-win Files for running examples for the SVD and MCMC capabilities documented 
in this report and for running the models in Chapter 9 in a windows operating 
system. The contents of this directory are discussed in Appendix D. 

Table C- 2. Files distributed with UCODE_2014 relevant to MCMC. 
[fn is replaced by HO1 in the test case I and HO2 in the test case II, as defined on the execution 
lines of UCODE_2014 and the MCMC program.]  
FILENAME DESCRIPTION 
Executable Files – in directory bin 
UCODE_2014.exe 
mf2005.exe 

Run UCODE_2014 MCMC simulation 
Run forward model 

MCMC Modules  – in directory src/ucode_2014 
rnglib.f90 Generate random numbers from  U[0,1] uniform distribution 
pdflib.f90 Generate random numbers from a certain distribution and calculate 

density values for that distribution 
dream.f90 Read in input, run DREAM algorithm, print out results.  
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Appendix D: Test Cases Distributed with UCODE_2014 
Test cases for the SVD and MCMC capabilities described in this report and files for the model 
analyses in Chapter 9 are distributed with UCODE_2014 in subdirectories of the test-win directory 
(Table C-1). The contents of this directory are listed in Table D-1. 

SVD Test Case and Selected Results 

The SVD test case is based on the test case used for exercises in Hill and Tiedeman (2007), 
modified so that the top boundary is a free surface water table and in the “true” synthetic system the 
top layer is assigned a randomly generated heterogeneous hydraulic conductivity. The problem is 
described in Chapter 9 of this report. The conceptual model, numerical model, observations, and 
simulation of model features are shown in Figures 18 to 20. The true hydraulic conductivity field is 
shown in Figure 23.  The distributed directory structure and the batch files for the SVD test cases 
are listed in Table D-1. This section presents selected results from the SVD test case and discusses 
them briefly. 

The test case presented here has fewer parameters than observations. Often SVD is used to solve 
highly parameterized inverse problems, roughly defined as having more parameters than 
observations. UCODE_2014 does not support simulation of highly parameterized models and users 
are encouraged to use PEST for this purpose. In general, it is often useful to simulate a model 
constructed using few parameters and conduct sensitivity analyses and preliminary parameter-
estimation runs before proceeding to highly parameterized models. UCODE_2014 provides 
extensive sensitivity-analysis statistics to be used in such investigations. Identified characteristics 
such as insensitive parameters and highly correlated parameters can be used to manage the highly 
parameterized simulation. For example, such an analysis might be used to justify highly 
parameterizing sensitive aspects of the system and not estimating any parameters associated with 
aspects of the system to which observations provide no information. 

Directory SVD-Test (Table D-1) includes the model B calibration run described in Chapter 9. The 
results presented in Chapter 9 are from a traditional UCODE regression approach in which the 
values of the process-model parameters are estimated directly by regression. Directory SVD-Test 
also includes two runs for which SVD is used in the estimation. In a run with SVDupdate=SVDall, 
SVD null-space parameters are set to create a tractable regression. In a run with 
SVDupdate=Option2_SVDset or Option2_css_pcc, the same number of process-model parameter 
values are set to create a tractable regression problem, with the parameters selected using PCC and 
CSS (see Chapter 4 for more information). Setting process-model parameter values clarifies the 
consequences of reducing the parameter space – modelers can easily see that some parameter values 
are maintaining their original value and can check to see which of these parameters has large PCC 
or small CSS. If the choices and PCC and CSS values do not make sense based on the 
understanding of the system, modelers can then consider potential mistakes in the UCODE input 
file and reconsider things like model construction, parameterization, and observation representation 
in the model.  
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Table D- 1. Contents of directory Test-win. SA, sensitivity analysis. Input files for conducting 
runs are provided; directories also will contain output files after the batch files are run.  

Name of directory                   
Chap4-test-SVD 
 Batch files, MODFLOW files, UCODE_2014 input files, and auxiliary files for forward, SA, 

regression (with and without use of SVD methods), and residual analysis runs of model B in Chapter 
9. The SVD regression runs use two options: Option2_css_pcc and SVDall. The residual analysis run 
is conducted for the PMP (process-model parameters) regression without use of SVD, because the 
SVD model runs produce very large values of parameter standard deviations (Table D-2) and cannot 
be processed using Residual_Analysis. This is common when SVD truncation is used to obtain a 
tractable regression problem. 
See the file  _00-READ-ME-SVD-test.txt for a description of all runs. 

Chap5-test-MCMC 
 Files for MCMC test cases. See the file  _00-READ-ME-Chap5-test-MCMC.txt. 

Subdirectory                               Contents 
HO1/HOmodel_test1 
 
(Runner directories normally removed for distribution. 
Create using the provided batch file.) 

Batch files, UCODE_2014 input files, 
and auxiliary files. Folders related to 
forward and prediction run. After the 
programs are run it includes two runner 
directories (Runner1 and Runner2) 
created in the HO1 subdirectory. This 
test case provides an example of how 
to set up a parallel run. 

HO2/HOmodel_test2 
 

Batch files, UCODE_2014 main input 
files, and auxiliary files. Folders related 
to forward and prediction run. 

 Notes: For HO1 and HO2, the MCMC batch files are in HOmodel_test*, where * is 1 or 2. 
The batch files are numbered from 01 to 05; run them sequentially. 

Chap9-Faux Valley 
 Files for synthetic Faux Valley groundwater flow model SA, regression, and analysis. 

For a complete description of the runs, see the file _00-READ-ME-chap9-FauxValley.txt, and the 
_00-READ-ME-*.txt file within each subdirectory, where * is the subdirectory name.  
These runs use only UCODE_2005 capabilities of UCODE_2014. 
Subdirectory                               Batch files, UCODE_2014 input files, 

and auxiliary files for: 
01-ModelA-InitialSensAnalysis SA run for model A with initial 

parameter values 
02-ModelB-Prediction SA, prediction, and prediction 

uncertainty runs for calibrated model B 
(regression run for Model B is in 
Chap4-test-SVD)  

03-ModelA-SensAnalysis-ParameterSet2 SA run for model A with parameter 
values set to lower bounds of 
reasonable ranges. 

04-ModelB-SOS Sum-of-squares surface run for model 
B. 

05-ModelB-SensAnalysis SA run for calibrated model B with all 
parameters active and no prior. 

06-ModelB-Prediction-SOS Sum-of-squares surface run for model 
B with predictions. 
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Name of directory                   
07-ModelB-opr-add OPR-PPR runs for model B, with mode 

OPRADD. 
08-ModelB-ppr OPR-PPR run for model B, with mode 

PPR. 
truth MODFLOW runs with input files 

representing the true system  
 
convert_pest_prior_info 
 Batch file that runs convert_pest_prior_info which reads the pest input file provided in the directory 

(pestrun-p.pst), finds the prior information items in that file and creates a UCODE 
Linear_Prior_Information input block which is written in the file pestrun-p.pst.out. The output file 
ConvertPestPriorInfo.#out summarizes what was done. The _clean,bat file removes the output. 

Exercises from Hill and Tiedeman 2007 
                    Batch files, MODFLOW files, UCODE input files, and auxiliary files for runs that use only 

UCODE_2005 capabilities of UCODE_2014.  
See file _00-READ-ME-ExercisesHillandTiedeman.txt. 

simple-example 
 Batch and input files to run the dupuit model parametyer estimation. The problem is described in the 

A-description-of-the-dupuit-example.htm file that is included in the folder which uses files in the 
directory html. The dupuit code source and executable reside in the code_dupuit directory. 

ucode_2005_examples_run_with_ucode_2014 
 Files for running UCODE_2014 for two of the examples distributed with UCODE_2005. See file 

readme.txt. 
 Subdirectory Contents 

_test-win-2005 UCODE batch files (in directories ex1a 
and ex1b) and input files (in directories 
ex1a-files and ex1b-files). 

test-data-win MODFLOW batch files and input files 
(in directories data-*). 

 

Use of SVD for this relatively simple problem provides the opportunity to investigate SVD 
performance at a level of detail that is difficult when highly parameterized models, for which the 
number of parameters exceeds the number of observations, are considered. Here, we investigate 
SVDupdate. 

Table D-2 shows selected results from the three UCODE_2014 runs distributed in the SVD-test 
directory. For SVDupdate=SVDall, null-space SVD parameters are held constant and all the 
process-model parameter (PMP) values change. For SVDupdate=Option2_SVDset or 
Option2_css_pcc, the values of selected process-model parameters do not change.  

For the PMP model run, the user must decide which process-model parameter values will be set and 
which parameters will include prior information, to attain a tractable regression problem. These 
decisions usually result from inspection of sensitivity analysis (SA) results, model fit, and 
preliminary regression runs. This process is ad hoc and SVD provides a more formal mechanism for 
achieving a tractable regression problem. 

When using SVD with SVDupdate=SVDall, Option2_SVDset, or Option2_css_pcc, generally no 
preliminary analysis is needed for a given model and the best-fit parameters listed in Table D-2 
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were obtained with one run of UCODE_2014 with SVD=yes. The best-fit parameter values are of 
the same magnitude for all three parameter-estimation runs, with the exception of HK_1_2, which 
has an unrealistic value of 48 for the SVD run with SVDupdate=SVDall. This illustrates the 
importance of carefully evaluating the parameter estimates following any UCODE run. 

The bottom half of Table D-2 shows that the standard deviations of the parameters estimated with 
SVD are very large. This is typical of SVD runs and occurs because UCODE (and other codes using 
SVD) depends on the SVD process to set parameter values and calculates the final statistics with all 
parameters active. The only information provided is from the observations. The resulting standard 
deviations would be considered reasonable only if there were no additional independent information 
on any of the parameter values, which is unlikely. Thus, the standard deviations calculated for the 
SVD model runs are too large, indicating a greater level of uncertainty than is supportable by data 
and knowledge. 

In the PMP model runs some parameters are set and some parameters have prior information 
included. The setting of parameters is equivalent to saying that their values are known completely, 
which is not realistic. Thus, the standard deviations calculated for the PMP model are too small, 
indicating a greater level of certainty than is supportable by data and knowledge. 

How can realistic evaluation of uncertainty be obtained? Hill and Tiedeman (2007) suggest 
activating all defined parameters and including any available knowledge about each parameter as 
uncertain prior information. The result of such a model run is shown in Table D-2. While clearly 
more reasonable, uncertainty in the parameterization is not accounted for in these results, which 
would suggest the uncertainty measures continue to be somewhat small. This could be evaluated 
using multiple alternative realizations of the parameterization using software such as MMA (Poeter 
and Hill, 2007), models that are highly parameterized using pilot points with software such as PEST 
or PEST++ (Doherty, 2010; Welter et al., 2012), or Bayesian methods such as bgaPEST (Fienen et 
al., 2013). 

Table D-3 shows graphs displaying the model fit, sensitivity analysis, and changes in parameter 
values during regression for three calibration approaches. Of note are the following. 

