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Abstract. Tessellatingan areainto convex polygons andlabelling a given number ofrandomly 
chosenpolygons as conducting, the rest not, creates ausefulmodelof adisorderedcomposite. 
The percolation and conduction properties of composites generated from the random 
Voronoi tessellation are compared with those from regular tessellations, namely the square 
and the hexagonal. Percolation properties of interest are the conducting cluster distribution, 
the percolation threshold, and the percolation probability. Conduction properties are 
obtained by a lattice network reduction (a finite difference type approximation to conduc- 
tion) and by finite element analysis. TWO finite element analyses arise, one from imposing 
a potential drop across the system and another from imposing a current flow through it; the 
two yield upper and lower bounds, respectively, to the true conductivity. By refinement of 
the finite element technique, convergence of the bounds is obtained. The percolation 
thresholds and percolation probabilities of the Voronoi and hexagonal tessellations are 
indistinguishable, a reflection presumably of the fact that both tessellations are equivalent 
to a fully triangulated two-dimensional lattice. The average coordination number (number 
of edges of a polygon) of the Voronoi and hexagonal tessellations are identical. Their cluster 
distributions are similar although those of the Voronoi tessellation are slightly broader. 
Percolation properties as well as conduction properties of the square tessellation differ 
markedly from the others. Finite element analysis shows that the conductivity of the hexag- 
onal composite lies above that of the Voronoi composite, indicating an increased resistance 
to transport caused by the random geometry of the Voronoi tessellation. The lattice network 
reduction yields the right qualitative features of the conductivity but not very accurate 
values. 

1. Introduction 

The relationship between percolation theory and conduction in disordered systems has 
been firmly established (Ziman 1968, Eggarter and Cohen 1970,1971, Kirkpatrick 1971, 
1973, Last and Thouless 1971, Stinchcombe 1973, 1974). The present state of the 
understanding of such systems is based primarily on either idealised network models or 
effective medium theory (Kirkpatrick, 1973, Stinchcombe 1973,1974, Bruggeman 1935, 
Landauer 1952, Cohen and Jortner 1973). Neither of these is entirely satisfactory for 
describing conduction in continuous media. Effective medium theory is a statistical 
model which averages over the actual structure of the system and consequently cannot 
account for the conductivity behaviour of systems near the percolation threshold. 
Through a suitably defined finite difference approximation, the conduction problem of 
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a continuous medium can be reduced to a lattice network problem. The percolation 
behaviour of such a lattice reduction depends, however, on the nature of the tessellation 
used, which is usually square (2D) or cubic (3D) cells, to subdivide the volume of the 
system to discretise the continuum problem. Moreover, the finite difference solution 
generally does not provide either an upper or a lower bound to the average or effective 
conductivity of the medium. 

The purpose of this paper is to investigate the effect of the tessellation on the 
percolation behaviour of a disordered composite medium and to compare the conduc- 
tivity of network reductions with that predicted by more rigorous numerical analysis of 
the conduction problem. 

A novel technique of modelling a two-dimensional composite, easily extendable to 
three dimensions, is presented here. Area is subdivided into random polygons by what 
is known as the Voronoi (1908) tessellation. A random, two-component composite is 
generated by labelling a given fraction of randomly selected polygons as one material 
and the remaining polygons as another material. For the present studies one material 
will be considered conducting and the other insulating. Percolation properties of the 
composite, such as the percolation threshold, cluster distribution. and percolation 
probability are generated by computer simulation. The conductivity of the continuous 
medium is found by finite element methods (Fix and Strang 1973) yielding lower and 
upper bounds on the conductivity. The results for the Voronoi tessellation are compared 
with those of square and hexagonal tessellations and of corresponding netwcrk reduc- 
tions. Random networks derived from Voronoi tessellated composites have been studied 
previously by Hatfield (1978). 

2. The Voronoi tessellation 

The Voronoi tessellation, or Meijering’s (1953) cell model, is a method for subdividing 
a continuum into random, convex polytopes, i.e. polyhedra in three dimensions and 
polygons in two. The tessellation is made by distributing points (‘Poisson’ points) 
randomly in space, and for each point, bisecting each segment joining it and every other 
Poisson point with a line (2D) or plane (3D) orthogonal to the line between the points, 
and constructing the minimum polytope about the point formed by the intersection of 
the bisecting planes. A two-dimensional example is shown in figure 1. 

