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!WHRACT rock. The other half fs the way the pores are con-
nected together - in a word, the topology of the rock

Matrix and pores of rock form irregular,,inter- structure. The connection patterns of the pores and
penetrating,network-like structureswith interrelated of the matrix, however chaotic both may be, are not
Bhepes and comectivities that are statisticalvari- independent. Does this mean that mechanical propertie~
ables resulting from the nature of the original sedi- of the solid mstrix are related to fluid distribution
nents and the diagenetic processes they have suffered, properties and fluid flow properties of the pore space,
Transport properties of either network depend on geom- and vice versa? Are there scientific bases for sys-
etry, i.e. size and shape distributions;transport thematicallyincorporatingall the convenientlymeasur-
depends equally on the number of transport paths, or able properties of rock in a geologically sound, phys-
distributionof connectivity,i.e. topology. Thus ically accurate description useful for engineering the
different structural properties and transport pro- improved locating and recovering of oil?
cesses in rock matrix end in pore space are inter-
related. A unified picture of rock structure and transpor~

therein is indeed emerging, as we indicate here. At
This theoreticalprediction is studied by means the center of this picture are new means for modelling

of the Voronoi construction for subdividingspace, the statistical geometry and statistical topology of
which provides precisely defined, realistically rock, and new concepts for dealing with essential
irregular models of rock end of distributionstherein aspects of the innate irregularity.
of fluids, conductivity,permeability, strength, etc.
Geometry and topology of the models are coded into Reservoir rocks are the “packed beds” in which
matrices that are useful for thinking about structure oil becomes entrapped as reeidual, and in which chemi-
and transport, and which become factors in illustra- cal flooding processes are operated to enhance oil
tive calculations of electrical conductivity,Young$s recovery. Xn trying to understand the distribution
modulus, and fracture strength as functionsof, for
exaple, porosity. The results show percolation

and flow of oil and brine in reservoir ro~? we dLs-
covered1*2 tl&t concepts and results of a coinparativel

thresholds: cessation (or onset) of transportwhen a new physical theory fit porous media beautifully: the
critical fraction of paths is randomly blocked (or percolation theory of transpurt through irregular net-
created). Statisticalfeatures of structure and works and in irregular composites.3-6 Most of the

transport are the subject of percolation theory. mathematical development of the theory is for circum-
stances in which the irregularityhas major elements

The results help focus experimental studies and of randomness,but the theory is not restricted to
point to a unified picture of structure, strength, entirely random structures. We perceive that it can b
and transport. amended and extended to explain and correlate most of

the peculiaritiesof deformation, strength, and trans-
INTRODUCTION port in rock.

Reservoir rocks are porous materials that because Many field observationsand laboratory results
of their origins and history are partially ordered yet can be explained qualitativelywith percolation con-
irredeemsblychaotic. Their profound irregularityhas cepts. In its present state of development, however,
defied adequate analysis and hindered understanding.
Obviou*ly some statisticalconcepts are needed, but

percolation theory yields quantitativepredictions in
few cases except by Monte Carlo calculationswith a

distribution functions of pore sizes and grain sizes model of the porous medium. It is also true that even
have not led deep. The reason is that the geometry the most careful laboratory experiments are confounded
of pores and grains is only half the structure of a by the enormous time and expense of disassembling just

a small sample of rock grain-by-grain,pore-by-pore,

References and illustrationsat end of paper. Y
and recor ng all of the relevant dimensions and con-
nections. For both theory and experiment what ars
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needed are model rocke of precisely known statistical
properties or - far better yet - of exactly known
constitutionand structure, from wklch statistical
properties can of course be calculated.

In trying to understand microemuleions,whichmey
be haotically bicontinuous,multiply connected etruc-
mn..s as reservoir rocks are, our colleague S. Prager
introduced the Voronoi division, or tessellation,of
spaca randomly into convex polyhedra,8*9an tdea that
Is not well known although it has been usad in theoret
ical metallurgy and in liquid-statetheory.e Recogniz
ing that the degree of randomness can be controlled am
that tha polyhedra can be roundad if desired, we have
automated the Voronoi-typeof construction for the
digital computar.lO*ll As dascribed below, thts
enables us to generate rocks of exactly known pore and
matrix structure with which to make totally controlled
experimentsby computer simulation. Of course a
computer-generatedtessellationis also a plan for
building a tangible porous medium,

Voronoi tesselattonsof area into convex polygons
are suitable for pilot studies bacauae the two-
d.imensionalconstructioiisare si.mpletand less expen-
sive than three-dimensionalones. We vummarize here
the results of pilot studies of conducL<.vetransport,
10-13 including pore-wall and grain-boun,’aryconduc-
tion,ll elastic deforuatlon,14and microcracking and
fracture.14 Similar studies of fluid antrapment15
and other processes are in progress. The results
testify to the relevance of percolation theory and
point to the unified picture mentioned above. They
shed light on the extent to which regular lattices
and networks, which are sometimes used as models,
reflect the nature of porous rock. The results also
help focus related laboratory experimentationwith
rock and kindred porous media at Minnesota and else-
where.79~5-~7

MODELLING ROCK STRUCTURE

Dapending on the nature of the original sediments
the environment in which they collected,and the
diagenetic processes they subsequentlysuffered, the
pore space of sedimentaryrock is more or less chaotic
and so is tha solid matrix. In the chaos may be ele-
ments of order, such as bedding planes, however. The
history of a reservoir rock ia cartooned in two dimen-
sions in Fig. 1. (a) pictures a volume of space just
above the sea bottom: it is devoid of sediment. In
(b) sediment gratns have settled to form a high water-
content deposit in that same volume. Close inspection
reveals layering, the bottom layer containing the
largest grains on the average. As this deposit is
buried the grains shown will rearrange by stress-
induced rotatton, sliding, plastic deformation and
perhape even some breakage. In (c) the compacted
sediment is lithifying. The pore space is filled with
water transportingdissolved minerale that participate
in cementation,dissolution,recrystallization,ate.;
at the same time the matrix La stressed in complicated
ways that influence solution and crystallizationand
may cause sintering or microcracking. Or (c) might
show developing secondary porosity after an episode of
massive cementation.