• The most and least important parameters are consistent, while the intermediate parameters 
vary (from analysis of CSS) 

• Correlation between hydraulic conductivity and recharge parameters is common (from 
analysis of PCC) 

• The flow is an important observation (from analysis of leverage). Heads at locations 9 and 7 
in layer 2 and 1 in layer 1 tend to be important. 
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Table D- 2. (A) True and estimated parameters and (B) observed and simulated heads and flows 
for model runs in the SVD-Test directory. 

[PMP, process-model parameter. SVD, singular value decomposition. SOSWR, sum of squared weighted 
residuals. SVDupdate is described in Chapter 4 of this report. The parameter names (HK_1_1, HK_1_2, and 
so on), are described in Chapter 9. Infinity, the exponent was so large it could not be evaluated. Shading: 
Parameter value is not allowed to change. Prior information is defined for this parameter.]   

(A) 

TRUE 1PMP 

 SVD 
 SVDupdate 

2PMP 3SVDall 
3Option2 
_css_pcc 

Parameter values      
HK_1_1 (m/s) Variable 2.6E-04  

Same 
values as 

in column 
to the left 

2.6E-04 2.7E-04 
HK_1_2 (m/s) Variable 1.0E-02 48 5.4E-02 
HK_2 (m/s) 4.40E-05 3.2E-05 1.8E-05 3.3E-05 
VANI (--) 1 1 1.0 1 
VK_CB (m/s) 2.00E-07 1.00E-07 4.8E-08 1.00E-07 
K_RB (m/s) 1.00E-03 1.20E-03  8.1E-04 1.20E-03 
RCH_1  (cm/yr) 40 50  46 47 
RCH_2  (cm/yr) 70 80  79 87 
4Parameter standard deviation calculated as s2(XTωX)-1  
HK_1_1 (m/s)  2.7E-04 1.4E-04 9.2E-04 1.1E-03 
HK_1_2 (m/s)  65 1.6 Infinity Infinity 
HK_2 (m/s)  5.2E-05 1.4E-02 4.2E+92 6.3E+40 
VANI (--)  -- 0.6 Infinity Infinity 
VK_CB (m/s)  -- 9.9E-05 1.4E+96 8.1E+40 
K_RB (m/s)  -- 2.5E+06 8.2E+27 1.5E+59 
RCH_1 (cm/yr)  50 36 2.3E+04 3.9E+06 
RCH_2 (cm/yr)  50 38 1.3E+03 4.7E+03  
Standard error of the regression (s in the equation used to calculate the parameter standard 
deviation) 
Value  7.6 -- 11 12 
5Confidence interval  5; 15 -- 6; 42 7;43 

1 Model B of Chapter 9. 
2 Model PMP results with all parameters active, prior information applied, and standard deviations calculated at the 
estimated values (using a Sensitivity Analysis run of UCODE_2014).  
3 For these runs all parameters are log-transformed. 
4 From the _pc file column labeled "STANDARD DEVIATION (NATIVE)". The large (and infinite) values occur because 
no prior is defined for the SVD runs and no parameters are set for the calculation of parameter uncertainty. Because 
of the lack of prior, these values calculated for SVD model runs are not very useful. Parameter prior information such 
as that shown in Table 5 needs to be included in the calculations to obtain meaningful standard deviations. 
5 If the value 1.0 is not included in the confidence interval, this indicates there is model error. See Hill and Tiedeman 
(2007, p. 96-98). 
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Table D-2-continued. (A) True and estimated parameters. (B) SOSWR and observed and 
simulated heads and flows. For model runs in the SVD-Test directory. 

 [Shaded numbers: Head residuals with absolute values greater than 1.0 m, highlighted to illustrate the 
largest residuals.] 

(B)   SVD 
   SVDupdate 
  PMP SVDall Option2_SVDset 

SOSWR (obs)  401 422 374 
SOSWR(prior)  5 -- -- 
Observation 

name 
Observed Simu-

lated 
Resi-
dual 

Simu- 
lated 

Resi-
dual 

Simu-
lated 

Resi-
dual 

hd01.ss 100.25 m 100.31 -0.06 100.44 -0.19 100.32 -0.07 
hd02.ss 149.41 m 148.70 0.71 148.87 0.54 148.79 0.62 
hd03.ss 163.46 m 164.43 -0.96 163.94 -0.48 164.11 -0.65 
hd04.ss 153.75 m 148.70 5.05 148.87 4.88 148.79 4.96 
hd05.ss 160.36 m 163.77 -3.41 163.94 -3.58 163.98 -3.62 
hd06.ss 148.90 m 148.53 0.37 148.64 -0.26 148.62 0.28 
hd07.ss 103.77 m 103.29 0.48 103.86 -0.09 103.38 0.39 
hd08.ss 163.87 m 164.55 -0.68 164.12 -0.25 164.26 -0.38 
hd09.ss 180.67 m 179.33 1.34 179.55 -1.12 179.41 1.26 
hd10.ss 160.80 m 162.28 -1.48 162.19 -1.39 162.38 -1.58 
Flow01_1 -5.77 m3/s -6.72 0.95 -6.43 0.66 -6.87 1.10 
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Table D- 3. Graphs showing results of model fit and sensitivity analysis for the starting parameters and three calibrated models, 
and parameter value changes for the calibrated models. 

Table D-3 Calibrated (PMP, process-model parameters; SVD singular value decomposition) 
  SVDupdate 

Starting parameters PMP SVDall Option2_SVDset 
Model Fit    

   
 

    
Points at upper right and bottom left for calibrated models (PMP and SVD) are hd04 and hd05, respectfully. Locations are shown in Figure 19. Problem for the 
reader: Why might the model have a hard time fitting these two observations? (Hint: distance from stream) 
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Table D-3 Calibrated (PMP, process-model parameters; SVD singular value decomposition) 
  SVDupdate 

Starting parameters PMP SVDall Option2_SVDset 
Sensitivity Analysis    

 

 
Set parameters not included. 

  
For all cases, HK_1_1 and RCH_2 are most important. 

 
 

hd01 and hd05 not important given the 
set parameters and prior on HK_1_2.   

Leverage=1 means the one observation potentially controls the value of one or more parameter. Largest five values shown. 
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Table D-3 Calibrated (PMP, process-model parameters; SVD singular value decomposition) 
  SVDupdate 

Starting parameters PMP SVDall Option2_SVDset 
Sensitivity Analysis    

    
PCC often varies. Look for parameter pairs with PCC that are consistently greater than 0.95.  
Process-model parameter value changes during calibration   

No panel included because no 
estimation was conducted 

   
The parameter values are scaled by the starting parameter value so changes are relative to the starting values. 
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MCMC Example Simulations 

The MCMC test cases are derived from simulations used in Lu et al. (2012), which were derived 
from Hill et al. (1998). The true synthetic system is shown in Figure D-1 and includes an areally 
variable hydraulic conductivity field. The calibrated model uses a homogeneous hydraulic-
conductivity field throughout the system except where the confining unit and lake are shown in 
Figure D-1(a). The model has three layers. 

 

Figure D- 1. (a) Modeling domain with the confining unit, Blue Lake, and Straight River, (b) the 
true horizontal hydraulic conductivity field (K field) with values from 6 to 150 m/d. 

There are two examples, called HO1 and HO2. For HO1, each parameter has a uniform prior 
probability distribution. Also, the model is set up to run in parallel. For HO2, five parameters have a 
multinormal prior distribution and one is uniform. Both examples are set up to conduct an MCMC 
run and also to calculate predictions. 

The parallel setup for HO1 is likely to be useful for other applications. Batch files are used to create 
the runner directories and start the runners. These are files 01-runners-populate.bat and 02-start-
runners.bat, and need to be run in that order. For distribution the runner directories are removed. 

To run the MCMC code in Windows system, do one of the following: 
• Double click the batch file names. Note that for these two test problems, the maximum samples 

for each chain is set to 20, so users can get the simulation results after a minute. 
• In a command window, type the contents of the batch file to run the simulation. 

Figures D-2 through D-9 show selected results from HO1, including files from the distributed 

example and results from a much longer run. 
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“MONITORED PARAMETER SAMPLE VALUES AND ASSOCIATED LOG LIKELIHOOD FUNCTION VALUES FOR CHAIN # 01” 
“Iteration”   “LogLikelihood”    “     LAKERCH”  “        KRB0”  “         RCH”  “          KV”  
      1      -6.1284370E+01       4.8014610E-04   5.4413374E+03   8.4593439E-04   2.9612086E-03  
      2      -6.1284370E+01       4.8014610E-04   5.4413374E+03   8.4593439E-04   2.9612086E-03  
      3      -6.1284370E+01       4.8014610E-04   5.4413374E+03   8.4593439E-04   2.9612086E-03  
      4      -6.1284370E+01       4.8014610E-04   5.4413374E+03   8.4593439E-04   2.9612086E-03  
      5      -6.1284370E+01       4.8014610E-04   5.4413374E+03   8.4593439E-04   2.9612086E-03  
   . 
   . 
   . 
     18      -5.9724230E+01       1.0670284E-03   5.1639845E+03   7.8059344E-04   8.0438356E-01  
     19      -5.9724230E+01       1.0670284E-03   5.1639845E+03   7.8059344E-04   8.0438356E-01  
     20      -5.9724230E+01       1.0670284E-03   5.1639845E+03   7.8059344E-04   8.0438356E-01 

Figure D- 2. First 6 columns of the MCMC output file HO1._mcmc01 for chain 1. For any actual application this file would 
include thousands and perhaps 10,000s of lines. 

 
“PREDICTION VALUES CALCULATED FROM PARAMETER SAMPLES AFTER 
CONVERGENCE FOR CHAIN # 01” 
 “Number”    “   G2_change”  “          DD” 
       1       3.5876111E-01   1.3824296E+00 
       2       3.5876111E-01   1.3824296E+00 
       3       3.5876111E-01   1.3824296E+00 
       4       3.5876111E-01   1.3824296E+00 
       5       3.5876111E-01   1.3824296E+00 
       6       3.5876111E-01   1.3824296E+00 
       7       3.6098343E-01   1.2867179E+00 
       8       3.7380822E-01   1.4330068E+00 
       9       3.7380822E-01   1.4330068E+00 
      10       3.7380822E-01   1.4330068E+00 

Figure D- 3. Output file HO1._mcmc_pred01 from MCMC test case 1 for the example 10 parameter sets following the 10 sets 

ignored based on user input. For any actual application this file would include thousands and perhaps 10,000s of lines. 
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Figure D- 4. Figure showing MCMC 
credible intervals plotted from files 
such as HO1._mcmc_pred01. Also 
shown are linear and nonlinear 
confidence intervals which can also be 
calculated using UCODE_2014, for the 
MCMC test case HO1. The credible 
intervals required 420,000 models runs. 
The linear and nonlinear confidence 
intervals required <106 and <1494 
model runs, respectively. (from Lu et 
al., 2012) 

 

Analysis of MCMC results with GW-Chart 

GW_Chart supports the UCODE MCMC capability as demonstrated in this section. The plots in 
Figures D-5 through D-9 were produced by saving plots from GW_Chart. 

