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ABSTRACT

Matrix and pores of rock form irregular, inter-
penetrating, network-like structures with interrelated
shapes and connectivities that are statistical vari-
ables resulting from the nature of the original sedi-
ments and the diagenetic processes they have suffered.
Transport properties of either network depend on geom-
etry, i.e. size and shape distributions; transport
depends equally on the number of tramsport paths, or
distribution of connectivity, i.e. topology. Thus
different structural properties and transport pro-
cesses in rock matrix and in pore space are inter-
related.

This theoretical prediction is studied by means
of the Voronoi construction for subdividing space,
which provides precisely defined, realistically
irregular models of rock and of distributions therein
of fluids, conductivity, permeability, strength, etc.
Geometry and topology of the models are coded into
matrices that are useful for thinking about structure
and transport, and which become factors in illustra-
tive calculations of electrical conductivity, Young's
modulus, and fracture strength as functions of, for
example, porosity. The results show percolation
thresholds: cessation (or onset) of transport when a
critical fraction of paths is randomly blocked (or
created). Statistical features of structure and
transport are the subject of percolation theory.

The results help focus experimental studies and
point to a unified picture of structure, strength,
and transport.

INTRODUCT ION

Reservolr rocks are porous materials that because
of their origins and history are partially ordered yet
irredeemably chaotic. Their profound irregularity has
defied adequate analysis and hindered understanding.
Obviously some statistical concepts are needed, but
distribution functions of pore sizes and grain sizes
have not led deep. The reason is that the geometry
of pores and grains is only half the structure of a

References and illustrations at end of paper.

rock. The other half is the way the pores are con~
nected together ~~ in a word, the topology of the rock
structure. The connection patterns of the pores and
of the matrix, however chaotic both may be, are not
independent. Does this mean that mechanical properties
of the solid matrix are related to fluid distribution
properties and fluid flow properties of the pore space,
and vice versa? Are there scientific bases for sys-
tematically incorporating all the conveniently measur-
able properties of rock in a geologically sound, phys-
icaily accurate description useful for engineering the
improved locating and recovering of oil?

A unified picture of rock structure and transpori
therein is indeed emerging, as we indicate here. At
the center of this picture are new means for modelling
the statistical geometry and statistical topology of
rock, and new concepts for dealing with essential
aspects of the innate irregularity.

Reservoir rocks are the "packed beds" in which
oil becomes entrapped as residual, and in which chemi-
cal flooding processes are operated to enhance oil
recovery, In trying to understand the distribution
and flow of oil and brine in reservoir roc! we dis-
covered**< that concepts and results of a comparatively|
new physical theory fit porous media beautifully: the
percolation theory of transport through irregular net-
works and in irregular composites.3’6 Most of the
mathematical development of the theory is for circum-
stances in which the irregularity has major elements
of randomness, but the theory is not restricted to
entirely random structures. We perceive that it can be
amended and extended to explain and correlate most of

the peculiarities of deformation, strength, and trans-

port in rock.

Many field observations and laboratory results
can be explained qualitatively with percolation con~
cepts. In its present state of development, however,
percolation theory yields quantitative predictions in
few cases except by Monte Carlo calculations with a
model of the porous medium. It is also true that even
the most careful laboratory experiments are confounded
by the enormous time and expense of disassembling just
a small sample of rock grain-by-grain, pore-by-pore,
and recording all of the relevant dimensions and con-

nections. ’ For both theory and experiment what are
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needed are model rocks of precisely known statistical
properties or ~ far better yet — of exactly known
constitution and structure, from which statistical
properties can of course be calculated.

In trying to understand microemulsions, which may
be haotically bicontinuous, multiply connected struc-
tu:..s as reservoir rocks are, our colleague S. Prager
introduced the Voronoi division, or tesselation, of
space randomly into convex polyhedra,8,? an idea that
is not well known although it has been used in theoret-]
ical metallurgy and in liquid-state theory.® Recogniz-
ing that the degree of randomness can be controlled and
that the polyhedra can be rounded if desired, we have
automated the Voronoi-type of construction for the
digital computer.l10,11 Ag described below, this
enables us to generate rocks of exactly known pore and
matrix structure with which to make totally controlled
experiments by computer simulation. Of course a
computer-generated tesselation is also a plan for
building a tangible porous medium.

Voronoi tesselations of area into convex polygons
are suitable for pilot studies becavse the two~
dimensional constructions are simple:r and less expen~
sive than three-dimensional ones. We summarize here
the results of pilot studies of conductive transport,
10-13 including pore-wall and grain-boun.‘ary conduc~
tion,*+ elastic deformation,l4 and microcracking and
fracture.l4 Similar studies of fluid entrapmentl5
and other processes are in progress. The results
testify to the relevance of percolation theory and
point to the unified picture mentioned above. They
shed 1light on the extent to which regular lattices
and networks, which are sometimes used as models,
reflect the nature of porous rock. The results also
help focus related laboratory experimentation with
rock and kindred porous media at Minnesota and else-
where, 7,15-17

MODELLING ROCK STRUCTURE

Depending on the nature of the original sediments,
the environment in which they collected, and the
diagenetic processes they subsequently suffered, the
pore space of sedimentary rock is more or less chaotic,
and so is the solid matrix. In the chaos may be ele-
ments of order, such as bedding planes, however. The
history of a reservoir rock is cartooned in two dimen-
sions in Fig. 1. (a) pictures a volume of space just
above the sea bottom: it is devoid of szdiment. In
(b) sediment grains have settled to form a high water-
content deposit in that same volume. Close inspection
reveals layering, the bottom layer containing the
largest grains on the average. As this deposit is
buried the grains shown will rearrange by stress-
induced rotation, sliding, plastic deformation and
perhaps even some breakage. In (c) the compacted
gsediment is lithifying. The pore space is filled with
water transporting dissolved minerals that participate
in cementation, dissolution, recrystallization, etc.;
at the same time the matrix is stressed in complicated
ways that influence solution and crystallization and
may cause sintering or microcracking. Or (c) might
show developing secondary porogsity after an episode of
massive cementation.