In (d) the pore space has been invaded by migra-
ting petroleum which has accumulated to a high enough
saturation that it is connected and can readily flow
under a pressure gradient. Before much of a pressure
gradient appeara the assembly will probably have
?cponded to low frequency, low amplitude elastic wave

and, if it happene to be grazed by a bore-hole, to
applied electrical potentials and other means of
probing. Incidentally, (d) does justice neither to
the water layers adhering to many of the grain sur-
faces that iace oil, nor to the water-fillad
perforated-sheetmicropores between some of the other-
wise cemented or sintered grains. In (e) the specimen
has responded to one after another of the pressure
gradients that are typically applied in primary and
secondary production of a reservoir. The residual oil
that remains has been disconnected by the conspiring
of pore configurationand capillarity and it is held
trapped by the same conspiracy. There are many reason
for seeking to model rock structure in such a way as t
capture the essential features despite the camouflage
of chaotic irregularity.

Several kinds of porous media appear to bracket
rock. One is the familiar unconsolidatedpack of
well-rounded grains or beads all of nearly the same
size; limiting forms are the geometricallyand topo-
logically perfactly regular sphere packs, in which
the coordinationnumber bf the grains is fixed aud so
is that of the pore bodies. A second kind is the
unconsolidatedpack of nearly identical polyhedral
grains; again there are perfectly regular limiting
forms. Both ktnds can be cemented or partly sintered
and fusad to resemble consolidated sedimentaryrock
more closely. Howaver, it appears that all of these
relatives as well as’rocks themselves can be approxi-
mated as space-fillingassemblages of polyhedra —
polygons in two dimensions — some of which are grains
or solid matrix, and the others of which are pores,
or fluid-filledspace. The polyhedra — or polygons -
should generally not be regular. Fig. 2(a) shows the
board on which the gem::of Fig. 1 was played; in
subsequent panels of Fig. 2 the game is replayed.

Voronoi Tessellation

To develop the rules of modelling rock by the
method of polyhedra (as noted above, once a model is
constructed the polyhedra in it can be rounded as
appropriate) it is c~nvenient to start with cases of
exclusively convex polyhedra. A quite flexible.and
potent approach is provided by the Voronoi construction
for subdividing space randomly or otherwise into con-
vex polyhedra; the construction can be executed by
computer. Fully random Voronoi tessellationsof area
into convex plygons of prescribed mean area are suit-
able for pilot studies because, as already noted, they
are simpler and less expensive than three-dimensional
construction. The examples in this paper are based on
such tessellations,the construction of which is out-
lined in Fig. 3. Within the polygon about a Poisson
potnt are all points lying closer to it than any other
Potsson point. The Poisson pointe are merely scaffold
Ing for the constructionand can be removed afterward.
But when the Poisson points are chosen entirely ran-
domly there can b~ none of the stratificationshown in
Figs. 1 and 2. The random tessellationsactually used
in a number of the examples are ehown in Figs. 4 and 1

Representationby Matrices

To represent the structure of connections in a
tessellation,i.e. which of the polygons (polyhedra)
border each polygon (polyhedron),it is convenient to
replace the tessellationby a network. The essence of
the network can be stored in a table or array, but it
ia helpful to visualize it as in Fig. 4(a), where the
centroids of the Voronoi DolYnons are the nodes and.-
adjacent nodes are connected by branches, or bonds,
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each of which corresponds to a common side of two
polygonis.

To represent the geometric.shapes in a tessell-
ationit suffices to tabulate the coordinates of poly-
gon (polyhedron)vertices in a syetemetic way. How-
ever, for many computationalpurposes it is convenient
to dissect each polygon (polyhedron)into triangles
(tetrahedral).Thie is illustratedin Fig. 4(b), where
the same tessellationhas been broken down into tri-
angles by drawing straight lines between the controid
and vertices within each polygon. All of the informa-
tion about shape is contained in the lengths of the
triangle sides, which for ready reference by computer
methods can be recorded in an array, or matrix T, the
rows correspondingto the triangles and the columns
to the sides (other arrangementsare useful for variou
purposes). A crude numerical index of shape is merely
the ratio of the length of a polygon side to the dis-
tance between adjoining centroids or. alternatively
but less defensibly, to the distance between adjoining
Poisson pointe. Indeed, this indc.xis ueed below to
approximate the transport reaistmce between the two
polygons when for simplicity Kte tessellationis fully
replaced by a network of trcnsport paths dezived from
it●

Converting a teeselation into a model of rock is
a rotter of deciding what fraction of the polygons
(polyhedra)are matrix, whet fraction are pore space,
and what degree of order, if any, there is in the
eplit. In the examples ueed here the eplit is entirel:
random. Now the matrix network and pore network are
efficiently representedby an incidence array, or
matrix, the rows of which are the polygons, or nodes,
and the columns of which are the polygon sides, or
brenchee. The entries are le<ters (or numbcxs, which
are better suited for the strength end transport cal-
culations summarizedbelow) that denote the composition
or filling of each polygon: see Fig. 5.