Based on output files HO1._mcmc_par** (where ** represents chain index, i.e., 01, 02, … 06) the 
evolution of samples from all chains can be plotted using software GW-Chart like Figure D-5. This 
plot can reveal four characteristics: (1) the chains’ evolutions to the target posterior distribution, (2) 
a rough estimate of whether and when the chains are mixed, (3) whether the parameter posterior 
distribution has multiple modes, and (4) how the chains jump between the modes.   



Appendix D. Example Simulations 

 140 

The parameter samples saved in HO1._mcmc_par** files can also be used to construct histogram 
using GW-Chart like Figure D-6. The histogram constructed with the converged parameter samples 
can estimate the marginal posterior distribution of the parameter.    

The plot of the Gelman-Rubin R statistics saved in file HO1._mcmc_grr can be used to diagnose 
chain convergence. The plot made in GW-Chart is shown in Figure D-7.  

The prediction values simulated by converged parameter samples are saved in HO1._mcmc_pred** 
files. Based on these values, the histogram plotted with GW-Chart in Figure D-8 can be used to 
estimate the posterior distribution of the prediction. The probability plot of GW-Chart in Figure D-9 
evaluates the Bayesian credible intervals. Figure D-9 shows two of the credible intervals shown in 
Figure D-4 a and b. 

 

Figure D- 5. Evolution of sampled K values in six chains. 

 

Figure D- 6. Simulated posterior density of K based on samples after convergence (the last 50% 
samples from all chains). 
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Figure D- 7. Plot of Gelman-Rubin R statistics of six model parameters. The threshold of R 
value 1.2 is indicated by the black dash lines. 

 

Figure D- 8. Simulated posterior density of predicted drawdown (DD). 
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Figure D- 9. 95% Bayesian credible intervals (black line) of predicted flow change at G2 
(G2_change) and drawdown (DD). The mean values are represented by blue dots and 
the ranges of the simulated predictions are represented by the gray bar. 

Batch files for the MCMC example 

The batch files distributed to run the MCMC example are listed in Tables D-4 and D-5. 

Table D- 4. The batch files distributed in test-MCMC-win subdirectory HO1/Homodel_test1. 
[Running these batch files produces parameter and prediction samples of test example HO1 
described in Appendix D.] 

Batch file name Purpose 
00-a-clean.bat Delete all output files of MCMC run 
00-a-Run-forward.bat Execute forward model using starting parameter 

values 
To run MCMC in parallel, execute 01 to 04 in order. To run MCMC sequentially, the 
first two batch files do not need to be executed. 
01-runners-populate.bat Create two runner directories  
02-start-runners.bat Start the runners. In the batch file, set N to the number 

of runners. The batch file is distributed with N=2. 
03-RunMCMC-forward.bat Execute UCODE_2014 MCMC mode for parameter 

samples 
04-RunMCMC-prediction.bat Execute UCODE_2014 MCMC_prediction mode for 

prediction samples.  
  
05-RunMCMC-
forward&prediction.bat 

Execute UCODE_2014 MCMC and 
MCMC_prediction modes for parameter and 
prediction samples. If the runner directories created by 
01 and 02 above have been created and the computer 
is multicore, the run will be in parallel. 
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Table D- 5. Comments about selected files from the MCMC examples 
Selected Test Case 1 Files – in directory test-win/ chap5-test-MCMC/HO1/HOmodel_test1 
UCODE output files used as MCMC input files 
fn._paopt If flag ‘UseRegResult=yes’ in the MCMC_Controls input block, then 

the calibration results can be used to start MCMC from a multinormal 
distribution with _paopt as mean and _mv as covariance matrix. 

fn._mv 

fn._wt If flag ‘Use_wt=yes’ in the UCODE_Control_Data input block, then 
the weights in _wt will be used in the likelihood function calculation. 

MCMC main input files  
fn_MCMC-forward.in Used to run MCMC in forward mode generating parameter samples.  
fn_MCMC-pred.in Used to run MCMC in prediction mode generating prediction 

samples.  
MCMC main output files 
fn.#umcmc Output of MCMC run in forward mode generating parameter samples.  
fn.#umcmc_pred Output of MCMC run in prediction mode generating prediction 

samples.  
Other MCMC Output files 
fn._mcmc_par** Save parameter samples generated and the associated log likelihood 

function values from chain **, where ** is set to 01, 02, and so on. 
fn._mcmc_sim** Save simulated values corresponding to generated parameter samples 

from chain **. 
fn._mcmc_grr Gelman-Rubin statistic used to diagnose simulation convergence. 
fn._mcmc_restart Last generated samples and the associated log likelihood function 

values from this simulation of all chains to use to restart MCMC. 
fn._mcmc_pred** Save prediction values calculated from parameter samples of chain **. 
Selected Test Case 2 Files – in directory test-win/HOmodel_test2 
Other MCMC input files 
covmatrix.dat The covariance matrix is needed when using a multinormal prior 

distribution. The file name will be specified in MCMC_Prior_Groups 
input block. If none of the parameters has multinormal prior 
distribution, the covariance matrix is not needed. 

References 
Doherty, J., 2010, PEST, Model-independent parameter estimation—User manual (5th ed., with 

slight additions) and addendum: Brisbane, Australia, Watermark Numerical Computing. 
http://www.sspa.com/PEST/index.html 

Hill, M.C., Cooley, R.L., and Pollock, D.W., 1998, A controlled experiment in ground-water flow 
model calibration: Ground Water, vol. 36, no. 3, p.520-535. 

Fienen, M.N., D’Oria, Marco, Doherty, J.E., and Hunt, R.J., 2013, Approaches in highly 
parameterized inversion: bgaPEST, a Bayesian geostatistical approach implementation with 
PEST—Documentation and instructions: U.S. Geological Survey Techniques and Methods, book 
7, section C9, 86 p., available online at http://pubs.usgs.gov/tm/07/c09  

Lu, D., M. Ye, and M. C. Hill (2012), Analysis of regression confidence intervals and Bayesian 
credible intervals for uncertainty quantification, Water Resour. Res., 48, W09521, 
doi:10.1029/2011WR011289. 

Welter, D.E., Doherty, J.E., Hunt, R.J., Muffels, C.T., Tonkin, M.J., and Schreüder, W.A., 2012, 
Approaches in highly parameterized inversion: PEST++, a Parameter ESTimation code 
optimized for large environmental models. U.S. Geological Survey Techniques and Methods, 
book 7, section C5, 47 p. http://wi.water.usgs.gov/models/pestplusplus/  

http://www.sspa.com/PEST/index.html
http://pubs.usgs.gov/tm/07/c09
http://wi.water.usgs.gov/models/pestplusplus/
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Appendix E: Advanced Topics for Singular Value 
Decomposition (SVD) 

This appendix discusses three topics mentioned in Chapter 4. These include how the SVD 
identifiability (ID) statistic is related to the composite scaled sensitivity (CSS), the calculation of 
sensitivities relative to SVD parameters, and using CSS and PCC to determine which process-model 
parameters will have values that are unchanged when SVDupdate=Option2_css_pcc. 

Relating the SVD ID statistic and CSS 

This section includes two higher-level topics that require more difficult mathematics to describe. 
Most users will not require this level of detail so it is provided in an appendix. 

CSS can be related to the singular vectors of equation 5, as follows. Pre-multiply each side of 
equation 5 by its transpose. U contains scaled orthogonal vectors, so UTU=I, where I is the NP-
dimensional identity matrix. Thus, the following is derived: 

B(XTω X)B = DS2DT           (E-1) 

where X, B, V, and S are defined for equations 4 and 5. Multiplication by B and ω produces the 
same scaling used to obtain DSS in Hill and Tiedeman (2007, eq. 4.4). Using the rules of matrix 
multiplication, CSS (Hill and Tiedeman, 2007, eq. 4.6) is related to equation (E-1) as follows. 
Divide the jth diagonal term from the left side of equation 13 by ND and take the square root to 
produce the following expression for CSSj.  

CSSj = {(1/ND)[B(XTω X)B]jj}1/2    j=1,ND    (E-2a) 

Applying equation (13) yields: 

CSSj = {(1/ND)[B(XTω X)B]jj}1/2 = {(1/ND)[DS2DT]jj}1/2 j=1,ND   (E-2b) 

Using equations E-1 and E-2 and the definition of dj,k from equation 2, CSS can be calculated using 
singular values and vectors as: 

CSSj = {[s1
2(dj,1)2+s2

2 (dj,2)2 +… sNPI
2 (dj,NPI)2 +…sNP

2 (dj,NP)2 ]/ND}1/2   

  j=1,NP            (E-3) 

From Table 2, IDj is calculated using the first NPI terms as 

IDj = {[(dj,1)2+(dj,2)2 +… (dj,NPI)2]}1/2    j=1,NP       (E-4) 

Here the summation is listed in a way that clearly shows NPI terms of the singular vectors used to 
define the ID statistic.  
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Often both CSS and ID are presented as bar charts. Under what conditions would one expect the 
bars to be the same height such that the two graphs could be used interchangeably to identify 
important and unimportant process-model parameters?  

When NPI=NSVD, which is one alternative proposed by Doherty and Hunt (2009), the contribution 
to CSS from the terms related to unestimated (null space) SVD parameters tend to be small because 
the singular values associated with these vectors are small. Indeed, singular value sNSVD is often 5 to 
6 orders of magnitude smaller than s1, and subsequent values are even smaller. Thus, when 
NPI=NSVD, the latter terms in equation (15) (terms with the second subscript on d equal to 
NSVD+1 to NP) are generally minuscule. However, a bar chart of ID statistics can differ 
substantially from a bar chart of CSS because of the range in singular values within the estimated 
SVD parameters. 

The CSS values and the fractional contribution of each vector element to each CSS is provided by 
UCODE_2014 in the _sc_svd file.  

The ID statistics measure the representation of the process-model parameters in NPI of the SVD 
parameters with the NPI largest singular values. This is closely related to the parameter importance 
measured by a CSS/PCC analysis, but is not the same. In part this is because the ID statistic 
depends on the value of NPI considered. Often ID values calculated for values of NPI that are 
smaller than NSVD are similar to graphs of CSS. It is sometimes instructive to consider ID statistics 
for a range of NPI, which was also suggested by Doherty and Hunt (2010a). In UCODE_2014, ID 
statistics for NPI=NSVD and other values of NPI are output to the data-exchange file _svd-id. 
Graphs of ID statistics can be obtained using GW_Chart.  