In (d) the pore space has been invaded by migra-
ting petroleum which has accumulated to a high enough
saturation that it is connected and can readily flow
under a pressure gradient. Before much of a pressure
gradient appears the assembly will probably have

‘1-into convex polygons of préscribed mean area are suit-

and, 1f it happens to be grazed by a bore-hole, to
applied electrical potentials and other means of
probing., 1Incidentally, (d) does justice neither to
the water layers adhering to many of the grain sur-
faces that lace oil, nor to the water-filled
perforated-sheet micropores between some of the other~
wise cemented or sintered grains. In (e) the specimen
has responded to one after another of the pressure
gradients that are typically applied in primary and
secondary production of a reservoir. The residual oil
that remains has been disconnected by the comspiring
of pore configuration and capillarity and it is held
trapped by the same conspiracy. There are many reasons
for seeking to model rock structure in such a way as to
capture the essential features despite the camouflage
of chaotic irregularity,

Several kinds of porous media appear to bracket
rock. One is the familiar unconsolidated pack of
well-rounded grains or beads all of nearly the same
size; limiting forms are the geometrically and topo-~-
logically perfectly regular sphere packs, in which
the coordination number of the grains is fixed aud so
is that of the pore bodies. A second kind is the
unconsolidated pack of nearly identical polyhedral
grains; again there are perfectly regular limiting
forms. Both kinds can be cemented or partly sintered
and fused to resemble consolidated sedimentary rock
more closely. However, it appears that all of these
relatives as well as 'rocks themselves can be approxi-
mated as space-filling assemblages of polyhedra —
polygons in two dimensions — some of which are grains,
or solid matrix, and the others of which are pores,
or fluid-filled space, The polyhedra — or polygons
should generally not be regular. Fig. 2(a) shows the
board on which the gam: of Fig. 1 was played; in
subsequent panels of Fig. 2 the game is replayed.

Voronoi Tesselation

To develop the rules of modelling rock by the
method of polyhedra (as noted above, once a model is
constructed the polyhedra in it can be rounded as
appropriate) it is convenient to start with cases of
exclusively convex polyhedra. A quite flexible. and
potent approach is provided by the Voronol construction
for subdividing space randomly or otherwise into con-
vex polyhedra; the construction can be executed by
computer. Fully random Voronoi tesselations of area

able for pilot studies because, as already noted, they
are simpler and less expensive than three-dimensional
construction. The examples in this paper are based on
such tesselations, the construction of which is out-
lined in Pig. 3, Within the polygon about a Poisson
point are all points lying closer to it than any other
Poisson point. The Poisson points are merely scaffold-
ing for the construction and can be removed afterward.
But when the Poisson points are chosen entirely ran-
domly there can b~ none of the stratification shown in
Figs. 1 and 2., Tuhe random tesselations actually used
in a number of the examples are shown in Figs, 4 and 16.

Representation by Matrices

To represent the structure of connections in a
tesselation, i.e. which of the polygons (polyhedra)
border each polygon (polyhedron), it is convenient to
replace the tesselation by a network. The essence of
the network can be stored in a table or array, but it
is helpful to visualize it as in Fig. 4(a), where the

.~eponded to low frequency, low amplitude elastic wdveq adjacent nodes are connected by branches, or bonds,

centroids of the Voronoi polygons are the nodes and
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each of which corresponds to a common side of two
polygons.

To represent the geometric shapes in a tessela-
tion it suffices to tabulate the coord!nates of poly~
gon (polyhedron) vertices in a systemaiic way. How=
ever, for many computational purposes it is convenient
to dissect each polygon (polyhedron) into triangles
(tetrahedra). This is illustrated in Fig. 4(b), where
the same tesselation has been broken down into tri-
angles by drawing straight lines between the centroid
and vertices within each polygon. All of the informa-
tion about shape is contained in the lengths of the
triangle sides, which for ready reference by computer
methods can be recorded in an array, or matrix T, the
rows corresponding to the triangles and the columns
to the sides (other arrangements are useful for various
purposes). A crude numerical index of shape is merely
the ratio of the length of a polygon side to the dis-
tance between adjoining centroids or. alterzatively
but less defensibly, to the distanre between adjoining
Poisson points, Indeed, this ind¢x is used below to
approximate the transport resistunce between the two
polygons when for simplicity rlie tesselation is fully
replaced by a network of trzasport paths derived from
it.

Converting a tesselation into a model of rock is
a matter of deciding what fraction of the polygons
(polyhedra) are matrix, what fraction are pore space,
and what degree of order, if any, there is in the
split. In the examples used here the split is entirely
random. Now the matrix network and pore network are
efficiently represented by an incidence array, or
matrix, the rows of which are the polygons, or nedes,
and the columns of which are the polygon sides, or
branches. The entries are letters (or numbexs, which
are better suited for the strength and transport cale
culations summarized below) that denote the composition
or filling of each polygon: see Fig. 5.

The entire connectivity structure, or topology,
of the model rock and its pore filling is recorded in
this rectangular incidence matrix C, relatively simple
cases of which are standard fare in network science
and engineering. It is remarkable that according
to matrix algebra, if cT is the transpose of C, i.e,
the matrix in which its rows and columns have been
interchanged, then the i-th diagonal entry of CCT, a
square matrix, is the number of sides of the i~th
polygon times the "square" of the symbol of its com=
position (WW, SS, or 00 in Fig. 5)3 the off~diagonal
entries tell what polygons share common sides. The
total number of sides a polygon has is of course its
coordination number in the tesselation. The number of
sides it shares with polygons of like compositions is
its coordination number in the network of that compo~
sition, and this number can be counted up in the off-
diagonal entries in its row (or inm its column, equally
well). The coordination number of a pore polygon is
the number of ways out of that part of the pore space
into other parts, and thus characterizes the local
topology of the pore space. The coordination number
of a rock polygon has the same sort of significance,
and can be counted up in the same fashion. All of the
information is in C.

Polygons (polyhedra) unless they happen to be
totally surrounded by another kind are part of a larger
structure, the grains or pores of which can be identi-~
fied systematically from C and shape information once
definitions of grain boundaries and pore throats are
adopted.

The connectivity of the matrix and the

C, as can the local measures, the coordination numbers
of grains in the network of solid and of pores in the
network of pore space. (Indeed, C can be broken down
into C; for solid and C, for pore space.) What is
extremely significant is that the coordination numbers
in two interpenetrating networks are interrelated and
their connectivity properties are conjugate; that is,
the topology of the rock structure follows from that
of the pore structure, and vice versa.

When oil and water compete for pore space it is
in effect divided into two upaces: see Fig. 5(c).
Continuous fillings of oil and disconnected oil blobs
or ganglia can be likewise be calculated from the
incidence matrix C. Again it is extremely significant
that the connectivity properties of the water-filled
and oil-filled networks are conjugate; given the
topology of the pore structure, the topology of oil-
filling follows from that of water-filling, and vice
versa.