The entire connectivity structure, or topology,
of the model rock and its pore filling is recorded in
this rectangular incidencematrix C, relatively simple
cases of which are standard fare in network sctence
and engineering.18 It is remarkable that according
to matrix algebra, if CT is the transpoee of C, i.e.
the matrix in which its rows end columns have been
interchanged,then the i-th diagonal entry of CCT, a
square matrix, is the number of sides of the %-th

We Uarelfof the symbol of its com-polygon timee the q
position (WW, SS, or 00 in Fig. 5)! the off-diagonal
entries tell what polygone share conmon sides. The
total number of sides a polygon has ie of course ite
combination.number in the tessellation.The number of
sides it sharea with polygons of like compositions is
its coordinationnumber in the network of that compo-
sition, and this number can be counted up in the off-
diagonal entrtes In its row (or in its column, equally
well). The coordinationnumber of a pore polygon is
the number of ways out of that part of the pore spsce
into other parts, an~ thus characterizes the local
topology of the pore space. The coordination number
of a rock polygon hae the same sort of s.igntffcance,
md cw be counted up in the same fashion. All of the
informationis in C.

Polygons (polyhedra)unless they happen to be
totally surroundedby another kind are part of a large
structure, the grains or pores of whkch can be identi-
fied systematicallyfrom C and shape information once
definitionsof grain boundaries and pore throats are
adopted. The connectivityof the matrix end the
ronnectlv%tv of the uore ~be ~

,

1, as can the local measures, the coordinationnumbers
)f grains in the network of solid and of pores in the
wtwork of pore epace. (Indeed, C canbe broken down
kto CS for solid and Cp for pore space.) What is
~xtremelysignificant is that the coordinationnumbers
Ln two interpenetratingnetwork~ are interrelatedand
:heirconnectivityproperties are conjugate; that is,
the topology of the rock structure follows from that
>f the pore structure, end vice versa.

When oil and water compete for pore space it Ie
in effect divided into two upaces: see Fig. 5(c).
;onttnuousfillings of oil end disconnectedoil blobs
m ganglie can be Mkewiee be calculated from the
Lncidencematrix C. Agein it is extremely significant
that the connectivityproperties of the water-filled
md oil-filled networks are conjugate; given the
Eopology of the pore structure, the topology of oil-
Filling follows from that of water-filling, and vice
~ersa.

Interestingly,the j-th diagonal entry of CTC, a
squarematrix of higher dimension, is the “sq~are” of
the symbol of one polygon plus the came of a contig-
uous polygon (e.g. WW + WW, WW + SS, etc. in Fig. 5).
Ihet Is to say, the diagonal entries of CTC summarize
the network of the original tessellationfrom the point
>f view of branches while the diagonal entries of CCT
io the same from the standpoint of nodes. The same Is
Erue of Cs and CsT for the solid matrix, Cp and CPT for
the pore space, Cw and CWT for water-filled pores~ Co
%nd COT for oil-filled pores, and so on. In C resides
all of the informationabout structure of a model rock,
~part from local shapa. ~n another matrix, either T,
the matrix of side-lengths in a triangulationwhich
was introduced above, or an equivalent array, resides
all of the informatiotlabout shape. It may be helpful
to think of C as the skeleton and T as the flesh; if
the analogy is pursued the property matrices in the
next sectton are the tail~red clothes that make the
perecm,

KODELLINGTRANSPORT

Change of, and within, a rock is brought about by
traneformetlonprocesses euch as phaae transitionsand
chemical reactione, and by transport processes such as
electrical conduction,heat conduction,molecular
diffusion,end fluid flow, and also by elastic deforma-
tion and plastic deformation,which can be viewed in
terms of momentum tranaport. The modelling of change
In rock models built on Voronoi tessellationsas well
as less random constructions is clear in outline, but
details have been completely worked out so far in just
a few pilot studies for the numerous modelling efforts
under way at Minnesota. Soma of these pilot studies
are of transport,ostensibly Ohm*s- law electrical con-
duction in pore space but simultaneouslyof Fourier-lau
heat conduction,Flck’s-law eol.utedif..usion,and
Darcy-law flow of a stngle fluid, owing to the close
enalogtes fnwng these processes, as indicated by the
familiar, simplified constitutive relations shown in
Fig. 6. Hooke’s law ia taken up below.

Transport Properties

The conetitutiverelations in Fig. 6 are simpli-
fied ones for steady onedtmensional trenaport down a
path along which the transport coefficient is constant,
The simplificationis appropriatewhen a polygonal
(polyhedral)model is replaced bya network in the
manner described above. The question then ia how to
assign conductance or permeabil:ties to the branchea

!?
tha. no~ to
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transportprocess in the model. The conductance of a then calculate the :Iuxes throughout; this is the
transportpath obvtously depends on the conductivity strategy behind the potential formulation in Fig. 8(a).
>f the material of which the path is composed and on When potentialsare impressed, it may be simpler to
the shape of the material, e.g. its cross-sectional use the flux formulation in Fig. 8(b) and solve firet
zrea as a function of distance along the path. If the for the currents Ij. (In the flux formulationthe
naterial is Inhomogeneous- as is generally the case
in rock -

connectivitystructure is representedby a current-loop
the conductivity is d’istrlbuted.But the incidencematrix D which ie derived from C and appears

shapes in an irregulbr polyhedral model always are instead of c.18) Actual.>;the numerical work is often
distributed,and consequently in pilot etudies it is less by that formulationwhich presents fewer simul-
sppropriateto”begin.by supposing the material prop@r- taneous equations to solva. Xt turns uut that &e
ties are homogeneous and the branch conductance are number d“findependent equatior.sin the flux formulation
controlledby geometric shape. An intuitivelyattrac- is less than in the potential formulationwhen the net-
tive approximationintroducedby Ratfield10 is to set work is not too holey, i.e. when there are not many
the conductanceof each branch proportional to the closed loops in the network. In any but the smallest
length of the side between polygons that it represents, specimens of porous rocks having appreciable perme-
and inversely proportional to the distance between ab$llty the holeyness of the transport network~ in
centroidsor, more simply, the Poisson points of the both the matrix and the pore space is immense and begs
two polygons, as indicated in Fig. 7. That this is a for statistical treatment once Its e~sential aspects
reasonableapproximationis established by the more are understood from the etudies of w~del rocks which
Bccurate calculations for polygonal models which are are in progress.
~utlinedbelow.