A network representation of the Voronoi tessellation can be cons1 ructed by rep- 
resenting each polygon as a site, located for convenience at its Poiswm point, and 
inserting bonds connecting the sites of neighbouring polygons. The coordination number 
z of a site in the network is equal to the number of edges of the polygon associated with 
the site. Similar networks can be constructed for square or regular hexagon tessellations. 
The percolation properties of a tessellated continuum are the same as those of the 
corresponding network under conditions of site percolation. 

Hatfield (1978) investigated the percolation properties of random networks gener- 
ated from Voronoi polygons. The three-dimensional tessellation was used by Finney 
(1970) to model random-sphere packs and by Prager and Talmon (1077) to model oil- 
water-surfactant microemulsions. 

A conductor-insulator composite is created by randomly selecting a number of 
polytopes to be conducting and the rest insulating. Figure 2 shows two-dimensional 
examples. In figure 2(a) the area fraction covered by conducting polygons is so small 
that there are no sample spanning (percolating) clusters; hence that sample is below its 
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Figure 1. Voronoi tessellation with 160 polygons. Dots indicate randomly located Poisson 
points 

Ibl 
Figure 2. (a )  Composite with low area fraction conducting polygons. ( b )  Composite with 
high area fraction conducting polygons. 
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percolation threshold (strictly speaking the percolation threshold is only defined for an 
infinitely large sample) and would not conduct if a potential were imposed across it. 
Figure 2(b) shows a composite having an area fraction of conducting material sufficiently 
high that the sample would conduct if a potential were imposed. 

3. Percolation properties 

The percolation properties sought here can be defined by imagining random removal of 
conducting polygons (sites) from an infinitely large tessellation (network) of conductors. 
In the tessellation, a cluster is defined as an isolated, finite group of conducting polygons 
in electrical contact with one another. Correspondingly, in a network a cluster is a group 
of sites connected by conducting bonds. If enough polygons (sites) are removed that the 
fraction w of conducting polygons (sites) is below the percolation threshold wc, then the 
conducting paths exist only in the clusters and the system behaves as an insulator. If the 
polygon fraction w is above the percolation threshold, an infinite cluster exists, implying 
for any finite system the existence of a continuous conducting path across the system. 
The fraction P(w) of conducting polygons involved in the infinite or sample-spanning 
cluster is known as the percolation probability and in large but finite samples has been 
called the accessible fraction (Larson et al1981) to emphasise that the polygons making 
up P(w) allow conduction between opposed edges of the system. For w > U, the system 
conducts under an externally applied potential and for w < o, it does not, 

The lattice representation of an infinite two-dimensional Voronoi tessellation is a 
fully triangulated lattice, defined as an infinite multiply connected planar graph all of 
whose finite faces are triangular. Sykes and Essam (1964) have argued that fully trian- 
gulated lattices are self matching and consequently have a percolation threshold of 4; 
exceptions do exist however (Van den Berg 1981). We have determined by computer 
simulation the percolation thresholds, the coordination number distribution and the 
cluster distribution. The data presented here for these quantities were determined from 
the average of ten different Voronoi tessellations, each containing 10000 polygons. 
Uncertainties are expressed as one-sample standard deviation. 

The percolation threshold of the Voronoi tessellation, computed from the cluster 
moment method of Dean (1963), is 

w, = 0.500 k 0.010. 

From the conducting fraction at which a sample-spanning chain first forms, we obtained 
the similar estimate, wc = 0.502 t 0.016. For square and hexagonal tessellations, the 
percolation thresholds are 0.591 and 0.500 respectively (Dean and Bird 1966). The 
lattice representation of the hexagonal tessellation is also a fully triangulated lattice. 