In general, parameters with larger CSS values tend to be represented more in the estimated SVD 
parameters. Parameters with high correlation (absolute value of PCC close to 1.0) are represented in 
the estimated SVD parameters less than their sensitivities might indicate. 

The ID statistics can be plotted using bars that distinguish contributions shown in the summations of 
equations E-4; an example stacked graph for SVD is shown in Figure 8A. Figure 8A is stacked 
using the component values in equation E-4, as suggested by Doherty and Hunt (2009). Similar 
graphs for CSS constructed based on equation E-3 are shown in Hill (2010). 

Calculation of SVD sensitivities 

As noted in Chapter 3, SVD parameters need to be converted to process-model parameters when 
performing process model runs to calculate perturbation sensitivities of the SVD parameters. 
Sensitivities of the SVD parameters are needed in the parameter estimation process. In UCODE, the 
SVD parameter sensitivities are calculated by perturbation (forward, central, or backward 
perturbation) as illustrated using forward differences in equation 9.  The sensitivities are calculated 
as follows, where a is used for SVD parameters and b is used for process-model parameters. In 
general, when regression is conducted using SVD parameters, the ∆a vectors include all zeros 
except one term, while the ∆b vectors include as many non-zero terms as there are non-zero 
coefficients in equation 2.  

∆y’ = y’(a + ∆a) – y’(a) = y’(b + ∆b) – y’(b)     (E-5) 
∆a        (a + ∆a) – (a)        (b + ∆b) – (b) 
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where:  
a    value of an SVD parameter for which sensitivities are calculated; 

y’(a)  the value of a simulated equivalent to an observation, y, calculated using the SVD parameter 
values in vector a. To run the process model, the SVD parameters in a need to be 
converted to the process-model parameters identified as b using equation 8. 

a    a vector of SVD parameter values that are originally calculated using starting process-model 
parameters and equation 3, then updated by the parameter estimation process; 

b    a vector (can be thought of as a list) of process-model parameter values calculated using the 
SVD parameter values in a and equation 8; 

∆a  a vector of SVD parameter changes in which all values are zero except the value associated 
with the SVD parameter for which sensitivities are being calculated;  

∆b  a vector of process-model parameter changes consistent with the SVD parameter change in 
∆a. The number of non-zero elements in ∆b generally equals the number of non-zero 
coefficients in equation 2. 

y’(a + ∆a)   the value of y’ calculated using the process-model parameter values associated with a + 
∆a; 

∆y’  the change in y’ caused by the SVD parameter value changes in ∆a.  

For parameter estimation, the simulated equivalents represented by y’ can be observations, prior 
information, or regularization. For observations, values are simulated using the process model. For 
prior information and regularization, the changed process-model parameters are used in the prior 
information equations to obtain y’(b + ∆b). However, for prior information and regularization that 
involve linear expressions, the sensitivities can be calculated once using equation 2; that is, ATb=D. 
Each row of the process-model parameter sensitivity array X related to prior information and 
regularization generally has one element for each process-model parameter. These lines can be 
transformed to SVD parameter space as AT(xi

PM)T =(xi
SVD)T, where i identifies an item of prior 

information or regularization, superscript PM stands for process model, and superscript SVD stands 
for SVD model.  

UCODE_2014 Performance with SVDupdate=Option2_css_pcc 

Chapter 4 discussed the alternative of setting the values of NPnull process-model parameters instead 
of setting the values of NPnull SVD parameter values. This alternative is accessed using two of the 
three alternatives for the SVDupdate keyword in the UCODE_Control_Data input block. The 
advantage of this approach is that the NPnull process-model parameters that are least informed by 
the observations and prior information do not change in value, which makes it more obvious to the 
modeler and users of the model which process-model parameters are not important to model 
calibration. When using this approach, the user must determine which NPnull process-model 
parameter values to set. 

One option is to use the singular vectors to identify the NPnull process-model parameters. In one 
alternative, the NPnull process-model parameters with the smallest ID values when evaluated for 
NPI=NSVD would be set. Consider this option using results from Hill and Østerby (2003), which 
are shown in Figure E-1. In this problem, all six parameters except ANIV form an correlated group. 
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The correlation results because these five parameters can all be multiplied or divided by an arbitrary 
number and the same hydraulic heads are produced; for this problem all the observations are heads. 
The very small sixth singular value (4.3 × 10-6) and the relatively large values of the five elements 
in singular vector 6 that are not associated with parameter ANIV reflect the correlation. A necessary 
(though possibly not sufficient) requirement for obtaining a tractable regression problem is that one 
of the parameters in the set of 5 correlated parameters needs to be set.  

Consider choosing the parameter using ID. With the smallest ID value for NPI=5, the largest 
number of parameters that can be estimated based on the singular values and an SVDratio of less 
than 1×10-3. The ID graph is shown in Figure E-1b. The parameter chosen through this strategy 
would be K1. Inspection of the CSS values shows this is the most sensitive of the correlated 
parameters. Hill and Østerby (2003) suggest that omitting K1 would reduce the correlation the 
most. However, they also note that “The dominant consideration is rarely the ability to achieve the 
maximum reduction in correlation because even a small reduction often is sufficient to obtain 
unique parameter estimates.” Setting the value of the parameter for which the observations provide 
plentiful information, as measured by CSS, is not likely to be advantageous to model development. 
Alternatively, choosing one or more parameters with large PCC and small CSS is a way to allow 
parameters better informed by the observations to be estimated.  

The strategy used in UCODE_2014 is either to allow the user to define the order of set process-
model parameters with SVDset, as described in Chapter 4, or to use PCC and CSS to identify a set 
composed of selected correlated and insensitive parameters to retain their starting values. The logic 
followed by UCODE when using CSS and PCC is described in chapter 4. Here we show how the 
method would perform for the problem described in Figure E-1. 
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(a) 
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(b) 

 

Figure E- 1. Results from Hill and Osterby (2003, Tables 2, 5, and 10) for a problem with all but 
one of the six parameters being extremely correlated. (a) The singular values and 
vectors and CSS and PCC. (b) The ID statistic with NPI=5. 

Singular values
σ1 σ2 σ3 σ4 σ5 σ6

2.2 0.96 0.38 0.19 0.02 4.3E-06
Singlar vectors

v 1 v 2 v 3 v 4 v 5 v 6 CSS
K1 0.45 -0.15 0.017 -0.36 0.35 -0.72 43
KRB 0.42 0.26 0.76 0.43 -0.018 -0.0038 0.22
ANIV -0.22 -0.90 0.36 0.12 0.0008 2E-06 0.60
K2M 0.49 -0.22 -0.40 0.40 -0.64 -0.20 12
RCH1 -0.44 0.13 -0.16 0.65 0.31 -0.48 29
RCH2 -0.44 0.20 0.32 -0.29 -0.61 -0.45 27

PCC
K1 KRB ANIV K2M RCH1 RCH2

K1 1.00 -0.31 1.00 1.00 1.00
KRB -0.31 1.00 1.00 1.00
ANIV -0.31 -0.31 -0.31
K2M 1.00 1.00
RCH1 1.00
RCH2
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Using the method described in chapter 4 for when SVDupdate=Option2_css_pcc, with NSVD=5, 
NPnull = 1, yields the following NPnull parameter. Default values are used for the other keywords; 
that is, SVDupdate_CSSrat=0.02, SVDupdate_CSSabs=1.0, and SVDupdate_CSSabs=1.00, and 
SVDupdate_PCC=0.97. 

Step 1: Set parameter KRB because of the small CSS ratio. This provides the one parameter needed 
(NPnull=1) so steps 2 through 4 are not needed. 

KRB is one of the correlated parameters, so selecting KRB also satisfies the need to set one of the 
correlated parameters. If desired, this could be assured by proceeding directly to step 3 by setting 
SVDupdate_CSSrat = SVDupdate_CSSabs = 0.0. 

The results of Hill and Østerby (2003) suggest that PCC is susceptible to numerical problems that 
can yield a smaller PCC value than would be consistent with actual parameter dependence. This 
means that the method for using PCC to detect parameter dependence is approximate. In some 
circumstances values less than 0.97 are needed to capture dependent parameters. This is why the 
SVDupdate_PCC keyword of the Parameter_Data input block allows values other than the default 
value of 0.97 to be specified. Hill and Østerby (2003) suggest that the problems with calculating 
PCC are more serious for parameters with small sensitivities. Small sensitivity parameters are more 
common as the number of parameters increases. The method descrived in this work tends to work 
better for models parameterized with relatively few parameters. 

References 
Doherty, J., R.J. Hunt, 2009, Two statistics for evaluating parameter identifiability and error 

reduction. Journal of Hydrology 366, 119–127. 
Doherty, J.E., and Hunt, R.J., 2010, Approaches to highly parameterized inversion—A guide to 

using PEST for groundwater-model calibration: U.S. Geological Survey Scientific 
Investigations Report 2010–5169, 59 p. 

Hill, M.C., 2010, Comment on ‘‘Two statistics for evaluating parameter identifiability and error 
reduction” by John Doherty and Randall J. Hunt: Journal of Hydrology, 380, p. 481-488. 

Hill, M.C. and Østerby, Ole, 2003, Determining extreme parameter correlation in ground-water 
models: Ground Water, v. 41, No. 4, p. 420-430. 

.
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Appendix F: Calculations and Data-Exchange Files Behind the 
Stacked CSS Graphs 

Division of CSS into observation components as shown in Figure 8a uses the _sc and the _scgrp 
data-exchange files produced by UCODE_2014. The _sc and _scgrp files used to produce Figure 8a 
are shown in Figures F-1 and F-2. The CSS values provided in the _sc file are referred to in the 
equations below as CSSj, where subscript j identifies a parameter. 

The _scgrp file provides CSS value for observations groups that are appropriate for graphs of CSS 
for each group individually, as shown by Barlebo et al. (1998). Here these values are labeled 
CSSgroupj,k, where j identifies the parameter and k identifies and observation group. The values in 
the _scgrp files are sometimes larger than CSSj in the _sc file because the equation for CSS (Hill 
and Tiedeman, 2007, p. 50) has a division by the number of observations prior to taking the square 
root. Here, the number of observations in each group is labeled ngroupk. In this problem the total 
number of observations is 119; ngroupk ranges between 5 and 50. 

The stacking shown in Figure 8a is a useful way to depict observation contribution. For this 
stacking, the contributions for each parameter j and observation group k, CSSstackj,k, are calculated 
using values of CSSgroupj,k and ngroup,k from _scgrp and values of CSSall from _sc as follows. 

CSSstackj,k = (CSSgroupj,k × ngroupk
1/2) × 

                                    [CSSj/{Σk=1,#groups(CSSgroupj,k × ngroup k
1/2)}]      (F-1) 

Where #groups is the number of observations groups. The first term to the right of the equals sign 
removes the division by the number observations in each group. The second term normalizes the 
values so they add up to CSSj. 