What fs striking about both f(,rmulationsis the
Representationby Matrices way that topological structure C (!.erewith O and 1

replacing S and W and a sign convention introduced)or
The conductance in a network approximation to a D multiplies geometric-shape-determinedconductance

polygonal (poly?.edral)model are efficiently recorded K or, respectively,resistance R to produce the
as the or<ki:i diagonal entries in a purely diagonal coefficientsof the unknown potentials or fluxes in
matrix K Laving as many rows as there are branches, the sets of linear, algebraic equations. In matrix
or bonds. and an equal number of columns (thus the notation the arrays in Fig. 8 boil down to
dimensio;tK is that of CCT); the off-diagonal entries
are all ~ero. For some purpoees the branch resis- (CKCT)$ = Ib + CK$b
tances, khich are merely the reciprocals of the branch
conductance, are needed; these are efficiently (DRDT)I= $b+RIb
recorded as the diagonal entr~.esin a purely diagonal
matrix R of the same ordering and size. So far as the Here is a powerful means for thinking about rock struc-
transport process is concerned, the matrix K or R ture and transport therein, even though modern com-
supersedes the shape information in T, which was
introduced above. Indeed, when conductivity is uni-

puters can still not solve enough equations to analyze
in detail anything more than a pathetically small

form K and R can be calculated from nothing more than specimen, from the viewpoint of reservoir engineering.
T and the value of the conductivity. What is highly Agatn, what is needed is a statistical treatment that
significant is that the conductance and permeabilitles adequately relates the essential aspects at smaller
for different transport processes in the same network scales to the important aspects at larger scales.
of paths — rock matrix, pore space, water-filled
pores, oil-filled pores — are necessarily related RESULTS OF TRANSPORT MODELLING
because they depend on shape along paths in similar
though not necessarily identical fashions. Darcy-law Sampl~olutions of the equations in Fig. 8 have
permeability,for example, 2s more sensitive to cross- been obtained by Hatfield10 and Winterfeldll-13for
sectional constrictionsthan is Ohm’s-law conductance. conduction in two-dimensionalnetworks, some regular,
Nevertheless,the geometric shape of rock matrix some Voronoi-generated,in which the branches are
closezy links the transport properties in different randomly chosen to be conducting in various proportion
transpert processes in the matrix; the geometric shape Selected results for a teaselationcontaining 160
of pre since likewise closely links properties in
differant transport processes in the pore space; and

polygons are graphed in Fig. 9(a). Whet is noteworthy
is that the specimens on the average conduct not at all

the interrelation of matrix shape and pore shape links , until over 40% of the potential paths between polygons
to some extent at least, tranqxmt processes of the are conducting. ‘l%istype of threshold behavior is
two kinds. well-known in chaotic networks and chaotic composites:

it is called a percolation threshold, it ia a subject
The geometric shapes of oil-filling end water- of percolation theory, and it is taken up below. In

filling affect transport processes within the pre that regard the cluster-distributionresults shown in
space in similar ways as do the pore shapes themselves . Fig. 9(b) are of interest.
Thus geometry is half the structure of a rock and of
its pore fillings,while topology is the other half. Finite Element Analysis of Conduction
This can be seen vividly in the matrix formulationof
electrical conductionor anequivalent process in, Fay, Conduction in polygonal models, including those
the pore space of a polygonal rock nmdel generated by beh%nd the network model in Fig. 9, can be analyzed
means of a Voronoi tesselatton. TWO such formulations more accurately - indeed, as accurately as expense
appear in Fig. 8. and computer Lhnltations allow - by the methods of

Transport Formulated Mathematically
subdomains and Galerkin weighted residuals in the 19
modern combinationknown as finite element analysis.
That is, novel developments in computer-aidedanalysis

When current or flux is impressed at the bound- now make it possible to approximate as closely as
ariea of the specimen; it may be simpler to solve first desired the solutions of Laplace’s equation and other
for the potentials ~i at the nodes of the network and partial differential equations of transport when the

-. QQ/1-
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Iomein is chaotic or random aa are those generated by
~oronoi tesselationg

consolidatedrock ie more complicated than conduction
In the case of Leplace’”sequation because the rock resists both bending strain and ten-

Ln two dimensions it happens that the potemtlal formu- sile or compressive etrain. To be realietic a network
Lation leads to a useful upper bound on the reduced modal accordingly ought to consist of trusses that can
zonductlvitywhile the flux formulation leads to a be bent as well as stretched or compressed;moreovar it
wveful lower bound; the reduced conductivity is the seems reasonable to tske the truseee as being rigidly
conductancek of the polygonal model divided by the bonded to each other. Fig. 12 portrays the relatlon
conductancek when the entire tessellationis filled between force component, Fx and Fy and bending ~ment
tith conducti~gmateriel.12*13 ~at anetwork joint or node, and thadisplacenents

Ax and Ay and sotation A@ of the joint.20 The elasttc
The results.labeled“coaree” in Fig. iO are for a properties depend on Youngvs modulus E of the matrix