Interestingly, the j-th diagonal entry of CTC, a
square matrix of higher dimension, is the "square" of
the symbol of one polygon plus the same of a contig-
uous polygon (e.g. WW + WW, WW + S5, etc. in Fig. 5).
That is to say, the diagonal entries of cTc summarize
the network of the original tesselation from the point
of view of branches while the diagonal entries of CCT
do the same from the standpoint of nodes. The same is
true of Cg and Cg~ for the solid matrix, Cp and C T for
the pore space, Cy and C.* for water-filled pores, C
and COT for oil-filled pores, and so on. In C resides
all of the information about structure of a model rock,
apart from local shape. In another matrix, either T,
the matrix of side~lengths in a triangulation which
was introduced above, or an equivalent array, resides
all of the informatior. about shape. It may be helpful
to think of C as the skeleton and T as the flesh; if
the analogy is pursued the property matrices in the
next section are the tailored clothes that make the
person,

MODELLING TRANSPORT

Change of, and within, a rock is brought about by
transformation processes such as phase transitions and
chemical reactions, and by transport processes such as
electrical conduction, heat conduction, molecular
diffusion, and fluid flow, and also by elastic deforma-
tion and plastic deformation, which can be viewed in
terms of momentum transport., The modelling of change
in rock models built on Voronol tesselations as well
as less random constructions is clear in outline, but
details have been completely worked out so far in just
a few pilot studies for the numerous modelling efforts
under way at Minnesota. Some of these pilot studies
are of transport, ostensibly Ohm's - law electrical con-
duction in pore space but simultaneously of Fourier-law
heat conduction, Fick's-law solute dif.usion, and
Darcy~-law flow of a single fluid, owing to the close
analogiea among these processes, as indicated by the
familiar, simplified constitutive relations shown in
Fig. 6. Hooke's law is taken up below.

Transport Properties

The constitutive relations in Fig. 6 are simpli-
fied ones for steady one-dimensional transport down a
path along which the transport coefficient is constant.
The simplification is appropriate when a polygonal
(polyhedral) model is replaced by a network in the
manner described above. The question then is how to
assign conductances or permeabil’'ties to the branches

. = 4 LWO . L

DYd D 8 OX 2108




RQCK STRUCTURE AND TRANSPORT THEREIN:

UNIFYING WITH VORONOI MODELS AND PERCOLATION CONCEPTS

transport process in the model. The conductance of a
transport path obviously depends on the conductivity
of the material of which the path is composed and on
the shape of the material, e.g. its cross-sectional
area as a function of distance along the path. If the
material is inhomogeneous — as is generally the case
in rock — the conductivity is distributed. But the
shapes in an irregular polyhedral model always are
distributed, and consequently in pilot studies it is
appropriate to begin by supposing the material proper-
ties are homogeneous and the branch conductances are
controlled by geometric shape. An intuitively attrac-
tive approximation introduced by Hatfieldl0 {s to set
the conductance of each branch proportional to the
length of the side between polygons that it represents,
and inversely proportional to the distance between
centroids or, more simply, the Poisson points of the
two polygons, as indicated in Fig. 7. That this is a
reasonable approximation is established by the more
accurate calculations for polygonal models which are
outlined below.

Representation by Matrices

The conductances in a network approximation to a
polygonal (polytedral) model are efficiently recorded
as the ordc.ca diagonal entries in a purely diagonal
matrix K L:aving as many rows as there are branches,
or bonds. and an equal number of columns (thus the
dimensioa K 1s that of CCT); the off-diagonal entries
are all rero. For some purposes the branch resis-
tances, which are merely the reciprocals of the branch
conductances, are needed; these are efficiently
recorded a3 the diagonal entries in a purely diagonal
matrix R of the same ordering and size. So far as the
transport process is concerned, the matrix K or R
supersedes the shape information in T, which was
introduced above. Indeed, when conductivity is uni-
form K and R can be calculated from nothing more than
T and the value of the conductivity. What is highly
significant is that the conductances and permeabilities
for different transport processes in the same network
of paths — rock matrix, pore space, water-filled
pores, oil-filled pores — are necessarily related
because they depend on shape along paths in similar
though not necessarily identical fashions. Darcy~law
permeability, for example, is more sensitive to cross-
sectional constrictions than is Ohm's-law conductance.
Nevertheless, the geometric shape of rock matrix
closely links the transport properties in different
transport processes in the matrix; the geometric shape
of pore space likewise closely links properties in
different transport processes in the pore space; and
the interrelation of matrix shape and pore shape links,
to some extent at least, transport processes of the
two kinds.

The geometric shapes of oil-filling and water~
f£illing affect transport processes within the pore
space in similar ways as do the pore shapes themselves.
Thus geometry is half the structure of a rock and of
its pore fillings, while topology is the other half,
This can be seen vividly in the matrix formulation of
electrical conductionor an equivalent process in, ray,
the pore space of a polygonal rock model generated by
means of a Voronoi tesselation. Two such formulations
appear in Fig, 8,

Transport Formulated Mathematically

When current or flux is impressed at the bound-
aries of the specimen, it may be simpler to solve first

then calculate the Zluxes throughout; this 1is the
strategy behind the potential formulation in Fig. 8(a).
When potentials are impressed, it may be simpler to

use the flux formulation in Fig. 8(b) and solve first
for the currents I4. (In the flux forirulation the
connectivity structure is represented by a current-loop
incidence watrix D which is derived from C and appears
instead of C.18) Actually the numerical work is often
less by that formulation which presents fewer simul-
taneous equations to solve. It turns cut that the
number 6f independent equations in the flux formulation
is less than in the potential formulation when the net-
work is not too holey, i.e. when there are not many
closed loops in the network. In any but the smallest
specimens of porous rocks having appreciabie perme~
ability the holeyness of the transport networks in
both the matrix and the pore space is immense and begs
for statistical treatment once its essential aspects
are understood from the studies of w.del rocks which
are in progress,

What is striking about both fcrmulations is the
way that topological structure C (l.ere with 0 and 1
replacing S and W and a sign convention introduced) or
D multiplies geometric~shape-determined conductance
K or, respectively, resistance R to produce the
coefficients of the unknown potentials or fluxes in
the sets of linear, algebraic equations. In matrix
notation the arrays in Fig. 8 boil down to

(ckcTyp = 1, +

b
(DRDV)I = ¢, + RI

CK¢b

b

Here is a powerful means for thinking about rock struc~
ture and transport therein, even though modern com-
puters can still not solve enough equations to analyze
in detail anything more than a pathetically small
specimen, from the viewpoint of reservoir engineering.
Again, what is needed is a statistical treatment that
adequately relates the essential aspects at smaller
scales to the important aspects at larger scales.

RESULTS OF TRANSPORT MODELLING

Sample~golutions of the equations in Fig. 8 have
been obtained by HatfieldlO and Winterfeldll=13 for
conduction in two-dimensional networks, some regular,
some Voronoi-generated, in which the branches are
randonly chosen to be conducting in various proportionsq
Selected results for a tesselation containing 160
polygons are graphed in Fig. 9(a). What is noteworthy
is that the specimens on the average conduct not at all
until over 40% of the potential paths between polygons
are conducting. This type of threshold behavior is
well-known in chaotic networks and chaotic composites:
it is called a percolation threshoid, it is a subject
of percolation theory, and it is taken up below. 1In
that regard the cluster-distribution results shown in
Fig. 9(b) are of interest.