 
“PARAMETER NAME” “COMPOSITE SCALED SENSITIVITY” 
 T110              0.230824007826494             
 T70                4.74650673911119             
 T30                4.25309941280302             
 T16                9.70248643868573             
 T08                2.06545225733053             
 P110              0.309197545609988E-03         
 P70                3.63133864700400             
 P30                2.39422699593356             
 P16               0.582305009802810             
 P08               0.199050530484271             

Figure F- 1. The first two columns of the _sc file. These composite scales sensitivity values are 
labeled CSSj in equation F-1. 
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“GROUP NAME” headobs       “NUMBER IN GROUP”         15 
 “PARAMETER NAME” “COMPOSITE SCALED SENSITIVITY”  
 T110              0.592036340956502E-01          
 T70                10.0112975190524              
 T30                6.64655649861694              
 T16                10.9297315690082              
 T08                1.51016342455099              
 P110              0.266757352931017E-04          
 P70               0.229418400113439E-04          
 P30               0.345196359624527E-04          
 P16               0.295940898430284E-04          
 P08               0.490762236233461E-04           
 “GROUP NAME” xyzobs        “NUMBER IN GROUP”          5 
 “PARAMETER NAME” “COMPOSITE SCALED SENSITIVITY”  
 T110              0.300805640119536E-03          
 T70               0.459560676120824E-02          
 T30               0.243780813861019              
 T16               0.430372347869675E-02          
 T08               0.198453642644289              
 P110               0.00000000000000              
 P70                0.00000000000000              
 P30               0.417869731069874E-02          
 P16               0.237364406042714E-02          
 P08               0.863913633388704E-03          
“GROUP NAME” timobs        “NUMBER IN GROUP”         14 
 “PARAMETER NAME” “COMPOSITE SCALED SENSITIVITY”  
 T110              0.318202456702838              
 T70                2.08428710689089              
 T30                2.20477929481704              
 T16                21.7727359706001              
 T08                2.66746312208907              
 P110              0.671362354129866E-03          
 P70                1.24288556715714              
 P30               0.643631632017602              
 P16               0.894225188054247              
 P08               0.544099854517366              
“GROUP NAME” cncobs        “NUMBER IN GROUP”         50 
 “PARAMETER NAME” “COMPOSITE SCALED SENSITIVITY”  
 T110              0.294529251759959              
 T70                3.34209348448956              
 T30                4.11393254728170              
 T16                5.21248438887020              
 T08                2.08944306784850              
 P110              0.286352323218257E-03          
 P70                4.73613705689189              
 P30                3.10537268863596              
 P16               0.435235541748668              
 P08               0.590038134901739E-01          

Figure F- 2. Selected columns of the _scgrp data-exchange file from the test problem presented 
in Chapter 4. These composite scaled sensitivity values are labeled CSSgroup,k in 
equation 18, where k ranges from 1 to #groups. Here, #groups equals 5. 
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“GROUP NAME” typobs        “NUMBER IN GROUP”         25 
 “PARAMETER NAME” “COMPOSITE SCALED SENSITIVITY”  
 T110               0.00000000000000              
 T70                3.64969204876881              
 T30                3.97220610626605              
 T16                4.35410061302181              
 T08                2.12315489219167              
 P110               0.00000000000000              
 P70                3.43024900374141              
 P30                2.33971339610824              
 P16               0.807295631666080              
 P08                0.00000000000000              

Figure F- 2 – continued: Selected columns of the _scgrp data-exchange file from the test 
problem presented in Chapter 4. These composite scaled sensitivity values are labeled 
CSSgroup,k in equation 18, where k ranges from 1 to #groups. Here, #groups equals 5. 

Computational Details 

Equation F-1 can be derived from the eqution for CSS (eq. 4.6 of Hill and Tiedeman, 2007) as 
follows. First, consider the following equation for the square of CSS.: 

CSSj
2= 1/N{[Σi=1,N1 (dssij)2|p ]+ [Σi=1,N2 (dssij)2|p ]+ … 

+[Σi=1,Nn (dssij)2|p]}     j=1,NP        (F-2) 

To calculate contributions to the CSS values, instead of CSS2, two options are possible.  

1. Calculate proportional contributions as defined for CSS2 (eq. F-2) and use those proportions 
to define the stacking for Figures such as that shown in Figure 8a.  

2. Take the square root of each term in equation F-2 and use them to calculate the proportions 
used to define the stacking.  

Because the final values are often less than 1.0, the latter allows observations groups with small 
contributions to decline in relative value more slowly, which means that in more circumstances they 
remain visible when plotted as stacked bar charts. For this reason, here the second option is used to 
construct Figure 8a. For this stacking, the contributions for each parameter j and group k, 
CSSstackj,k, are calculated using values of CSSgroupj,k and ngroup,k from _scgrp and values of 
CSSall from _sc as shown in equation F-1. 

Reference 
Hill, M.C. and Tiedeman, C.R., 2007, Effective groundwater model calibration, with analysis of 

sensitivities, predictions, and uncertainty: Wiley and Sons, New York, New York, 455 p. 



Appendix G. Comparison of UCODE_2014 with UCODE_2005, PEST, and OSTRICH 

 153 

Appendix G: Comparison of UCODE_2014 with UCODE_2005, 
PEST, and OSTRICH 

The aspects of UCODE_2014 that differ from UCODE_2005 are explained in this appendix. 
Differences between the implementation of SVD in UCODE_2014 relative to its implementation in 
PEST (Doherty, 2010) are also noted. UCODE and PEST are largely gradient based methods while 
OSTRICH uses heuristic methods like genetic algorithms. 

Table G- 1. Comparison of UCODE_2014 and UCODE_2005 as described in Poeter et al. 
(2005). 

[New UCODE_2014 input blocks are described in Chapters of this report. All input blocks are 
included in the abbreviated input instructions of Appendix F of this report.] 

Capabilities that are new in UCODE_2014 relative to UCODE_2005 

_For_Prediction input blocks are included to support parameters required only in the simulation of 
predictions 

Enhanced support of weighting so that coefficients of variation can be used to calculate variances using 
simulated values. 

SVD parameter transformation to assist in estimating parameters 

Markov Chain Monte Carlo capability using the DREAM algorithm that supports identification of 
multiple minima. 
SVD capability in UCODE_2014 relative to PEST 

Set parameter values. UCODE_2014 allows the user to define process-based parameters that are not 
allowed to change during the SVD optimization using SVDupdate=Option2_SVDset or Option2_css_pcc. 
Normally in SVD, the values of SVD parameters are set, and all process-model parameter values change. 
The process-model parameters defined to be set with this capability of UCODE_2014 are insensitive 
parameters and selected highly correlated parameters. 

Highly parameterized problems (in general, NP>NOBS). PEST allows NP to be greater than NOBS, and 
thus simulate highly parameterized problems. 

Determining the number of estimated SVD parameters (NS). PEST allows the user to define the sum 
of squared weighted residuals for observations and determine NS based on the specified value.  

Comparison of UCODE_2014 and OSTRICH (Matott, 2011) 

Optimization algorithm. Ostrich uses heuristic approaches such as genetic algorithms. 

Management Optimization. OSTRICH supports management optimization of variables involved in 
managing simulated systems. 

 



Appendix G. Comparison of UCODE_2014 with UCODE_2005, PEST, and OSTRICH 

 154 

Table G- 1. Comparison of UCODE_2005 and PEST as of February, 2010 
Capability UCODE_2005 PEST 

Observations   
Weighting Input as statistics (standard deviation, 

coefficient of variation, or variance) or 
weights. For coefficient of variation, 
convert to standard deviation using 

observed or simulated values. 

Input as weights. What PEST calls 
weights is the square root of what 

UCODE calls weights. 

Non-detect 
observations 
(Concentration, 
head below 
land surface) 

Nondetect keyword in Observation 
input blocks. 

-- 

Reading values PEST methods plus a 
simple standardfile option to read data 

in columns. 

PEST methods. 

Parameters   
Pilot points Limited support using MODFLOW 

additive parameter capability. 
Can use PEST utilities but 

optimization algorithms not as 
effective for large number of 

parameters. 

Thorough support with MODFLOW 
using PEST utilities. 

Optimization methods customized for 
large number (thousands and more) of 

parameters. 

SVD To estimate parameters. To estimate parameters 
Number of parameters can be greater 

than number of observations. 
Other 
interpolation 

As supported by model 
(MODFLOW supports additive parameters so any linear interpolation) 

Sensitivity Calculation 
Perturbation 
sensitivities 

Forward, backward, and central 
differences. Perturbation calculated as 
defined fraction of parameter value. 

As for UCODE_2014 and can define 
perturbation as an absolute quantity and 
change to central difference during run. 

Model 
calculated 
sensitivities 

Read from file produced by the model. 

Sensitivity Analysis (SA) 
Observation-
Parameter SA1 

CSS/PCC,  
Stacked CSS 
CSS-SVD, ID 

OPA3, 
Leverage, Cook’s D, DFBETAS 

Composite sensitivity2,  
-- 

SVD Parameter ID4 
Relative error statistic, 

Leverage, Cook’s D, DFBETAS 
Parameter-
Prediction SA1 

PSS, 
PPR3 

-- 
Predvar2-4/Predunc2-4 

   
Observation-
Prediction SA1 

OPR3 Predvar1,5/Predunc1,5 

Regression   
Marquardt 
parameter 

Added after matrix is scaled Added without scaling matrix 

Line search for 
minima 

-- Performed to calculate nonlinear 
confidence intervals. 
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Capability UCODE_2005 PEST 
Model 
Discrimination 
Criteria 

SOSWR, CEV, standard error, AIC, AICc, BIC, KIC (same for both codes) 

Uncertainty Analysis 
Linear intervals 
on parameters 

Individual and simultaneous 
Confidence 

Individual 
Confidence 

Linear intervals 
on predictions 

Individual and simultaneous 
Confidence and Prediction 

Individual 
Confidence 

Nonlinear 
intervals on 
parameters 

Individual and simultaneous 
Confidence and Prediction 

Individual 
Confidence 

Nonlinear 
intervals on 
predictions 

Individual and simultaneous 
Confidence and Prediction 

Individual 
Confidence5 

Multi-Model 
Analysis: to 
account for 
conceptual 
model 
uncertainty 

MMA (Poeter and Hill, 2007): 
calculated model probabilities and 

model-averaged parameter estimates, 
predictions, and confidence and 

prediction intervals. Allows common 
model discrimination criteria and new 

ideas to be considered. 