L60-polygonVoronoi tessellation(ehown inFig.16(a)) materiel and the local shape, as represented by cross-
Ln which each proportionof conductin~ polygons was sectional area A, length L, and moment of Inertia I.
realizedby random choices 10 times. The conduction The relations in Fig. 12 can be aesetibledinto matrix
problemswere solved with finite element bases con- equetions for elastic deformation of a Voronoi-
sistingof linear trial functione, called chepeau
functions,on elements that are the triangles into

generated, two-dimensionalnetwork in which the
branchas are randomly chosen to be trusses or void in

ahich the polygons can be diesected as in Fig. 4(b); various proportions.
the mean and standard deviation of the ten reduced
tonductivitiesin each set are indicated in Fig. 10.
I’herethe results labeled “refined” are from more

Results for a tessellationcontaining 200 polygons
are plotted in Fig. 13, whare porosity stands for the

Bccurate finite element calculations in which each proportion of network branchee that are void. Shown
trianglewas s~etemsticallysubdivided into four In are the mean and spread of five random realizationsat
the usual way.19 The rates of convergence of the each porosity.14 Also shown are the mean and standard
upper and lower bounds ere about the same and the true deviation of more than 50 sets of measurements of
reduced conductivitycan be estimated with an error Young’e modulus of ceramics and glasses.21 The novel
likely to be less then 1%, which illustrates the truse-networkmodel reproduces, to within a constant
potency of the method.12,1~ Here, then, is en example factor, the oft-measured behavior of ceramics. The
Df model rocks of exactly known constitution and constant factor, we believe, comes from the difference
Btructure from which statistical properties - matrix between the two-dimensionalityof the pilot models and
conductivityor pore conductivity in this case - can the three-dimensionalityof the measured specimens;
be accurately calculated. Incidently, the results in random structures of the same porosity, seals and
show that a resistor network tends to have a bit locel modulue,there are more interconnectionsin three
lower conductivity then the polygonal model from which dimensions and hence the three.dimensionalstructure
it is derived. The percolation threshold ie again ought to be etiffer.14
evident, at a conducting fraction of about 45%.

Microcracking and Fracture
Pore Wall and Grain Boundary Effects

If the tensile strengths of bonds between adjacent
Pore-lining clay minerals and imperfectlycemented polygoxzsin tha underlying model are epecifLed — and

Srain boundaries or perforated-sheet-likemlcroporee they can be realisticallydistributed, if desirad -
it .zlled with brine apparently can affect etrongly the analysis can be extended to bond failure and
the conductivityof reservoir rock. These phenomena beyond, i.e. to truss failure in the network, which
are roughly accounted for by Archie”s “law” and similar correspond to microcracking in the rock model. With
correlations. Thay can easily be investigatedwith each microcrack a load-bearingbranch of the network
suitably designed modifications of the model rocks disappears and so the topology changes; hence the
used for Fig. 10.11 In one modification the pore incidencematrix C must be altered with each successive
surfaces are assigned a special conductivityk; the microcrack and a new elasticity problem solved. (The
resulte are shown in Fig. n(a). The percolation situation is similar in two-phase flow when as oil
threshold is unaffected but if the surface conductivityy saturation falls, capillarity conspires with pore
is sufficientlyhigh the surface conductance over- geometry to force breaks in the oil continuity, as
shadows conduction through such conducting liquid as sketched below.) Each solution, incidentally,yields
is present in the pore space. In another modification a Youngte modulus of rock under successivelygreater
not only the pore surfaces but also the grain bound- strain.- The results show how, as uniaxial compressive
ariee are assigned the epecial conductivityk, with strain is increased, tensile microcracks form and
the results shown in Fig. n(b). Now there isno well- multiply until a maximum supportable stress is reached!
defined percolation threshold bacause even when all of see the example in Figs. 14 and 15. When this stress
the polygons are nonconducting- whether they are Is exceeded the already present clusters of microcrackl
solid rock or oil-filled pore space - the surface and rapidly link up and fracture ensues. fiis is another
grain boundary paths remain, although their conductancee example of a percolation threshold. The modelling can
may be low. be further extanded to account as well for the shear

strengthe of bonds. The mexlmum supportable strees is
Network Analysis of ~~ung’s Xodulus the gross strength of the model rock. Its variation

with porosity reproduce, also to within a constant
To this point the trensport processee that have factor, the general trend of the many measurements of

been modeled are described by linear equations. Where- strengths of ceramice.14*21
as Hooke’s law of elasticity in one dimension islineer,
it ts not in two and three dimensions except at vanish- These findings indicate that mechanical propertied
ing straina (see Fig. 6). Youngqs modulus at venishing including strength, of rock can be modeled by means of
etrain of dry rock is an interesting ex~ple. Proper- the Vorono% construction.- adequately by the network
ties related to or similar to this momentum-transfer approximation,and still more accurately by finite
mdulus are of course of great importance in locating element analysis of elastic deformation of the polygon~
and assessing reservoir rock. Elastic deformatiotiof (polyhedra),which 1s in the offing though it iamore
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banding than the ftiiteelementanalysis of conduc-
tioneketched above. No other conceptual framework
h the literature acco~te for the observed porosity
lepandenceof all four aspecta of compreeeive loading
>f ceramics and rocks: (i) elastlcmoduliat small
$trainsi(ii) numbers, length and orientation dietri-
Wlons of microcracka as strainincreases;(iii)
Lnelaeticstress-strain,fracturestrength, and post-
:riticalstress-strain; (iv) eansitivity to anisotropy
}f loading, which can convert brittle fracture to
luctilefracture, as indeed the Voronoi-generated
:russ-networkwdels show.14

?LUIDDISTRIBUTIONSAND FLOW

Flow of a single fluid phase through pore apace
Ls described microscopically by Darcy’s law and
?arients. N&croecopically it ie being modelled by the
nethodsalready described, for such purposes as under-
&tendingDarcy*s law and flow distribution,wall shear
that tende to teer off fines, adsorption rates at pore
klls, effecte of graded viscosity, and various dis-
>ereionmschanisme. When ttm or wre immisciblephase!
sharethe pore space, what is central ie how they are
~istributad- first of all whan they are not flowing.
rhe casa receiving the most attention is that in which
the reservoir rock is totally wet by water or brineam
m Izmiecibleotl phaee %a also present. In this cir-
xznetsncethe walls of otherwise oil-filled pores are,
by definition, linad by thin films of water. The
Nidence is that the static distributionof oil and
water ia.s.mtrolledby pore configuration,with cap-
illarity- the action of %nterfacial tension between
>il asuiwater at curved menisci -- being its agent.
rhe distribution is also influencedby the history of
past flow.