Finite Element Analysis of Conduction

Conduction in polygonal models, including those
behind the network model in Fig. 9, can be analyzed
more accurately — indeed, as accurately as expense
and computer limitations allow — by the methods of
subdomains and Galerkin weighted residuals in the 19
modern combination kunown as finite element analysis.
That is, novel developments in computer-aided analysis
now make it possible to approximate as closely as
desired the solutions of Laplace's equation and other
partial differential equations of transport when the

for the potentials ¢i at the nodes of the network and
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domain is chaotic or random as are those generated by
Voronoi tesselation. In the case of Laplace's equation
in two dimensions it happens that the potential formu=-
lation leads to a useful upper bound on the reduced
conductivity while the f£lux formulation leads to a
useful lower bound; the reduced conductivity is the
conductance k of the polygonal model divided by the
conductance k_ when the entire tesselation is filled
with conductiﬂg material.12,13

The results labeled "coarse" in Fig. 10 are for a
160-polygon Voronoi tesselation (shown in Fig. 16(a))
in which each proportion of conducting polygons was
realized by random choices 10 times. The conduction
problems were solved with finite element bases con-
sisting of linear trial functions, called chapeau
functions, on elements that are the triangles into
which the polygons can be dissected as in Fig. 4(b):
the mean and standard deviation of the ten reduced
conductivities in each set are indicated in Fig. 10.
There the results labeled "refined" are from more
accurate finite element calculations in which each
triangle was systematically subdivided into four in
the usual way.i? The rates of convergence of the
upper and lower bounds are about the same and the true
reduced conductivity can be estimated with an error
likely to be less than 1%, which illustrates the
potency of the method.12,13 Here, then, is an example
of model rocks of exactly known constitution and
structure from which statistical properties — matrix
conductivity or pore conductivity in this case -~ can
be accurately calculated. Incidently, the results
show that a resistor network tends to have a bit
lower conductivity than the polygonal model from which
it is derived. The percolation threshold is again
evident, at a conducting fraction of about 45%.

Pore Wall and Grain Boundary Effects

Pore-lining clay minerals and imperfectly cemented
qrain boundaries or perforated-sheet~like micropores
it .1lled with brine apparently can affect strongly
the conductivity of reservoir rock. These phenomena
are roughly accounted for by Archie's "law" and similar
correlations. They can easily be investigated with
suitably designed modifications of the model rocks
used for Fig. 10.11 1In one modification the pore
surfaces are assigned a special conductivity k; the
results are shown in Fig. 11{(a). The percolation
threshold is unaffected but if the surface conductivity
is sufficiently high the surface conductance over-
shadows conduction through such conducting liquid as
is present in the pore space. In another modification
not only the pore surfaces but also the grain bound~-
aries are assigned the special conductivity Xk, with
the results shown in Fig. 11(b). Now there is no well~
defined percolation threshold because even when all of
the polygons are nonconducting -~ whether they are
solid rock or oil-filled pore space - the surface and
grain boundary paths remain, although their conductance
may be low.

Network Analysis of V~ung's Modulus

To this point the transport processes that have
been modeled are described by linear equations. Where-
as Hooke's law of elasticity in one dimension is linear,
it is not in two and three dimensions except at vanish-
ing strains (see Fig. 6). Young's modulus at vanishing
strain of dry rock is an interesting example. Proper-
ties related to or similar to this momentum-transfer
modulus are of course of great importance in locating

and assessing reservoir rock. Elastic deformation of

_l(polyhedra), which 18 in the offing though it is more

consolidated rock is more complicated than conduction
because the rock resists both bending strain and ten-
sile or compressive strain. To be realistic a network
model accordingly ought to consist of trusses that can |
be bent as well as stretched or compressed; moreover it
seems reasonable to take the trusses as being rigidly
bonded to each other., Fig. 12 portrays the relation
between force components, F, and Fy and bending moment

at a network joint or node, and the displacements
Ax and Ay and rotation A¢ of the joint.z The elastic
properties depend on Young's modulus E of the matrix
material and the local shape, as represented by cross-
sectional area A, length L, and moment of inertia I.
The relations in Fig. 12 can be assembled into matrix
equations for elastic deformation of a Voronoi-
generated, two-dimensional network in which the
branches are randomly chosen to be trusses or void in
various proportions,

Results for a tesselation containing 200 polygons
are plotted in Fig. 13, where porosity stands for the
proportion of network branches that are void. Shown
are the mean and spread of five random realizations at
each porosity.14 Also shown are the mean and standard
deviation of more than 50 sets of measurements of
Young's modulus of ceramics and glasses.?l The novel
truss-network model reproduces, to within a constant
factor, the oft-measured behavior of ceramics. The
constant factor, we believe, comes from the difference
between the two-dimensionality of the pilot models and
the three~dimensionality of the measured specimens;
in random structures of the same porosity, scale and
local modulus,there are more interconnections in three
dimensions and hence the three-dimensional structure
ought to be stiffer,l4

Microcracking and Fracture

If the tensile strengths of bonds between adjacent
polygons in the underlying model are specified — and
they can be realistically distributed, if desired —
the analysis can be extended to bond failure and
beyond, i.e. to truss failure in the network, which
corresponds to microecracking in the rock model. With
each microcrack a load-bearing branch of the network
disappears and so the topology changes; hence the
incidence matrix C must be altered with each successive
microcrack and a new elasticity problem solved. (The
gituation is similar in two-phase flow when as oil
saturation falls, capillarity conspires with pore
geometry to force breaks in the oil continuity, as
sketched below.) Each solution, incidentally, yields
a Young's modulus of rock under successively greater
strain.- The results show how, as uniaxial compressive
strain is increased, tensile microcracks form and
multiply until a maximum supportable stress is reached:
see the example in Figs. 14 and 15. When this stress
is exceeded the already present clusters of microcracks
rapidly link up and fracture ensues, This is another
example of a percolation threshold. The modelling can
be further extended to account as well for the shear
strengths of bonds. The maximum supportable stress is
the gross strength of the model rock. Its variation
with porosity reproduces, also to within a constant
factor, the general trend of the many measurements of
strengths of ceramics.l4, .

These findings indicate that mechanical properties,
including strength, of rock can be modeled by means of
the Voronoi comstruction — adequately by the network
approximation, and still more accurately by finite
element analysis of elastic deformation of the polygons
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demanding than the finite element analysis of conduc-
tion sketched above, No other conceptual framework
in the literature accouats for the observed porosity
dependence of all four aspects of compressive loading
of ceramics and rocks: (1) elastic moduli at small
strains; (11) numbers, length and orientation distri-
butions of microcracks as strain increases; (1i1)
inelastic stress-strain, fracture strength, and post-
critical stress-strain; (iv) sensitivity to anisotropy
of loading, which can convert brittle fracture to
ductile fracture, as indeed the Voronoi-generated
truss~-network models ahow.l

FLUID DISTRIBUTIONS AND FLOW

Flow of a single fluid phase through pore space
is described macroscopically by Darcy's law and
variants. Microscopically it is being modelled by the
methods already described, for such purposes as under~
standing Darcy's law and flow distribution, wall shear
that tends to tear off fines, adsorption rates at pore
walls, effects of graded viscosity, and various dis-
persion mechanisms. When two or more immiscible phases
share the pore space, what is central is how they are
distributed — first of all when they are not flowing.
The case receiving the most attention is that in which
the reservoir rock is totally wet by water or brine and
an immiscible oil phase is also present. In this cir-
cumstance the walls of otherwise oil-filled pores are,
by definition, lined by thin f£ilms of water. The
evidence is that the static distribution of oil and
illarity ~ the action of interfacial tension between
oil and water at curved menisei -~ being its agent.
The distribution is also influenced by the history of
past flow.