-- 

1 SA, sensitivity analysis. Similar statistics for each model are placed on the same line. 
2 Cannot be used directly to compare the relative sensitivity of different parameters. CSS=The 
PEST composite sensitivity  the parameter value  the square root of the number of observations. 
3 OPA, PPR, and OPR are calculated by the program OPR-PPR (Tonkin et al., 2007), for which 
most input files are produced by running UCODE_2014. 
4 SVD parameter identifiability statistic. Measures how the estimated SVD parameters are 
constituted from the process-model parameters.  
5 In the Prediction Analyzer 
 

References 
Doherty, J., 2010, PEST, Model-independent parameter estimation—User manual (5th ed., with 

slight additions) and addendum: Brisbane, Australia, Watermark Numerical Computing. 
http://www.sspa.com/PEST/index.html 

Matott, L. S., 2010, OSTRICH: An Optimization Software Tool. Accessed 12/27/2010 at 
http://www.civil.uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html  

Poeter, E.P., Hill, M.C., and Banta, E.B., 2005, UCODE_2005 and six other computer codes for 
universal sensitivity analysis, calibration, and uncertainty evaluation: U.S. Geological Survey 
Techniques and Methods, book 6, sec. A, chap. 11, 283 p. 
http://igwmc.mines.edu/freeware/ucode/  

http://www.sspa.com/PEST/index.html
http://www.civil.uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html
http://igwmc.mines.edu/freeware/ucode/
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Appendix H: Useful Mathematical and Statistical Web Sites 
While this document, Hill and Tiedeman (2007), Aster et al. (2013) and other works referenced here 
form a useful basis for understanding methods discussed, some readers will benefit from more 
fundamental treatments. Here are a few web sites that may be useful. The reader is also encouraged 
to search the web for additional sites. 

Matrix Index Notations 

The following web sites are useful for readers not familiar with the matrix notation used in Chapter 
4. 

http://www.purplemath.com/modules/matrices2.htm 

http://en.wikipedia.org/wiki/Matrix_multiplication 

Linear and Nonlinear Regression 

http://en.wikipedia.org/wiki/Regression_analysis 

http://www.purplemath.com/modules/matrices2.htm
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Regression_analysis
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Appendix I: Running UCODE_2014 and Abbreviated Input 
Instructions 

Input Block List 

In the UCODE main input file, the input blocks need to appear in a certain order. Table I-1 
displays the needed order. The input blocks printed in italics are described in this documentation. 
New keywords for some other input blocks also are described in this documentation. For all 
other input instructions, please see the UCODE_2005 documentation. 

Running UCODE_2014 and Auxiliary Codes 
The Run Command for UCODE_2014 needs to be executed from the directory containing the 
UCODE_2014 input files. The process-model input, output, and batch files can be in one or more 
separate directories. The process model(s) need to execute completely from one batch file 
without human intervention. The batch file can in turn run other batch files, and in this way there 
can be multiple process models. 

The UCODE_2014 run command is of the form: 

path:\UCODE_2014     input-file      fn     [fn2] 

where: 
path:\    the relative or absolute path to the UCODE_2014.exe on your computer 

(Alternatively you could specify this in your system path variable) . 

input-file    the name of the main UCODE_2014 input file (These files have extension ‘in’ in the 
examples distributed; see appendices C and D. An abbreviated description of input 
for this file is provided in this appendix). 

fn   filename prefix for UCODE_2014 output files Spaces are not allowed in fn, even on 
operating systems that allow spaces in filenames.  

fn2   an optional filename prefix for UCODE_2014 prediction mode files. Spaces are not 
allowed in fn2, even on operating systems that allow spaces in filenames. If fn2 is 
not present then this root is set to fn, thus making UCODE_2014 back compatible 
with previous versions of UCODE. Output files that use fn2 are produced by three 
modes of UCODE_2014 and three auxiliary codes (LINEAR_UNDERTAINTY, 
CORFAC, and MODEL_LINEARITY_ADV). The associated filename suffices are 
as follows:  

from a UCODE_2014 prediction run: dmp, mvp, p, prp, pv, sppp, sppr, spsp, spsr, 
spu, suprip, wtprip, gmp, paoptp, #upred 

from a LINEAR_UNCERTAINTY run: linp, #linunc 

from a CORFAC run: cfsu, cfconf, cfpred, b3conf, b3pred, b1advconf, b1advpred, 
#corfac_conf, #corfac_pred 
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Table I- 1. Blocklabels of the main input file for UCODE_2005, including blocklabels for the 
new input blocks described in this report. Modified from Poeter et al. (2005, Table 
4, p. 43). 

[Bold type and grey shading: required input blocks (except as described in footnote 2); other 
input blocks are optional. Italic type: new input blocks described in this document.] 

Purpose Blocklabel 
Default 
column 
order1 

Define UCODE operation 

Options No 
Merge_Files No 
UCODE_CONTROL_DATA No 
MCMC_Controls No 
Reg_GN_Controls No 
Reg_GN_NonLinInt No 
Model_Command_Lines No 

Define parameters 

Parameter_Groups No 
Parameter_Groups_For_Prediction No 
Parameter_Data2 Yes 
Parameter_Data_For_Prediction Yes 
Parameter_Values Yes 
Parameter_Values_For_Prediction Yes 
Derived_Parameters Yes 
Derived_Parameters_For_Prediction Yes 
MCMC_Prior_Groups Yes 
MCMC_Prior_PDF2 Yes 

Define observations  
Observation_Groups No 
Observation_Data3 Yes 
Derived_Observations Yes 

Define predictions 
Prediction_Groups No 
Prediction _Data3 Yes 
Derived_ Predictions Yes 

Define prior information 

Prior_Information_Groups No 
Prior_Information_Groups_For_Prediction No 
Linear_Prior_Information Yes 
Linear_Prior_Information_For_Prediction Yes 

Define variance-covariance 
matrices to weight groups of 
observations or prior infor-
mation with correlated errors. 

Matrix_Files No 

Interact with process-model 
input and output files. 

Model_Input_Files Yes 
Model_Output_Files Yes 

Run process model(s) using 
multiple processors 

Parallel_Control No 
Parallel_Runners Yes 

1 ‘Yes’: the input block has a default column order. With blockformat TABLE, these blocks can contain 
data without column labels for selected keywords if the data are in default order. Keywords defined in the 
JUPITER API are supported. Keywords added for UCODE always need column labels.  
2 The Parameter_Data input block is needed when MCMC=no by designation or default in the 
UCODE_Control_Data input block. The MCMC_Prior_PDF input block is needed when MCMC=yes.  
3 Often either the Observation_Data or the Prediction_Data input block is required.  
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from a UCODE_2014 model linearity advanced run: #umodlinadv_conf, 
#umodlinadv_pred 

from a MODEL_LINEARITY_ADV run: #modlinadv, #modlinadv_conf, 
#modlinadv_pred 

from a UCODE_2014 non-linear uncertainty run:  #unonlinint_conf, 
#unonlinint_pred, intconf, intpred, intconf_wr, intpred_wr, intconf_sum, 
intpred_sum, intconf_par, intpred_par, DATE-intconf, DATE-intpred 
 

Instructions for running most auxiliary codes have not changed and are described in Chapter 4 of 
the UCODE_2005 documentation (Poeter et al., 2005). The one change is that a new optional 
argument has been added to the command line of auxiliary code RESIDUAL_ANALYSIS to 
allow analysis of model fit from the beginning of an SVD run. The new 
RESIDUAL_ANALYSIS run command is of the form:  
 
path:\ RESIDUAL_ANALYSIS     fn    [presvd] 

where: 
path:\    the relative or absolute path to RESIDUAL_ANALYSIS.exe on your computer 

(Alternatively you could specify this in your system path variable). 
fn    filename prefix used for the UCODE_2014 run (Spaces are not allowed in fn, even 

on operating systems that allow spaces in filenames).  
 
presdv   is literally the inclusion of the letters “presvd”. If this is included on the command 

line, RESIDUAL_ANALYSIS will use input files with filename suffices ending in 
“_presvd”. RESIDUAL_ANALYSIS output files also will end with “_presvd”. 

Abbreviated Input Instructions 

The abbreviated input instructions listed here are intended for quick reference by experienced 
users. Complete input instructions are presented in Chapters 6 through 13 and 17 of Poeter et al. 
(2005) and in this UCODE_2014 documentation. The input blocks are presented here in the 
order they need to appear in the UCODE_2014 main input file. If listed as optional, the input 
block can be omitted, but if present needs to be in the order shown. Most input blocks are 
documented in Poeter et al. (2005) and the relevant chapter number of that report is preceded by 
“UCODE_2005”. For input blocks from UCODE_2005, keywords for which performance is 
different in UCODE_2014 are presented shaded with gray. 

The Graphical User Interface (GUI) ModelMate, can be used to create and manage UCODE 
input and model runs.  ModelMate can be obtained from the USGS software distribution site:  
http://water.usgs.gov/software/ModelMate/, and is discussed briefly in Chapter 5 of this 
UCODE_2014 report. ModelMate can be used with the ModelMuse GUI to create seamless 
support for MODFLOW2005. 

When the options “yes” and “no” are listed below, “true” and “false” can be used instead. 

As always in UCODE, keywords are not case sensitive.  

http://water.usgs.gov/software/ModelMate/
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________________________________________________________________________ 

Options Input Block (optional) UCODE_2005 Chapter 6 
Verbose  - Controls printing to the UCODE_2005 main output file.  

Derivatives_Interface - Filename or path of file defining how to read derivatives. 

PathToMergedFile - Filename or path of merged file. If the file exists, it is replaced.  

________________________________________________________________________ 

Merge_Files Input Block (Optional) UCODE_2005 Chapter 6 
PathToFile  - Path of a file.  

SkipLines  - Lines to skip at the top before file is appended. Default=0.  

________________________________________________________________________ 

UCODE_Control_Data Input Block (optional) UCODE_2005 Chapter 6, 
except as noted 
ModelName  - Identifies the model. Up to 12 characters. Default=generic.  

ModelLengthUnits - Defines the LENGTH units. Up to 12 characters. Default=NA. 

ModelMassUnits - Defines the MASS units. Up to 12 characters. Default=NA. 

ModelTimeUnits - Defines the TIME units. Up to 12 characters. Default=NA. 

For the following seven variables, see Table 3 of Poeter et al. (2005) for modes produced by 
“yes”. 

Sensitivities  - yes: calculate sensitivities. Default is no. 

Optimize  - yes: estimate parameters. Default is no.  

Linearity  - yes: do the calculations and produce file fn._b2. Default=no.  

Prediction  - yes: determine predictions and their sensitivities. Default=no.  

LinearityAdv  - conf, pred, or no. Default=no. 

NonlinearIntervals  - yes: calculate nonlinear confidence intervals. Default=no. 

SOSsurface  - yes or file: calculate objective-function values. Default=no. 

 

SOSfile  - file used when SOSsurface=file. 

StdErrOne  - yes: calculate statistics with s2 replaced by 1.0. Default=no. 

EigenValues  - yes: calculate eigenvalues and eigenvectors of the parameter variance-
covariance matrix. Default=no.   
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Three keywords control printing of tables of observations, simulated values, and residuals to the 
main output file.  