The coordination number distribution @ ( z )  for the Voronoi tessellation is given in 
table 1. The bias introduced by the square boundary was minimised by discarding all 
polygons in contact with it, reducing the number of polygons contributing to the distri- 
bution to approximately 9650 for each tessellation. The average coordination number, 
C,@(z), obtained from the distribution is 5.99 i 0.05, the difference between this 
number and the exact value of six being an indicator of the effect of finite sample size on 
the statistics of the tessellation. There are of course no polygons with z less than 3. 

Let us denote by v(n, w )  the probability that a polygon exists in an n-polygon cluster 
in an infinite tessellation having a fraction o of conducting polygons. For a sufficiently 
large tessellation LL) is the area fraction of conducting polygons and u(n, w )  is the area 
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Table 1. 

Z W )  

3 0.01154 t 0.00095 
4 0.10942 t 0.00269 
5 0.26064 t 0.00483 
6 0.29387 t 0.00417 
7 0.19769 t 0.00404 
8 0.08932 2 0.00271 
9 0.02850 t 0.00136 

10 0.00724 t 0.00074 
11 0.00146 t 0.00045 
12 0.00027 i: 0.00017 
13 0.00006 t 0.00007 
14 0 

fraction of clusters of size n. f ( n ,  w), the frequency of clusters of size n,  is given by 

f ( n ,  U) = v(n, @)in. ( 2 )  
In principle, v(n,  0) can be computed theoretically from the coordination number 

distribution @(z) .  The first three-cluster distributions for any convex tessellation are 

v(1, w) = x 2 w@(z) (1 - 

4 2 ,  0) = 2 ,  x 2' zw2@(z) @ ( z ' )  (1 - U)' + 2' - 

( 3 )  

(4) 

where the z ,  z' = 3 , 3  term is excluded as explained below, and 

4 3 ,  0) = 5: 03@(z) qz') @(Z")( l  - wy + 2' + z" - g ( w ,  Z , Z ' >  ( 5 )  
2, z , 2" 

l i i l l l l l l  

0.06 n = l  

Conducting f ract ion w 

Figure 3. Cluster distribution data for 10000 polygon Voronoi tessellations, 
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0.06 
I 

3 

L a. + 

2 0  
U 

Conducting fraction w 

Figure 4. Cluster distribution for hexagonal tessellation (from Dean arid Bird 1966). 

where 

g(w, z, 2‘) = gdw 2 ,  z’) + g2(z) + g3(4  

gl(w, Z,  2’)  = [z(z’ - 3 )  + ( z ’ / ~ ) ( z ’  - 3)]  (1 - CO) (6a) 

g2(z> = 2 (6b) 

g3(w) = Q43) (1 - w2. (6c) 

The constraint on z, z’ values in equation (4) arises from the condition of convexity in 

Conducting fraction w 

Figure 5. Cluster distribution for square tessellation (from Dean and Bird 1966). 



Random two dimensional composites 2367 

Figure 6. Percolation probabilities for 10000 polygon Voronoi, square, and hexagonal 
tessellations. 

the Voronoi tessellation. Convexity also imposes the following constraints on the sum- 
mations of equation ( 5 ) .  For gl, z' begins at 4, terms 3 , 4 , 3  and 3 , 5 , 3  are excluded; for 
g2 any combination of 3 ,4 ,  and 4 and any containing two threes are excluded; for g3, all 
the indices begin with 4, and all combinations containing two fours and 4,5,  and 5 are 
excluded. For a square tessellation @ ( z )  = 1 if z = 4 and is zero otherwise; for a hexa- 
gonal tessellation @ ( z )  = 1 if z = 6 and is zero otherwise. The formulae for larger 
clusters are quite complicated and are not used here. 