Pore Shape and Fluid Distributions

Pore walls are necessarily curved; even when they
are faceted as in polyhedral porous media there are
singular concentrations of curvature in the seemingly
sharp corners and edges. It happens that the dis-
tribution of wall curvature is related, according to
topological facts, to the connectivity of the pore
space oré eguivalently, to the connectivity of the rock
matrix.22,2 Necessarily there are wall regions having
reverse curvature (principal curvatures of opposite
gign) and hence lccal saddle shape: these regions
must include the pore throats and the matrix necks.
Thus pore shapes, and matrix shapes as well, are linked
to the interrelated topologies of the pore structure
and the rock structure. The pore throats are not only
cross-sectional constrictions, they are also the wall
regions of lowest mean curvature. As a consequence
they exert controlling influence on the distribution
of oil as its proportion, or saturation, falls and
capillarity is present in water-wet rock.

At high oil saturation most of the pore throats
are filled with necks of oil although the throat-walls
are coated by water in a thin-film state.24 The oil
in the pore space is continuous, i.e. well connected.
As saturation falls, collars of bulk water tend to
grow around the necks in the throats and then to
suffer a capillary instability that causes them to
choke-off the necks, first of all those in the most
constricted throats and then, as oil saturation con~
tinues to fall, in larger and larger throats. When
the instability chokes off a neck it breaks an ofl
connection and creates two menisci called heads, i.e.
concave oil-water interfaces, that retract toward
stable locations in nearby pore bodies, As they do so

they may sweep past adjacent connecting throats and W
sever the necks in them so that additional heads are
formed. (The process is analogous to microcracking of
the matrix under load, and can be analyzed by the
methods described in the preceding section.) The heads
that are created take up stable positions, many of them
next to the larger pore throats; but as saturation
falls they too may suffer another capillary instability
and jump ~ Haines' jump — through larger pore throats
to new positions, severing necks and creating new heads
as they go.25

In these ways more of the menisci called heads
are generated as oil saturation falls, and always the
cause 1s instability of -an interface configuration that
18 controlled by the distribution of pore-wall curva-
ture. The succession of meniscus states is completely
determined, given the initial state, if interfacial
tension is appreciable and viscosity low enough that
the viscous effects accompanying motion are insignifi-
cant. This is roughly the picture in primary produc-
tion, for example, although the presence of gas is
generally a complicating factor. In waterflooding and
chemical flooding there is usually a migrating oil bank
the rear of which is a moving zone of falling satura-~
tion in which oil connectivity is repeatedly broken by
the events that populate the zone with heads; these
events are essentially those just described if the
Darcy~flow velocities are low enough that capillarity
dominates viscous effects, f.e. at normal waterflooding
capillary numbers. (A static oil-water or gas-oil
contact region in reservoir rock is a similar falling-
saturation zone at rest,) With increasing numbers of
breaks in oil-phase continuity, portions of oil become
totally disconnected from the continuous oil. These
portions, which may occupy from one to many, many
interconnecting pore bodies, are called blobs or
ganglia (they may also be regarded as clusters); each
is surrounded by the menisci called heads and by water-
wetted rock surface. The number of breaks required on
the average to create a blob depends on the connectiv-
ity of the pore space; in particular, it depends on the
average coordination number of a pore — the number of
ways out.

The disconnected blobs, if they are shorter than a
calculable length that depends on the pore space and
the capillary number of flow (or the Fond number of
gravitationally-caused buoyancy), cannot move: they
are trapped, again by a conspiracy of capillarity and
pore configuration.l® Disconnected and trapped, these
blobs are lost to the network of paths over which oil
previously flowed, unless they are rescued by arrival
of, and coalescence with, some blob long enough to be
in motion. Given the rock structure, and, in flooding,
the overall flow direction, the entire sequence of
events is in principle deterministic and reproducible.
At any saturation value as saturation falls from a
given initial value, the number and location of choked-
off necks is fixed. So are the number and location of
isolated blobs as well as of still continuous oil. In
other words, the cluster-distribution when viscous
effects are insignificant depends on the configuration
of the pore space and saturation only (apart from
hysteresis effects, i.e. influence of the initial dis-
tribution and reversal of saturavion change). When
saturation falls to a certain level set primarily by
the connectivity of the pore space¢, the last remaining
continuous paths of oil through the »iik are, on the
average, broken: a percolation threshold.loi
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At a slightly lower saturation value the additional
instabilities and breaks in continuity of the longer,
isolated yet movable or moving blobs leaves an entire
population of trapped blobs, which are known collec~
tively as the waterflood residual, i.e. the oil satura-
tion that cannot be reduced further by brine flowing
at any low capillary number. The experimental evi-
dence, direct and indirect, is considerable.2,26 And
go it appears that fluid distributions In pore space
are results of transport processes that depend on the
same gecmetrical and topological aspects of the rock
as do other transport processes.

Blob Mobilization and Capillary Number

Disconnected and trapped, a blob remains immobile
even though aqueous phase continues to flow through
nearby pores, as noted above, up to a critical value
of capillary number — the ratio of dynamic viscous
forces in the water that tend to move oil, to the
capillary forces holding it trapped. The critical
value hinges on the length of the blob in the flow
direction and the pore dimensions in which it is
trapped, The capillary hydrodynamics of blob mobili-
zation and confirming experiments show that at the
critical value one of the blob's head menisci becomes
unstable in the throat where it is 1od§ed and jumps
ahead; often this mobilizes the blob.15,16,22,26 1if
each such instability unfailingly and permanently
mobilized the content of a blob, and if the blob-size
or cluster distribution of residual oil were known
at a given value of capillary number, then from blob
mobilization theory could be predicted the incremental
reduction in residual saturation upon incremertally
increasing the capillary number with which the acueous
phase flows. In this way the entire curve -° esidual
saturation versus capillary number starting .. m a
given state of saturation could be constructed. Though
blob~-size distribution data are exceedingly rare, this
has been done: the key is an application of percola-
tion theory to the problem of a cluster distribution.
1,26 The entire process of entrapment and mobilization
can be simulated in Voronoi models.l5