StartRes  - For the starting parameter values. Default=yes. 

IntermedRes  - For parameter-estimation iterations. Default=no. 

FinalRes  - For the final parameter values. Default=yes. 

Three keywords control printing of sensitivity tables to the main output file.  

StartSens  - For the starting parameter values. Default=dss. 

IntermedSens  - For parameter-estimation iterations. Default=none. 

FinalSens  - For the final parameter values. Default=dss. 

DataExchange - yes: generate the data-exchange files. Default=yes. Now always set to 
yes. A designation of no is ignored. 

CreateInitFiles - yes: generate only the _init data-exchange files. Default=no. 

The following keywords are added for UCODE_2014 
Reactivate  - final, starting, or no. Default=final. Reactivate governs performance of 

UCODE when the regression converges, or the regression fails to 
converge and stats_on_nonconverge=yes. The original UCODE_2005 
functionality is achieved with Reactivate=no. 

Singularvalues - yes, no. Default=no. Controls printing of the singular values and 
singularvectors of the matrix XTω½ to the fn.#uout file. The SVD data-
exchange files are always printed. 

SVD   - yes, no. Yes, use SVD transformed parameters in the regression. 
Default=no. 

 SVDphase                  Options: new, continue. Default=new 
new: begin with a new UCODE run.  
continue: continue from a previous UCODE run. 

SVDnumber              - number of svd parameters to use, but if SVDratio is specified then this is 
ignored. Default is as shown for SVDratio. 

 SVDratio                   - determines SVDnumber as the number of singular values with a ratio to 
largest singular value greater than the value of SVDratio. Common values 
are between 1x10-5 and 1x10-6. Default=1x10-6. 

 SVDupdate                - svdall, option2_svdset, option2_css_pcc. Svdall: all process-model 
parameters are updated. Default=svdall. 

Use_wt  Use observation weighting read from the _wt file from a previous 
regression. Default=no. 

MCMC  - yes, no. Yes, conduct a Markov-Chain Monte Carlo simulation. 
Default=no. 
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MCMC_Prediction - yes, no. Yes, calculate predictions using the parameter values produced 
in a previous UCODE run with MCMC=yes. Default=no. 

Reg_GN_Controls Input Block (optional) UCODE_2005 Chapter 6, except as 
noted 

Keywords that control when parameter-estimation iterations stop.  
TolPar  - Tolerance based on parameter values. Default=0.01. 

TolSOSC  - Tolerance based on model fit. Default=0.0. 

MaxIter  - Maximum number of parameter-estimation iterations. Default=5. 

Keywords that restrict how much parameter values can change in one parameter-estimation 
iteration. 

MaxChange  - Maximum fractional amount parameter values are allowed to change 
between parameter-estimation iterations. Default=2.0.  

MaxChangeRealm - Indicates whether MaxChange applies in native or regression space. 
Default=Native.  

Keywords that control the regression when SVD=yes in the UCODE_Control_Data input block. 

SVDperturbamt - For all svd parameters, perturbation used to calculate sensitivities equals 
SVDperturbamt times the current parameter value. Default=0.01 

SVDmaxchange - The maximum fractional amount any SVD parameter can change in any 
parameter-estimation iteration. Default=2.0. 

SVDtolpar  - Regression converges when all estimated SVD parameters change by 
less than SVDtolpar times the current parameter value. Default=0.01 

Keywords used to calculate the Marquardt parameter 

MqrtDirection - Angle (in degrees) between down-gradient direction on the sum-of-
squared-residuals surface and the parameter update vector. Default=85.4o. 

MqrtFactor  - See equation 8 for the Marquardt parameter. Default=1.5. 

MqrtIncrement - See equation 8 for the Marquardt parameter. Default=0.001. 

Keywords that control quasi-Newton updating  

QuasiNewton  - yes, no. Yes: use quasi-Newton updating as indicated by the criteria 
below. Default=no. 

If either of the following two criteria is met for a parameter-estimation iteration, Quasi-
Newton updating is used for that and all subsequent iterations. 

QNiter  - Number of iterations executed before including the Quasi-Newton 
enhancement. Default=5.  
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QNsosr  - Fractional change in the sum-of-squared weighted residuals over two 
parameter iterations below which Quasi-Newton matrix enhancement is 
employed. Default=0.01. 

Keywords that control omission of observations for regression based on values defined by the 
process model. 

OmitDefault  - The number of values to read from user-created file fn.omit. Default=0.  

OmitWeight  - The weight used for omitted observations. Default = 1E-70 

Keyword that controls printing of final statistics. 

Stats_On_Nonconverge - yes: calculate final sensitivities and calculate and print statistics when 
parameter estimation does not converge in the maximum number of 
iterations. Default=yes. 

Keywords that control dynamic omission of insensitive parameters from regression. 

OmitInsensitive  - yes: omit parameter j from the regression if its composite scaled 
sensitivity (CSSj) satisfies CSSj< (MinimumSensRatio × CSSmax).  
Default=no. 

MinimumSensRatio – Used as described for OmitInsensitive. Default=0.005.  

ReincludeSensRatio – If ReincludeSensRatio>0.0 and CSSj > ( ReincludeSensRatio × 
CSSmax), reinclude parameter j. Default=0.02. 

 
Keywords that control weights for observations with coefficients of variation for which 
simulated values can be used to calculate the weights. 

TolParWtOS   – Controls the parameter-change threshold for using observed or simulated 
values to calculate weights on observations by controlling calculation of A 
and B in Figure 3. Default=10.  

TolParWtOSRenew - Determines what happens after the first time the maximum calculated 
parameter change is less than criterion B of Figure 3. Default=False. 

Keywords that control the trust-region modification of Gauss-Newton regression.  

TrustRegion  - No, do not use the trustregion approach. Dogleg: use the double-dogleg 
modification. Hookstep: use the hookstep modification. Default=no. 

MaxStep  - Maximum allowable step size used in the trust-region method. The 
default is a function of the sensitivities and the parameter values, and is 
printed in the UCODE_2005 main output file.  

ConsecMax  - Maximum number of times that MaxStep is used consecutively before 
execution stops. Default=5. 

Scaling  - Yes, no. Yes, scaling is used when calculating the parameter change 
vector. Default = Yes 

________________________________________________________________________ 
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Reg_GN_NonLinInt Input Block (optional) UCODE_2005 Chapter 17 
ConfidenceOrPrediction – confidence or prediction interval. Default=confidence. 

IndividualOrSimultaneous – individual or simultaneous interval. Default=individual.  

WhichLimits   - Lower, Upper or Both. Default=Both.  

TolIntP  - Tolerance based on parameter values. Default=0.001. 

TolIntS  - Tolerance based on model fit. Default=0.1×TolIntP. 
TolIntY  - Tolerance based on change in the value of the computed interval limit. 

Default=0.001.  

CorrectionFactors  - yes, no. Yes: Use correction factors. Default=no. 

The following keyword is used only if CorrectionFactors=yes. 

AlternateStartValues – yes, no. Yes: Use starting parameter values from Parameter_Values 
input block. Default=no, which means use values in fn._paopt.  

________________________________________________________________________ 

Model_Command_Lines Input Block (required) UCODE_2005 Chapter 6 
Command  - Operating system command that executes the process model(s).  

Purpose  - The type of process model run performed. Default=forward.  

CommandID  - A name for the command.  

________________________________________________________________________ 

Parameter Definition 

Parameter_Groups Input Block (optional) UCODE_2005 Chapter 7 
GroupName   - The name of the group (up to 12 characters; not case sensitive).  

Default=ParamDefault 

Other keywords  - Any keyword from the Parameter_Data input block.  

________________________________________________________________________ 

Parameter_Groups_For_Prediction (optional) This report Chapter 2 

The keywords are the same as for the Parameter_Groups input block.  

________________________________________________________________________ 

Parameter_Data Input Block (required) UCODE_2005 Chapter 7 
ParamName  - Parameter name (up to 12 characters; not case sensitive)  
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GroupName  - Group name (up to 12 characters; not case sensitive). 
Default=ParamDefault.  

StartValue  - Starting parameter value. Default=+(A huge real number). 

LowerValue  - Smallest reasonable value for this parameter. Default = -(A huge real 
number). 

UpperValue  - Largest reasonable value for this parameter. Default = +(A huge real 
number). 

Constrain  - yes, no. Yes: constrain the parameter value. Default=no. 

UpperConstraint - Upper limit on the parameter value. 

LowerConstraint - Lower limit on the parameter value. 

Adjustable  - yes, no. Yes: this parameter value can be changed for the purpose 
defined in the UCODE_CONTROL_DATA input block. Default=no. 

PerturbAmt  - Fractional amount of parameter value to perturb to calculate sensitivities 
for this parameter. Default=0.01. 

Transform  - yes, no. Yes: log-transform the parameter for the regression. Default=no. 

TolPar    - Replaces, for this parameter, the value of TolPar from the 
Reg_GN_Controls input block or the default of 0.01. 

MaxChange  - Maximum fractional parameter change allowed between parameter 
iterations. Default=2.0.  

SenMethod - How sensitivities are obtained. -1=read as log transformed, 0=read as 
native, 1=forward perturbation, 2=central perturbation. Default=1. 

ScalePval  - A positive number used to scale sensitivities if the parameter value gets 
too small. Default=StartValue/100.  

SOSIncrement - The number of values to be considered when SOSsurface=yes in the 
UCODE_CONTROL_DATA input block. Default=5.  

NonLinearInterval – yes, no. Yes: calculate nonlinear intervals for this parameter when 
NonlinearIntervals=yes in the UCODE_CONTROL_DATA block. 
Default=no. 

________________________________________________________________________ 

Parameter_Data_For_Prediction (optional) This report Chapter 2 

The keywords are the same as for the Parameter_Data input block. 

Parameter_Values Input Block (optional) UCODE_2005 Chapter 7 

ParamName  - The name of the parameter for which a value is specified. 

StartValue   - The specified parameter value.  
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Derived_Parameters Input Block (optional) UCODE_2005 Chapter 7 
DerParName  - Name of derived parameter (up to 12 characters; not case sensitive). 

DerParEqn  - An equation without an “equal” sign (that is, just the right-hand side of 
the equation) by which the derived parameter is calculated, generally 
using defined parameters.  

________________________________________________________________________ 

Derived_Parameters_For_Prediction (optional) This report Chapter 2 

The keywords are the same as for the Derived Parameters input block.  

________________________________________________________________________ 

Observations (omit/ignored for prediction mode) UCODE_2005 Chapter 8 

Observation_Groups Input Block (optional) 
GroupName  - Name for a group of observations (up to 12 characters; not case 

sensitive). Default=DefaultObs. 

UseFlag  - yes, no. Yes: use the simulated values in this group to compare against 
observed values in the regression. Default=yes. 

PlotSymbol  - An integer intended for use in post-processing programs to assign 
symbols for plotting. Default=1. 