Pore Shape and Fluid Distributions

Pore walls are necessarily cuxwd; even when they
me facetedas in polyhedralporous media there are
6ingularconcentrationsof curvature in the seemingly
Bharp corners and edges.22 It happens that the dis-
tribution of wall curvature ie related, according to
topological facts, to the connectivity of the pore

ivslently, to the comectivity of the roe,
%%x%~~ Necessarily there are wall regions havin,
raverse curvature (principalcurvatures of opposite
Blgn) and hence local saddle shape: theeeregions
must include the poxe throats and the matrix necks.
Thus pore shapes, end sx?trix shapes as well, are linke
to the interrelated toplogies of the pore structure
and the rock structure. The pore throats are not only
c=ross-eectionalconstriction, thy are also the wall
regione of lowest mean curvature. As a consequence
they exert controlling influence on the distribution
of oil ae its proportion, or saturation, falls and
capiller%tyLa present In water-wet rock.

At high oil saturationmost of the pore throata
are filled with necks of oil although the throat-walls
are coated by water in a thin-film state.24 The oil
in the pore space is continuous, i.e. well connected.
As saturation falls,collareof bulkwater tend to
grow aroundthe necks in the throatsand then to
suffeta capillaryinstabilitythat caueaa them to
choka.wff the necks, fitst of ell those in the most
constricted throate and than, ae oil maturation con-
tinues to fell, im larger and larger throats. When
the instabilityclwkee off a neck it breaksan oil
connectionand createetwo maniaci calledhesde,i.e.
concaveoil-waterinterfaces,that retract toward
etable locations in nearby pore bodies. As they do eo

theymay sweep pact adjacent connecting throats and
~ever the necke in them so that additional headtzare
Formed. (The procees is analogous to microcracking of
the matrix under load, and can be analyzed by the
nethodsdescribed in the praceding eection.) The heads
that are created take up stable positions,many of them
~ext to the larger pore throats; but as saturation
falls they too may suffer another capillary instability
md jump - Haines’ jump — through larger pore throats
to new positions, sevaring nacks and creating new heads
zs thay go.zs

In these ways more of the menisci called heads
rnregenerated as oil saturation falls, and alwaya the
:ause ie instability ofan interface configurationthat
:1scontrolled by tha distributionof pore-wall curva-
Lure. The succession of meniscus states is completely
iletermined,given the initf.alstate, if interracial
tension is appreciable and viscosity low anough that
the viscous effects accompanyingmotion are insignifi-
cant. This la roughly the picture in primary produc-
tion, for example, although the presence of gas is
generallya complicating factor. In waterflooding and
chemical flooding there is ueually a migrating oil bank
the rear of which is a moving zone of falling satura-
tion in which oil connectivity is repeatedly broken by
the events that populate the zone with heads; these
evante are essentially those just described if the
Darcy-flowvelocities are low”enough that capillarity
dominates viscous effects, i.e. at normal waterflooding
capillary numbere. (A static oil-waterer gas-oil
contact region in reservoir rock is a similar falling-
saturation zone at rest.) With increasingnumbers of
breaks in oil-phaae continuity, portions of oil become
totally disconnected from the continuous oil. These
portions, which may occupy from one to many, many
interconnectingpore bodies, are called blobs or
ganglia (they may alao be regarded as clusters); each
is surrounded by the menisci called haads and by water-
wetted rock surface. The number of breaks raquired on
the avarage to create a blob depends on the connectiv-
ity of the pore space; in particular, it dapends on the
average coordinationnumber of a pore — the number of
ways out.26 ~,

The disconnectedblobs, if they are shorter than a
calculable length that depends on the pore space and
the capillary number of flow (or the Lend number of
gravitationally-causedbuoyancy), cannot move: they
are trapped, again b a conspiracy of capillarity and

8pore configurational Disconnectedend trapped, these
blobs are lost to the network of paths ovar which oil
previously flowed, unlese they are rescued by arrival
of, and coalescencewith, some blob long enough to be
in motion. Given the rock structure,and, in flooding,
the overall flow direction, the entire sequance of
events is in principla determin~sticand reproducible.
At any saturation value as saturation falls from a
givan tnltial value, the,numberand location of choked-
off necks is fixed. So are the number and location of
isolated blobs as well as of still continuous oil. In
other words, the cluster-distributionwhen viscoue
effecte are insignificantdepen~s on the configuration
of the pore space and saturationonly (apart from
hysteresis effects, i.e. influe~~ceof the initial dis-
tribution end raversal of saturation change). When
aaturat%on falle to a certain lev~%lset primarily by
the comactivity of the pore space, the last remaining
continuous paths of oil through the ?z~k are

2
on the

averaga, broken: a percolation threshold.l*
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Ata sliEhtly lower saturation valua the additional residual eaturatloneof oil in flooded regions that is
Lnstabilttiesend breaks in continuity of the longer, independent,or nearly se, of the details of rock and
Leolatedyet movableor roving blobs leevee an entire pore structure; The feature should be sought in the
populationof trapped blobs, which are known collec- distributicm of residual saturation - the blob or
tivelyas the waterflood residual, i.e. the oil matura- clueter distribution - and the means for doing BO is
tion that cannot be reduced further by brfne flowing
w any low capillary number. The experimentalevi-

percolation theory, as touched on below.