Laboratory tests with water-wet systems have
established that residual oil saturation following
flooding with water or aqueous solution does indeed
correlate with capillary number (aqueous phase Darcy
flow velocity times its viscosity divided by its inter-
facial tension with the oil). At capillary numbers
less than about 10~6, which is the normal range in
the field except around well-bores, residual saturation
reaches a reproducible limiting value that varies pri-
marily with the nature of the rock (cf.26). The
differences in the limiting value are interpreted as
differences in percolation thresholds owing to differ~
ent average coordination numbers in various types and
specimens of rock, or rock stand-in., As flooding rate
or viscosity is increased or as interfacial tension is
reduced by orders of magnitude, residual saturation
falls gradually and begins to approach zero when
capillary number climbs past 10-2, which is evidently
the range in which even the shortest of trapped blobs
are mobilized unless they happen to be caged by pore
throats that are together cross-wise to the adjacent
flow. What is especially significant is this: if
residual saturations at different capillary numbers
are divided by the limiting residual saturation !n
the same specimen, then the curves of this ratio versus
logarithm of capillary number are superposable merely
by shifting the capillary number scale, for most of
the specimens reported on in the literature.26 This
suggests that there is a universal feature of the

residual saturations of oil in flooded regions that is
independent, or nearly so, of the details of rock and
pore structure, The feature should be sought in the
distribution of residual saturation — the blob or
cluster distribution -~ and the means for doing so is
percolation theory, as touched on below.

The indication of a universal feature of residual
saturations is significant in many respects, among
them the common features in curves of capillary pres-
sure (including initial/residual hysteresis) versus
oil saturation, relative permeability variation with
saturation and capillary n:imber, results of tracer
flow experiments, and ochers.2o§6 As important to-
understand gs the common denominators are the differ~
ences that overlie them. Percolation concepts are
appropriate tools. The degree to which they work in
this area of fluid distributions and flow testifies
to their more general applicability to structure and
transport in rock.

PERCOLATION CONCEPTS

The term, percolation, was applied by Broadbent
and Hammersley3 to the process of generating a contin-
uous transport path across a network or composite in
which individual, short transport branches are created
or activated more or less at random in increasing num-
bers. This is illustrated in Fig. 16. If there are
very few active branches each of them is isolated.
the proportion rises, clusters of connected branches
form (compare Fig. 9(b)); within the growing clusters
the numbers of transport loops grow toc. At any stage
some of the clusters reach to one of the boundaries
of the system; branches in these clusters are said to
be accessible. When the proportion of present and
active branches reaches a critical level, the probabil-
ity of “‘aving at least one continuous transport path
across an indefinitely large system becomes a virtual
certainty. This proportion, the minimum fraction of
network branches that must be active in order for a
continuous transport path to be guaranteed, has come
to be called the percolation.threshold. Once the
threshold is crossed, branches from which there are
distinct paths to both boundaries lie on transport
routes and are said to be effective; otherwise though
accessible they lie on dead-end trails and are called
ineffective. Typically the effective fraction rises
rapidly just beyond the threshold as large, previously
ineffective clusters get connected in.

As

Percolation theory deals with probability dis-
tributions of isolated, accessible, ineffective and
effective parts of chaotic structures; with the statis-
tical geometry and statistical topology of clusters;
and above all with percolation thresholds. Thus it is
the theory of connectivity and transport in irregular
arrays of connections or transport paths, whether the
underlying structure is as regular as a perfect crystal
or as random as a Voronoi tesselation. Like diffusion
theory it is statistical. Whereas conventional diffu-
sion theory treats transport by random movement in a
structureless medium, percolation theory treats trans-
port by deterministic movement in a random structure
or randomly structured medium. It establishes, for
one thing, that the connectivity, and hence the number
of transport paths, in a network depends on its
"branchiness," as measured by the average coordination
number of the nodes. The more connections each node
has on the average, the greater the probability that
branches meeting at it are effective in transport.
Thus percolation theory finds application to such

lgiverae processes as small atoms diffusing among the
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chaot. cally ordered large ones in an amorphous solid,
the spread of blight in an orchard — and, as noted
above, to conductive transport inm rock and Voronoi
models thereof, to microcracking and fracture of
porous media, to fluid distributions and to fluid flow
in the pore space of vock, The theory is still young
ané far from fully developed, especially in mathemati-
cal rigor because, as we have seen, to make quantita-
tive predictions most often requires Monte Carlo
experimentation, albeit by computer.” A major
challenge 1s to devise more effective ways of dealing
theoretically with the partial ordering caricatured in
Fig. 1 and so prevalent, in rocks for example. Such
ordering tends to complicate statistical theory
greatly. Nevertheless, the concepts and methods of
percolation theory plainly apply to relating the
statistical geometry and statistical topology at
smaller scales in rock to important larger-scale
aspects of structure and transport.

Cluster and Blob Distributions

A striking, encouraging case of the efficacy of
percolation concepts followed on Larson's discovery
that the cluster size distributions at the percolation
threshold of a considerable variety of tcpologically
regular structures are quite similar. These structures
include many regular lattices and trees (a tree has
branching without reconnection, a lattice has both) in
two and three dimensions. In each the coordination
number is uniform and thus the connectivity is regular,
but the coordination numbers vary from 3 to 13, Im
these structures the percolation threshold varies
inversely with coordination number, from a fraction of
branches active in transport of 0,697 down to 0.083.
That the populations of clusters at these widely
differing thresholds are so alike, particularly in the
smaller clusters that account for the bulk of the
active branches remaining, appears to be due to the
similarity of all of the lattices and trees after
they have been pruned down to thelr respective perco~
lation thresholde. Because the structures are pruned
at random, their tuopological structures are quite
irregular. It is reasonable to hypothesize that they
are not much different from what is left of originally
irregular structures, such as the continuous oil in
relatively highly saturated rock, after they too are
pruned down to their tespective percolation thresholds,
as by waterflooding.

This hypothesis offered an explanation for the
apparently universal feature of the residual oil
saturations after waterflooding, which is described
above: the configuration of the disconmected oil,
i.e. the blob distribution, does not vary greatly in
its essential featurese from one porous medium to
another., Inasmuch as .1l blob motion should cease at
a saturation only slightly lower than the percolation
threshold of oil continuity in a rock, this led to the
decision to evaluate, by Monte Carlo calculation, the
cluster size distribution of a 30x30x30 simple cubic
lattice (extended by periodic boundary conditions)
slightly below its percolation threshold of 0.320.
From the same caiculation the cluster length distribu~
tion in one dircection was found and used as a model
for the blob length distribution at waterflood resid-
ual, which was needed to predict residual saturation
versus capillary number in the way sketched in the
preceding section. The calculated cluster size
diattibution (and an earlier one evaluated from a
Bethe treel) agrees well with she cne set of blob
size data currently available.