Figures 3, 4 and 5 give examples of the dependence of v(n, w )  on 10 for Voronoi, 
hexagonal, and square tessellations. The cluster distributions were computed from 
equations (4) and (5) for n = 1 ,2 ,  and 3 and from computer simulations for n > 3. The 

'\ 0 r, 
Figure 7. Schematic of conducting domain. showing different types of boundaries. 
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cluster distributions of the Voronoi and hexagonal tessellations are quite similar. How- 
ever, for small clusters, the Voronoi results lie noticeably above the hexagonal, a 
consequence of the Voronoi distribution of coordination numbers. A greater fraction 
of polygons have coordination number less than six than have more than six. Polygons 
with smaller coordination number are less likely to have conducting neighbours than 
those with higher coordination number. The computer-estimated percolation probabil- 
ities of Voronoi, hexagon, and square tessellations are compared in figure 6. At high 
conducting fractions, the percolation probability is equal to the conducting fraction. The 
data for the square drops off at a higher conducting fraction than either the Voronoi or 
hexagonal due to its higher percolation threshold. There is little difference between the 
Voronoi and the hexagonal results. 

4. Effective conductivity of a conductor-insulator composite 

4.1. Basic problem 

For present purposes a 2D composite is generated by randomly selecting a number of 
polygons to be conducting, the rest being insulating. An effective conductivity is defined 
and computed for each tessellation and for its network reduction. The computer storage 
requirements and costs are considerably greater for determining the conductivity than 
the 'topological' percolation properties obtained in the previous section Thus, we were 
forced to use much smaller systems, ranging in size from 160 to 1100 polygons, for 
conductivity studies. For this reason, our results will be a poor approximation to the 
properties of large tessellations. However, the main goal is to compare tessellations and 
their network reductions with each other, so our conductivity results can be achieved 
with small systems. 

We assume that the conductivity k of the conducting polygons is constant. Then in 
conducting polygons the potential U obeys Laplace's equation, i.e., 

V 2 u = 0  i n D ,  (7)  
where D is set of points defining in space the conducting polygons. The boundary of D 
is indicated by the symbol r. The effective conductivity is defined on ii square system 
(figure 7). On the conducting boundary r k  at x = 0 and rb at x = L, the potential is 
fixed as follows: 

U = O  o n r b  

U = A u  o n r b .  (8) 

A . V u = O  o n r x .  (9) 

On the rest of the boundary, TN, the condition is 

The average current $ through the system in the x direction is 

and the effective conductivity k,,, defined as the ratio of average current per unit voltage 
drop across the sample, is given by 
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A result deduced from equations (7)-(9) is 

JAu = (Vu)' dx dy E I ( u ) ,  J 
and so 

k ,  - J - Z(u) - J 2  
k Au ( A u ) ~  Z(u)' 
- = - - - - - 

2369 

(12) 

These formulae will enable us to compute upper and lower bounds for k,/k in a systematic 
way. 

4.2.  Resistor network approximation of conduction 

A resistor approximation to conduction is obtained from the lattice representation of 
tessellation. Each bond of the network has a current J ,  and a resistance Ri associated 
with it such that, ideally, the conductivity of the resistor network should equal that of 
the actual composite. By equating the energy dissipation rate ($ALL), of each, we obtain 

r 

J ~ R ;  = J,, k(Vu)' dA, 

Ai, the area represented by bond i ,  is the quadrilateral obtained by connecting the 
vertices determining an edge to the Poisson points on either side of it. J;  is arbitrarily 
defined as the current flowing out of a polygon face. 

The resistance of bond i is 

Since the potential gradient is divergenceless, the net current flow out of a polygon of z 
sides is zero: 

In the resistor network approximation, the potential gradient field is approximated as 

where A/, is the unit normal to edge i. This approximation yields the resistance 

dilkli k # 0 inAi 

0 k = 0 anywhere in A i  

where di is the length of bond i and li is the length of edge i. The C,'s are evaluated by 
minimising the energy dissipation of the resistor network with equation (17) as a con- 
straint. This gives 
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or 

V,, a constant associated with site a, can be interpreted as a nodal potential. It is 
determined by equations (21), (17) and the boundary conditions given by equations (8) 
and (9). 