ience,direct and indirect, is considerable.2*26 And The indicationof a universal feature of residual
so it appeera that fluid distributionsin pore spree saturations 1s significant in many respacta, among
we results of transport processes that depend on the them the conzaonfeaturesin curvesof capillarypres-
sam gec~tricsl end to~lcgical asflcts of the rock sure (includtnginitiellresidualhyatereaia)veraua
3s do other tiwnepcrt prvoesses. oil saturation,relative permeabilityvariation with

saturation end capillary namber rasulta of tracer
Blob Mobilization end capillary Numbek 1?flow experiments.and others.2* 6 AZ important to.

understand aa the mmnon denominatorsare the differ-
Diaconnectedati trapped, a blob remains Izmmbile encea that overlie them. Percolation concepts are

even though aqueous phase continuas to flow through appropriate tools. The degree to which they work in
nearby pores, as noted above, up to a critical value this area of fluid distributionsand flow testifies
of capillary number - the ratio of dynamic vlacous to their more genaral applicability to structure and
Eorcea in the water that tend to moveoil,to the transport In rock.
capillaryforces holding it trappad. The critical
value hinges on the length of the blob in the flow PERCOLATION CONCEPTS
directionand the pore dimensions in which it la
trapped. The capillary hydrodynamicsof blob mobili- The term, @rcoJation, was applied by Broadbent
zation and confirming experiments show that at the and Nammeraley3 to the process of generating,a contln-
criticalvalue one of the blob’s head menisci becomes uous transport path across a network or composite in
unstable in the throat where it ia lod ed and jumps

5
which individual, short transportbranches are created

ahead; often this mobilizes the blob.1 *16~22~26 If or activated more or less at random in increasingnum-
each such instabilityunfailingly and parmanantly hers. Thts is illustrated in Fig. 16. If there are
mobilized the content of a blob, and if the blob-siza very few active branches each of them is isolated. AS
Dr cluster distribution of residual oil were known the proportion risee, cluetera o!fconnectad branches
at a given value of capillary number, then from blob form (compareFig. 9(b)); within tha growing clusters
roobilizationtheory could be predicted the incremental the numbers of transport loops grow too. At any stege
reduction in residual saturation upon increzmtdly some of the clusters reach to one of the boundaries
increasingthe capillary number with which tht aqaeous of the aystem~ branches in thaae clusters are said to
phase flows. In this way the entire curve ~“ eutduel be accessible. When the proportion of present and
6aturationversus capillary number starting .. m a active branches reaches a critical level, the probabil-
Biven state of saturation could be constructed. Though ity of ‘wing at least one continuous transport path
blob-sizedistribution data are exceedingly rare,this acrossen indefinitelylargesystembecomesa virtual
hasbeen done: the key is an application of percola- certainty. l’hiaproportion, the minimum fraction of
tion theory to the problem of a cluster distribution. network branches that must be active in order for a
1*26 The enttre process of entrapment and mobilization continuous transport path to be guaranteed,hes come
can be simulated in Voronol models.15 to be called the percolation .threshcld. Once the

threshold is croaeed, branctieafrom which there ara
Laboratory tests with weter-veg systems have distinct paths to both boundaries lie on transport

eatabliahedthat residual oil saturation following
floodingwith water or aqueous solution does indeed

routes and are said to be effective; otherwise though
accessible they lie on dead-end trails and are call~d

correlatewith capillary number (aqueousphaae Darcy ineffective. Typically the effective fraction rises
flow valocity times its viscosity divided by Its inter- rapidly just beyond the threshold as large, previously
facial tension with the oil). At capillary numbers ineffectiveclustara get connectad in.
less than about 10-6, which is the normal range in
the field except around well-bores, residual saturation Percolation theory deals with probabilitydis-
reechea a reproducible limiting value that varies pri- tributionaof isolated, accearilble,ineffectiveand
mtrily with the nature of the rock (cf.26). The effective parts of chaotic atruc~ures;with the atatis-
differenceain the limiting value are interpretedaa tical geometry and statistical topology of clusters;
differencesin percolation thresholdsowing to differ- and above all wtth percolation threeholds. Thus it ie
ent average coordinationnumbers in various types and the thaory of connectivityand transport in Irragular
specimensof rock, or rock stand-in. AS flooding rate arrays of connectionsor tranaport paths, whether the
or viscoetty la Increaeed or twIInterfaciel tension is underlying structure ie ae regular aa a perfect crystal
reduced by orders of megnttude, residual saturation or as random aa a Voronoi teaselation. Like dlffueion
falls gradually and begins to approach zero whan thsory it is statistical. Whereea convantioneldiffu-
capillary number climbs paat 10-2, which is evidently sion theory treats trenaportby random movament in a
the range in which even the shortest of trapped blobs structurelessmedium, percolation theory treats trana-
are mobilized unleaa they happen to be caged by pore port by deterministicmvement in a random structure
throata that are together cross-wise to the adjacent or randomly structuredmedium. It establlshea,for
flow. What la especially significant is this: if one thing, that the connectivity,end hence the number
residual aaturat%ona at.differentcapillary numbers of transport patha, in a network dependa on its
are divided by the limiting residual saturation !.n %ranchinees,” as maaaured by the average coordination
the same epecimen, then the curves of this ratio versus number of the nodes. The more connectionseach node
logarithm of capillary number are euperpoaablemerely haa on the average, the greater the probability that
by shifting the capillary number scale, for most of branches meeting at it are effective In transport.
the specimens reported on in the literature.26 This Thus percolation theory finds application to euch
suggests that there is a universal feature of the diverse proceeaee ae smell stoma diffusing among the
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:hzot~tally orderedlargeonce in an amorphous solid,
:hespread of blight in an orchard - and, ae noged
Lbove,to conductive transport in rock and Voronoi
mdels thereof,to microcrackingand fractureof
mrous media,to floiddistributionsand to fluidflow
lothe pore apaceof rock. The theoryia etillYouW
3x365ar from fullydeveloped,especiallyin mathemati-
calrigorbecause,as we have seen,to make quantita-
tiveprediction motitoftenrequires Monte Carlo
$xperimentatlon,albeit by computer.4 Amzjor
:hallengeis to devise more effectiveways of dealing
:heoretlcallywith the partial ordering caricatured In
?ig. 1 -d so prevalent, in rocke for axample. Such