The outcome is a model that correlates the
measured curves of the ratio of residual saturation to
that at waterflood residual, versus capillary number --
with one parameter. The parameter relates to the crit-
ical mobilization length of blobs, depends on average
pore shape characteristics of the rock, and simply
ghifts the capillary number scale underseath the uni-
versal curve. The correlation of residual saturation
with capillary rumber is completed with a second para~
meter, the limiting waterflood residual (the residual
at vanishing capillary number), which in the light of
percolation theory and blob mobilization mechanics is
virtually the percolation threshold of oil continuity
and should therefore be closely related to the connec~
tivityé or average coordination number, of the pore
space. More direct experimental confirmation is
being sought,

One of the issues reinforced by this practical
outcome of percolation concepts is the character of
the similarities and differences between structure
and transport in two kinds of systems.7-1°’11 On the
one hand are those like rock and Voronoi models, the
underlying topology and geometry of which are both
highly irregular. On the other hand are those with
perfectly regular underiying topology — simple
lattices and networks, equivalent packings and fused
packings —- but having irregular geometry. The latter
are somevwhat simpler to investigate and often much
less expensive to work with., What has long been
abundantly clear from all sides, however, is that even
as limits, perfectly regular models and the concepts
they support do not lead far toward understanding the
nature of such porous media as reservoir rock.

CONCLUDING REMARKS

Regardless of the amount of irregularity in a
reservoir rock, the connection patterns, or topologies,
of the pore space and of the interpenetrating rock
matrix are interrelated. To these also are related
the distribution of curvature of the rock/pore surface,
and the shapes of pores and grains. So too are the
shape patterns, or geometries, of the pore space and
rock matrix interrelated. These are the basic reasons
that mechanical and transport properties of the solid
matrix, fluid distribution properties of the pore space
and flow and tramsport properties of the pore space
are all interrelated. Structural character and trans-
port processes depend on the connectivity structure,
that is, the number and arrapgement of transport paths,

"las well as on the material properties, cross-sectional

areas, and shapes along those paths:
important as geometry.

topsiogy is as

Together these basic considerations are points of
departure for the goal of assembling a comprehensive
picture of a rock on theoretical framework that is
geologically sound, physically accurate, useful in
defining and ranking needed experiments, and able to
correlate measurements of all the important structural
and transport properties.

ACKNOWLEDGEMENTS

The authors are grateful to James C. Hatfield for
pioneering studies, Ronald G. Larson and Kishore K.
Mohanty for their ongoing contributions, John P. Helle
and James C. Melrose for their vision and encouragement
the Mobil Education Foundation for -crucial backing, an
to the University of Minnesota Computer Center and the
Fossil Fnergy Division of the U.S. Department of Energ:
for partial support of the research.

~ 368




ROCK STRUCTURE AND TRANSPORT THEREIN:

UNIFYING WITH VORONOI MODELS AND PERCOLATION CONCEPRTS

REFERENCES

1,

3.

9.

10'

11.

12,

13.

14,

Larson, R. G., Scriven, L. E., and Davis, H. T.,
""Percolation Theory of Residual Phases in Porous
Media," Nature, 268, 409-413 (1977).

Larson, R. G., Davis, H. T., and Scriven, L. E.,
“"Percolation Theory of Two-Phase Flow in Porous
Media," Chem. Eng. Sci., to appear (1980).

Broadbent, S. R. and Hammersley, J. M., "Percola-

tion Processes., I. Crystals and Mazes," Proc,
Camb. Philos. Soc., 53, 629 (1956).

Kirpatrick, S., "Percolation and Conduction,"
Rev. Mod. Phys., 45 (4), 574-588 (1973).

Davis, H., T., Valencourt, L. R., and Johnson,
C. E., "Transport Processes in Composite Media,"
58, 446-452 (1975).

Ziman, J. M., Models of Disorder, Cambridge
University Press, Cambridge, U.K. (1979).

Pathak, P., Ph.D, Thesis, University of Minnesota,
in progress (1980).

Talmon, Y. and Prager, S., "Statistical Mechanics
of Microemulsions," Nature, 267, 333-335 (1977).

talmon, Y. and Prager, S., "Statistical Thermo-
dynamics of Phase Equilibria in Microemulsions,"
J. Chem. Phys. 69, 2984-2991 (1978).

Hatfield, J. C., Ph.D. Thesis, University of
Minnesota (1978).

Winterfeld, P. H., Ph.D. Thesis, University of
Minnesota, in progress (1980).

Winterfeld, P. H., Scriven, L. E., and Davis,

H. T., "An Application of Finite Element Analysis
to Conductivity of Random Media,” A.I.Ch...
Preprint 3la, presented at the 87th National
A.I.Ch.E. Meeting, Boston, MA, August, 1979.

Winterfeld, P. H., Scriven, L. E., and Davis,
H. T., "A Percolation Model of Conduction in
Random Media," J. Appl. Phys., to be submitted
(1980).

Pathak, P., Scriven, L. E., and Davis, H. T.,
"Modelling the Mechanical Properties of Porous
Media Using Voronoi Tesselations,” J. Appl. Phys.,
to be submitted (1980).

15.

16.

17.

18.

19.

20,

21.

22.

23.

24,

25.

26,

Mohanty, K. K., Ph.D. Thesis, University of
Minnesota, in progress (1980).

Ng, K. M., Davis, H. T., and Scriven, L. E.,
"Visualization of Blob Mechanics in Flow Through
Porous Media," Chem. Eng. Sei., 33, 1009-1017
(1978).

Pesheck, P. §,, Scriven, L. E., and Davis, H, T.,
"Cold Stage for Scanning Electron Microscopy of
Volatile Systems,”" to be submitted, Rev. Sci.
Instr. (1980).

Weinberg, L., Network Analysis and Synthesis,
R. E. Kreiger, New York (1975).

Strang, G. and Fix, G., An Analysis of the
Pinite Element Method, Prentice-Hall Series in
Automatic Computation, Englewood Cliffs, NJ
(1973).

Kardestunger, H., Elementary Matrix Analysis of
Structures, McGraw-Hill Book Company, New York
(1974).

Rice, R, W., "Microstructure Dependence of
Mechanical Behavior of Ceramics,'" Treatise on
Material Science and Technology, Vol. 11, Ed.
R. K. MacCrone, Academic Press- (1977).

Brown, R. A., Orr, F. M., Jr., and Scriven,

L. E., "Pore Character and Meniscus Movement in
Diagenetically Altered Reservoir Rock," Can. J.
Pet. Tech., to appear (1980).

Scriven, L. E., "Equilibrium Bicontinuous Struc~
tures,' Micellization, Solubilization and Micro~
emulsions, Vol. 2, Ed, K., L., Mittal, Plenum
Press (1977) pp. 877-895.

Mohanty, K. K., Davis, H. T., and Scriven, L. E.,
“Thin~Films and Fluid Distributions in Porous
Media,"” presented at the 3rd International °
Conference on Surface and Colloid Science,
Stockholm, Sweden, August 20-25, 1979,

Mohanty, K. K., Davis, H. T., and Scriven, L. E.,
"'Stability of Thin Fluid Films at Rest on Simply
Shaped Solids,” A.I.Ch.E. Preprint No. l2la,
presented at the A.I.Ch.E Annual Meetipng, San
Francisco, CA, November, 1979,

Larson, R. G., Davis, H. T., and Scriven, L. E.,
“Displacement of Residual Nonwetting Fluid From
Porous Media," Chem. Eng. Sci., to appear (1980).