The conductivity of the resistor network is defined analogously to that of the actual 
composite: 

Conducting fraction w 

Figure 8. Effective conductivity data for 160 polygon Voronoi tessellation-resistor network 
approximation. 

where Jbn, is the current flowing through a bond connected to the boundaryr;. Potential 
drop, current flow, and energy dissipation are related analogously to equation (12): 

J T A U  = I J?Ri. (23) 

Equation (23) becomes 

analogous to equation (13). 
Computer simulations of the resistor network model have been made for ten Voronoi 

tessellations each containing 160 polygons. Averages of the ten trials, with bars rep- 
resenting one-sample standard deviation, are shown in figure 8. This format for computer 
simulations is used throughout the rest of this paper. 
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4.3. Finite element computations 
The resistor network is only a qualitatively correct approximation to Laplace’s equation. 
Accurate approximations to it can be obtained by the finite-element Galerkin method. 

The conducting domain D is subdivided into triangular elements by connecting the 
Poisson point (or the centre for squares and hexagons) of each conducting polygon to 
the vertices of the polygon. The mesh can be refined by connecting the midpoints of the 
sides of each triangular element, thereby creating four congruent triangular elements 
from each one in the original subdivision. The mesh can be further refined by repeating 
the procedure. The variational formulation of equations (7)-(9) is: 

I( U )  3 I( U) (25) 
where U is contained inHk, the set of all functions which satisfy the essential boundary 
condition (equation (8)) and, along with their first derivatives, are square integrable in 
the sense of Lebesgue. Using the Ritz approximation, a trial solution uN contained in a 
subspace of HL spanned by Nlinearly independent, piecewise linear, finite element basis 
functions is expressed as 

qi,  the weighting factor of vi, the basis function, is determined by minimising I( u N ) .  
The conductivity of this finite element approximation is defined as 

From equation (25), k J k  is an upper bound to k,lk. 
Equation (25) is the Dirichlet principle for the conduction problem. It has a dual 

principle called the Kelvin principle (Serrin 1959), which leads to a lower bound rather 
than an upper one. The Kelvin principle is built on the current vector j which must be 
solenoidal because there are no current sources within the conductor: 

V . j = 0  (28) 

V X j = O .  (29) 

j = V X A .  (30) 

The current vector must be the gradient of a potential so its curl must vanish: 

Since j is solenoidal, it can be written as the curl of a vector potential 

In two dimensions, A can be expressed in terms of a scalar current function, 

A = kA(X,  Y). 

Then 

V X V X  A = V 2 A = 0 i n D  (32) 
where 

A = constant on rN (33) 

n VA = 0 onTD. (34) 
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Equations (33) and (34) are equivalent boundary conditions to equations (8) and (9) 
respectively. This current function, or stream function, formulation has a variational 
formulation that is conjugate to that of the potential formulation (Aubin 1972). 

Z(A) 2 Z(A) = Z(u) (35) 
where A is contained in Hh, the essential boundary condition being equation (33). 

The total current flow per unit cross section calculated from equation (10) becomes: 

the overall difference of current function across a conducting face. Imposing equation 
(36) only determines A on part of r N .  A is determined on the rest of IyK by setting I(A) 
to equal to Z(u). 

Finite element approximations for A are obtained on the same meshes and use the 
same basis functions as those for U. On those regions of r N  where A is constant yet not 
determined as a result of imposing total current flow, constant A is imposed on each 
interval by superposing the basis functions of the nodes there into sets of ‘extended’ 
basis functions having one weighting factor each; the value of A on that portion of the 
boundary. 

The conductivity of this finite element approximation is given by: 

From equation (25), kA/k is a lower bound to k,!k. 
Figure 9 shows the results of computer simulations calculating coarse and refined 

Figure 9. Effective conductivity data for 160 polygon Voronoi tessellations-finite element 
approximations--upper and lower bounds on coarse and refined meshes. 
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Conducting fraction w Conducting fraction w 

Figure 10. Comparison of finite element and resis- 
tor network effective conductivities for a single 
550 polygon Voronoi tessellation. 