mdering tends to complicate statisticaltheory
~reatly. Nevertheless, the concepts and methods of
)ercolatlontheory plainly apply to relattng the
statisticalgeometry and statisticaltopologyat
wzellerscalesin rock to important larger-scale
%spectsof structure end transport.

Cluster and Blob Distribution

A striking, encouraging case of the efficacy of
percolationconcepts followd on Larson’s discovery
that the cluster size distributionsat the percolation
threshold of a considerablevariety of tcpologically
regular structures are quite eimilar. These structural
Lncludemany regular lattices and trees (a tree has
brenchingwithout reconnection,a lattice has both) in
two and three dlmensione. In each the coordination
mmber is uniform and thus the connectivityis regular
but the coordinationnumbers vary from 3 to 13. In
these!ztructuresthe percolation thresholdvaries
Lnverselywith coordinationnumber, from a fraction of
branchesactive in transport of 0.697 down to 0.083.
tit the populationsof clusters at these widely
differing thresholdsare so alike, particularly in the
mailer clusters that account for the bulk of the
active branches remaining, appears to be due to the
Similarityof all of the lattices end trees after
they have been pruned down to their respective perco-
lation threshold. Because the structuresare pruned
at random, their topological structuresare quite
irregular. It is r.eaaonableto hypothesizethat they
Brenot much different from what is left of originally
irregular structures. such as the continuous oil in
relatively highly saturated rock, aftar they too are
pruned down to their respective percolation thresholds
ae by waterflooding.

l%is hypothesis offered an explanation for the
apparently universal feature of the residual oil
aaturattonsafter waterflooding,which is deecribed
above: the configurationof the disconnectedoil,
i.e. the blob distribution,does not vary greatly In
its essential features from one porous medium to
another. Inasmuch as ,11 blob motion should cease at
a saturation only slightly lower than the percolation
threshold of oil continuity in a rock, this led to the
decision to evaluate, by Monte Carlo calculation, the
cluster size distributionof a 30%30%30 eimple cubic
lattice (extendedby periodic boundary conditions)
slightly below its percolation thresholdof 0.320.
From the asme ~culation the cluster length dletribu-
tion in one direction was found and used aa a model
for the blob length distributionat waterflood resid-
ual, which was needed to predict residual saturation
versue capillary number In the way sketched in the
preceding section. The calculated cluster size
distribution (and an earlier one evaluated from a
Bethe treel) agreeawellwith he one eat of blob
etzedate currentlyavailable.$6

The outcome is a model that correlates the
Ieasuredcurves of the ratio of residual saturation to
hat at waterflood residual, versue capillary number --
rithone parameter. The parameter relates to the crtt-
cal mobilization length of blobs, depends on average
loreshape characteristicsof the rock, and almply
Ihiftsthe capillary number ecale under:~eaththe uni-
‘exealcurve. The correlation of residual saturation
rithcap%llary umber ie completed with a second para-
@ter, the Mmitlng waterfloodresidual(theresidual
itvanishingcapillarynumber),which in the lightof
percolationtheory and blob mobilization mechanics is
cLrtuellythe percolation threshold of oil continuity
md should thereforabe closely related to the connec-
:lvity or average coordinationnumber, of the pore
~Pace.~6 ~re direct experimentalconfirmation is
beingsought.7

One of the issues reinforced by this practical
~utcomeof percolation concepts is the character of
:hesimilaritiesand differences between etructure
md transport in two kinds of systems. 7,10,11 On the

me hand are those like rock and Voronoi models, the
mderlying topology and geometry of which are both
lighlyirregular. On the other hand are those with
)erfectly regular underlying topology — simple
latticesand networks, equivalent packings and fused
~ackinge— but having irregular geometry. Tlie latter
!re somewhat simpler to investigateand often much
lessexpensive to work with. What has long bean
abundantlyclear from all sides, however, is that even
M limits, perfectly regular models and the concepts
:heysupport do not lead far toward understanding the
mture of such porous media asreservoir rock.

:ONCLUDINGREMARKS

Regardless of the amount of irregularity in a
reservoirrock, the connection patterns, or topologies,
>f the pore space and of the interpenetratingrock
netrixara interrelated. To these also are related
the distributionof curvature of the rocklpore surface,
md the shapes of poresand grains. So too are the
Shape patterns, or geometries, of the pore spaca and
cock matrix interrelated. These are the basic reaaons
that mechanical and transport properties of the solid
natrix, fluid distributionproperties of the pore space
md flow and transport properties of the pore apace
are all interrelated. Structural character and trans-
port processes depend on the connectivity structura,
that is, the number and arr~gement of transport paths!
m well as on the material propertied, cross-sectional
areas,end shapes along those paths: topslog:fis as
Lmportantas geometry.

Together these basic considerationsare points of
departure for the goal of assembling a comprehensive
picture of a rock on theoretical framework that Is
geologicallysound, physically accurate, ueeful in
defining and ranking needed experiments,and able to
correlatemeasurements of all the important structural
and transport properties.
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