(a)

'ﬁ'&'&

Gl RTAY ﬂﬁf’
S
Bl .

T P
&g A
NN el

W

R

34
Eath e
A
TR

K200
';'?Zgé‘ﬁ@
54

(d) | ()

Fig. 2 - Polygon assemblages representing the stages in Fig. 1.




RAMDOMLY LOCATE

LINK SEGHENTS OF BISECTORS
*FOISSON" POINTS

70 ENCIOSE ALL POINTS CLOSEST
TO EACH POISSON POINT

IH THE PLAME, A SULDIVISION INTO OONVEX FOIYGOMS. AVERAGE NUMBER OF SIDES: 6

IN SPACE, A SUBDIVISION awfO CONVEX POLYEEDRA. AVERNGE MUMBER OF FACES: 15 +
Fig. 3 - Consuruction of a Voroni tesselation.

NNV O] 4’§I’ ‘\"/2‘_ N TAVTY

R KO AR

"A\ \\‘"&w .’ ? 1?$VA NS 1 l‘;%‘ S

h ALY 'i\}"&»ﬁ" O }\\\ 2R ‘
XA

~of, « /

e“‘:"k\s'z" N ‘.

SRR DSR2
N AR OIeS e

A 7
R ';z’ S“v

XA _ONANDEE

s N7 NN

PSRRI

M&““A‘\v{ﬂiv RIS IARY,
e IR AR
}\,#,‘vi?ﬂ»},} RS IS AR
ZANNS P
s VY

VAN /2 4
SRR IES

(a) (b)

Fig. 4 - Network, (a), and triangulation, (b), of a tesselation.

e AN o
£SO AT G0
ror %“‘\:o{*,%%@ﬁ?\\“

Taces N 822 0B K H me N N B KB
Polygens Pelypgens
n v n ° °
” 1 4 ” " L] L]
[}} s s s ” s s s

Fig. 5 - Incidence matrices representing structure. § -- solid; W -- brine;
0 -- oil, (Polygons and edges are separately numbered.)




OHM'S LAW ) =
 FOURIER'S LAW q -
DARCY'S LAW Vs
HOOKE'S LAW
IN ONE_DIMENSION OR .
IN "LOCAL COORDINATES" "
HOOKE'S LAW F
IN GENERAL i =
£
d
- X
77k
~ _Z
4

Ax
Bgi) -

TR FXR
TN

g8
—
b
UK FONAATIR
Ingidance
@0 e
A NETHORK OF 7 SITES (DOTS) AND 12 80ONDS (WAVY LINES) e
SUPERIMPOSED OVER THE CORRESPOKDING 7 VORONOI POLYGONS. ’
THE SHADED AREAS, A AND B, REPRESENT ONE WAY TO SUBDIVIDE cree
THE TESSELATION S0 THAT ITS CONDUCTIVE BEHAVIOR IS MOOELED gmeitivrty

BY THE CORRESPONDING BOND METWORK.

Fig. 7 - Network transport property from Voronol tesselation.

SCALAR AND LINEAR

SCALAR AND LINEAR

SCALAR AND LINEAR

SCALAR AND LINEAR

VECTOR AND NONLINEAR
(Rs IS A ROTATOR)

ALTERNATIVE FORM

I‘ 0 soe0e 1 e 0 .l
" ne PR ™
0 ¢ .
CHOKTITY, PUTINTIAS
rReAlLT g-u'rmh m oA
1@ srens K6 eoaee .
e 0 . [ ) "l . .
9 . 0 . .
. . "
COmRCTIVITY, BOARY
Wh TLITY po A
(a)

0 - T 1 1
¢ T "
P e . h
BLECTRICAL, FLOK CAEATS,

MSISTARE AT by

. 0 .o 0
:‘ pe o o .
= [ + . . x"
[ ' P eid
R Lo R WA,
MIETAKE oo
{b)

Fig. 8 ~ Matrix representation of transport prcblems.



OTICTIVE
COMUCTIVITY b

0.5

COMUCTING FRACTION

(b)

Fig. 9 - Conductivity of network model, (a), and size distribution of conducting

i
clusters, (b), vs. fraction of conducting branches.

1.0
coarse-
- upper
'(As5351£"
K K
0.5 coarse~-
lower
- refined-
upper
refined-
L lower
| ]

% Vv l%.s 1.0

Conducting Fraction

Fig. 10 - Conductivity of 160-polygon models v conducting area
fraction, calculated by finite element method. V-potential
formuletion, A-flux formulation.

2.0 {
K50
trmctive
CORUCTIVETY
1.0 ces
Keo
0.3 1.0
CORDICTING FRACTION
(a)
1.0
mrcTIVE
CMUCTIVITY
o5 X =01
xe0
Y 1.0

CONCUCTIRG FRACTION

(b)

Fig. 11 - Effects of pore surface conduction,
(u?. and, additionally, grain boundary conduc
(b), by finite element method.




RIGID-JOINTED STRUCTURE

YOUNG'S
MODULUS
= (% ~ ]
PT E-Acosze---i- ('E—A' - 12EL,, m-sine ] Ax
x L L L3 LZ
+ l2-!351-1::23 - 0808100
F - 1 %—ainze + - ——-cGEzI 088 |Ay
y L
+ ———c12§1 osze
L
4EI
Symmetric V5 .1
z i S
- - POROSITY
- - - .13 - Y ' dul: ity, leculated
Etgéaéﬁ po?é%fd jointed truss element and stress-strain relation ;:gm two-diggggigngg gegsoxg Sﬁﬁ:i.tysx§§r§$e§c§1

data band from Rice,?!

EFFECT OF POROSITY

~H— TENSILE MICROCRACKS: EXTENSION EXCEEDED 0.004 {0.4%)
STRAIN IS IVE

MAXIMUM STRESS MARKS FRACTURE ONSET AT CONSTANT LOADI

Fig. 14 - Microeracking at maximum stress, calculated from two-dimensional truss
network models of different porosities.



Stress

No. of
Micro~
cracks

Porosity ¢ » O

b 40
9 ¢ = 0.093
3 r
¢ = 0.198
0 1% b2 4 3x
Strain

Porosity ¢ = 0.093

15° 42 B
Number of
microcracks

[}

L

15°  4s°
ORIENTATION OF
TENSILE MICROCRACKS
AT _MAXTMUM STRESS,
ABOUT THE DIRECTION OF
UNIAXIAL COMPRESSIVE LOAD

75°

15

Porosity ¢ = 0.198

o (-]

45 75

fig. 15 - Stress, strain, and orientation of microcracking in two-dimensional

truss network models.

Fig. 16 - A continuous path appears as conducting elements are added randomly:

the percolation threshoid.