WtMultiplier  - Value used to multiply weights for members of a group when the 
weights are defined using Statistic and StatFlag keywords of the 
Observation_Data input block. Default=1.0. 

CovMatrix  - Name of the error variance-covariance matrix.  

Other keywords  - Any keyword from the Observation_Data input block.  

Observation_Data Input Block (required) 
ObsName  - Observation name (up to 20 characters; not case sensitive). Each 

observation name needs to start with a letter and to be unique. 

ObsValue  - Observation value. 

Statistic  - Statistic used to calculate the observation weight.   

StatFlag  - Defines Statistic. Options: VAR, SD, CV, WT, SQRWT. No default. 

GroupName  - Group name from the Observation_Groups input block. 
Default=DefaultObs. 

Equation  - An equation without an “equal” sign (just the right had side of the 
equation) that defines how to calculate an equivalent simulated value from 
simulated equivalents of previously defined observations. Default= _ 
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NonDetect   - Detection limit for an observation. Default=0.  

WtOSConstant  - The constant η in equation 1 of Chapter 3. Default=0.  

WtOSUse  - OBS, ConvertOS, SIM, or None. Default depends on WtOSConstant:  
if WtOSConstant=0.0, WtOSUse=OBS;  
if WtOSConstant>0.0, WtOSUse=ConvertOS. 

________________________________________________________________________ 

Derived_Observations Input Block (optional) 

The Derived_Observations input block is identical to the Observation_Data input block.  It is 
included in UCODE so the user can define derived observations in a separate input block, which 
is convenient in some circumstances.  

________________________________________________________________________ 

Predictions (required for selected modes) UCODE_2005 Chapter 8 

Prediction_Groups Input Block (optional) 
GroupName  - Name for a group of predictions (up to 12 characters; not case sensitive). 

Default=DefaultPreds. 

UseFlag  - yes: report and analyze the predictions in this group. Default=yes. 

PlotSymbol  - An integer intended for use in post-processing programs to assign 
symbols for plotting. Default=1. 

Other keywords  - Any keyword from the Prediction_Data input block.  

________________________________________________________________________ 

Prediction_Data Input Block (required for modes prediction, advanced-test-model-linearity, 
nonlinear-uncertainty modes) 
PredName  - Prediction name (up to 20 characters; not case sensitive).Each prediction 

name needs to start with a letter and to be unique. 

RefValue  - Reference value to which the prediction is compared. 
MeasStatistic  - A statistic used to calculate the variance of the measurement error.  

MeasStatFlag  - Defines MeasStatistic. Options: VAR, SD. No default.  

GroupName - Group name from the Prediction_Groups input block.  

Equation - An equation without an “equal” sign (just the right hand side) that 
defines how to calculate a derived prediction. Default= ‘_’. 

________________________________________________________________________ 
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Derived_Predictions Input Block (optional) 

The Derived_Predictions input block is identical to the Prediction_Data input block except in 
name.  It is included in UCODE_2005 so the user can define derived predictions in a separate 
block, which may be convenient in some circumstances.  

________________________________________________________________________ 

Prior Information  

Prior_Information_Groups Input Block (optional) UCODE_2005 Chapter 9 
GroupName  - Name for a group of prior information items (up to 12 letters, numbers, 

and _; not case sensitive). Default=DefaultPrior. 

UseFlag  - yes: include this group when estimating parameters. Default=yes. 
PlotSymbol  - An integer used in post-processing programs for the purpose of assigning 

symbols for plotting. Default=1. 

WtMultiplier  - Value that multiplies the weights for members of the group when the 
weighting is defined using Statistic and StatFlag keywords described for 
the Linear_Prior_Information input block. Default=1.0  

CovMatrix  - Name of the error variance-covariance matrix. 

Other keywords   - Any keyword from the Linear_Prior_Information input block.  

________________________________________________________________________ 

Prior_Information_Groups_For_Prediction (optional) This report chapter 2 

The keywords are the same as for the Prior_Information_Groups input block.  

________________________________________________________________________ 

Linear_Prior_Information Input Block (optional) UCODE_2005 Chapter 9 
PriorName  - Prior information equation name (up to 20 letters, numbers, and _; not 

case sensitive; start with a letter). Default=DefaultPrior.  

Equation  - An equation without an “equal” sign that defines the prior information in 
terms of parameter names as specified in the Parameter_Data or 
Derived_Parameters input blocks. 

PriorInfoValue - Value of prior information.  

Statistic  - Value used to calculate the prior information weight.  

StatFlag  - Defines Statistic. Options: VAR, SD, CV, WT, SQRWT. No default. 

GroupName  - Name for a group of prior information items.  
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WtOSUse  - PRI, ConvertOS, or SIM. Default depends on WtOSConstant: if 
WtOSConstant=0.0, WtOSUse=PRI; if WtOSConstant>0.0, 
WtOSUse=ConvertOS. 

WtOSConstant  - The constant η in equation 3. Default=0. 
________________________________________________________________________ 

Linear_Prior_Information_For_Predictions (optional) This report chapter 2 

The keywords are the same as for the Linear_Prior_Information input block. Expressions defined 
for the Equation keyword are limited to using parameters defined in input blocks with names that 
end in “_For_Prediction” 

________________________________________________________________________ 

Matrix_Files Input Block (optional) UCODE_2005 Chapter 10 
MatrixFile  - Name or path of the file from which one or more matrices are read. (Up 

to 2,000 characters; case sensitivity depends on the operating system). 

NMatrices  - Number of matrices to read from MatrixFile. Default=1. 

Complete Matrix 
CompleteMatrix  [NAME] 
NGMEM  NGMEM  [ControlRecord] 
[Array Control Record] 
VAL(1,1)  . . . . . . . VAL(1,NGMEM) 
   .     .                 . 
   .           .           . 
   .                .      . 
VAL(NGMEM,1) . . . . . . . VAL(NGMEM,NGMEM) 

Compressed Matrix 
CompressedMatrix  [NAME] 
NNZ  NGMEM  NGMEM [ControlRecord] 
[Array Control Record] 
IPOS(1)    VAL(1) 
IPOS(2)    VAL(2) 
... 
IPOS(NNZ)  VAL(NNZ) 

Array Control Record Input Instructions 
1.    INTERNAL    CNSTNT   FMTIN   IPRN 

2.    OPEN/CLOSE   FNAME   CNSTNT   FMTIN   IPRN 

 

________________________________________________________________________ 
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Model_Input_Files Input Block (required) UCODE_2005 Chapter 11 
ModInFile  - Name for a process-model input file (up to 2,000 characters). Names 

with spaces need to be enclosed in double quotes. 

TemplateFile  - Name for the template file (Up to 2,000 characters. Case sensitivity 
depends on the operating system). Names with spaces need to be enclosed 
in double quotes. 

Template Files (required) UCODE_2005 Chapter 11 

A template file is created from a model input file by first inserting a line at the top. The line 
contains “jtf” followed by one or more spaces and the substitution delimiter. Commonly used 
substitution delimiters are @ and !. 

The substitution delimiter is used to define the space within which UCODE_2005 places a 
number. The substitution space is defined by a pair of substitution delimiters. All of the 
characters between and including the substitution delimiters are replaced. Characters between the 
delimiters need to include spaces and one ParamName or DerParName defined in the 
Parameter_Data or Derived_Parameter input block. The ParamName or DerParName can be 
placed anywhere between the delimiters.  

________________________________________________________________________ 

Model_Output_Files Input Block (required) UCODE_2005 Chapter 11 
ModOutFile  - Name of the process-model output file with values to be extracted. Up to 

2,000 characters; case sensitivity depends on the operating system. 

InstructionFile - Name for the Instruction file that UCODE_2005 uses to extract values 
from ModOutFile. InstructionFile can be up to 2,000 characters; case 
sensitivity depends on the operating system.  

Category  - Identifies the type of quantity for which values are extracted. Obs: 
observations. Pred: predictions  

________________________________________________________________________ 

Instruction Files (required) UCODE_2005 Chapter 11 

For a Standard Process-Model Output File  
jif @ 
StandardFile Nskip ReadColumn Nread 
[Names for each of the Nread values.  
Place each name on a new line.] 

Nskip, number of lines to skip at top of file.  
ReadColumn, the column to be read.  
Nread, the number of items to be read. 
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For a Non-Standard Process-Model Output File  
The first line of an instruction file needs to begin with the three letters “jif”, a single space, and a 
marker delimiter. Usually $, @, % or ~ are good choices for marker delimiter. 

Except for ‘dum’, which can be used repeatedly, a different name needs to be used for each 
extracted value.  

A complete list of instructions is presented in Table 9, Chapter 11 of Poeter et al. (2005).  

________________________________________________________________________ 

Parallel Processing (optional) UCODE_2005 Chapter 12 

Parallel_Control Input Block 
Parallel  - yes, no. Yes: Activates parallel processing. Default=no. 

Wait   - Time delay, in seconds, used in file management. Default=0.001.  

VerboseRunner - Flag that controls printing by the runner.  Default=3. 

AutoStopRunners -yes, no. Yes: stop runners when UCODE_2005 stops. Default=yes. 

OperatingSystem  - Operating system for dispatcher and runner. Default=Windows. 

TimeoutFactor - Factor for RUNTIME to identify overdue run. Default=3.0.  

________________________________________________________________________ 

Parallel_Runners Input Block  
RunnerName  - Name of runner. Up to 20 characters. 

RunnerDir  - Pathname to directory where the runner program runs.  

RunTime  - Expected model runtime, in seconds. Default=10.  

________________________________________________________________________ 

Equation Protocols (optional) UCODE_2005 Chapter 13 

In UCODE_2005, equations can be defined in the Derived_Parameters, Observation_Data, 
Derived_Observations, Prediction_Data, and Derived_Predictions input blocks. See UCODE-
2005 Chapter 13 for additional information.  

________________________________________________________________________ 

Derivatives Interface Input File (optional) UCODE_2005 Chapter 13 

A Derivatives Interface input file provides UCODE_2005 with information needed to obtain 
model-calculated sensitivities (derivatives of simulated values with respect to parameters) from a 
model-output file rather than determining them by perturbation.  See Chapter 13.  

________________________________________________________________________ 
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fn.xyzt Input File (optional) UCODE_2005 Chapter 13 

The first line of the xyzt input file is ignored. The rest of the file needs to be composed of lines 
containing five columns of data: Observation name, x, y, z, and time.  

________________________________________________________________________ 

Reference 
Poeter, E.P., Hill, M.C., and Banta, E.B., 2005, UCODE_2005 and six other computer codes for 

universal sensitivity analysis, calibration, and uncertainty evaluation: U.S. Geological Survey 
Techniques and Methods, book 6, sec. A, chap. 11, 283 p. 
http://igwmc.mines.edu/freeware/ucode/  

http://igwmc.mines.edu/freeware/ucode/
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