Figure 11. Comparison of resistor network effec- 
tive conductivities for 550 polygon Voronoi, 
hexagonal, and 576 polygon square tessellations. 

bounds for Voronoi tessellations consisting of 160 polygons. The values shown are 
averages of ten runs each. The arithmetic mean of the coarse upper and lower bounds 
differs from the arithmetic mean of the refined upper and lower bounds by 1% or less, 
which indicates almost identical rates of convergence. The means generally agree equally 
well in the individual cases. Similar convergence rates are not unexpected since the 
bounds differ in formulation only in the boundary conditions applied. Figure 12 includes 
coarse upper and lower bounds for the 550 polygon tessellations, the results again being 
averages of ten runs. The percolation threshold lies between 45% conducting, where all 
trials have zero conductivity, and 50%, where the average is non-zero. This lower value 
of w, is less than that obtained before due to two factors: (1) the smaller number of 
polygons in the tessellations used for conductivity calculations and (2) the arithmetic 
averaging of the data of different runs, an averaging process giving the mean threshold 
as the lowest threshold of individual runs. 

Figure 10 compares the resistor network simulation on a single Voronoi tessellation 
containing 550 polygons with the corresponding finite element simulations. The results 
show that the resistor network tends to underestimate the conductivity; usually being a 
slightly worse estimate than the coarse-mesh lower bound. 

Consider next the conductivity of random composites generated from the regular 
tessellations, squares and hexagons. Figure 11 contrasts the effective conductivity for 
the resistor network approximation for hexagonal and square tessellations, containing 
550 and 576 polygons respectively, with those from the Voronoi tessellation, also 
containing 550. The square and hexagonal data are also expressed as an average of ten 
different runs. The square data differ markedly from the hexagonal and Voronoi due to 
the different percolation threshold. The hexagonalconductivity has the same percolation 
threshold as the Voronoi, as expected, but lies above the Voronoi conductivity. 

A better comparison of the Voronoi and the hexagonal conductivities is obtained 
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Conducting fraction w 

Figure 12. Comparison of finite element upper and lower coarse mesh bounds for effective 
conductivity of 550 polygon Voronoi and hexagonal tessellations. Stippled area indicates 
overlap of Voronoi and hexagonal bounds. 

from finite element simulations. Figure 12 contrasts the upper and lower bounds for the 
conductivities of the same Voronoi and hexagonal tessellations represented in figure 11. 
The upper Voronoi bound and the lower hexagonal roughly coincide; the regions 
between the bounds do not overlap significantly. Dotted lines midway between the 
bounds indicate approximately where the exact solution lies. The lower Voronoi con- 
ductivity results from its more random structure: a given conducting path has many 
constrictions, from short edges, that impede current flow, lowering the conductivity. 

Conducting fraction w 

Figure 13. Approximation of effective conductivity of infinite Voronoi tessellation. 
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No such effect exists in the uniform hexagonal medium. Also, the hexagonal bounds are 
much closer together than are the Voronoi's: the finite element mesh in the hexagonal 
is uniform, compared with the random mesh in the Voronoi. This results in a better 
approximation to the conductivity. 

An estimate of an infinite Voronoi tessellation has been obtained by plotting the 
conductivity data for 550 and 1100 polygon tessellations versus the inverse of the 
tessellation size and extrapolating to zero-an infinite tessellation. The mean of the 
extrapolated bounds, the estimate for the infinite system, is shown in figure 13. Above 
60% of conducting polygons, little difference exists between the conductivity of the 
systems having 550,1100, and (extrapolated) infinite polygons. Below 60% the conduc- 
tivity becomes increasingly more sensitive to sample size as the percolation threshold is 
approached. 

5. Summary 

The percolation and conduction properties of random composites depend on the coor- 
dination number and geometry of the tessellation. The percolation threshold and per- 
colation probability depend on the average coordination number of the tessellation: 
identical results for these were obtained for the Voronoi and hexagonal tessellations 
both with average coordination number of six. Their cluster distributions were similar. 
The differences evident at higher conducting fractions were due to the random distri- 
bution of coordination number in the Voronoi. Percolation properties of the square 
tessellation differed markedly from the others, 

Conduction simulations on random composites generated from these tessellations 
further reflected these trends. Resistor network simulations revealed a discrepancy 
between the square's conductivitjl and the others as expected from the percolation 
threshold data. Finite element analysis showed that the conductivity of the hexagonal 
composite lies above that of the Voronoi composite, a trend accountable for by the 
random geometry of the Voronoi tessellation. 
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