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ABSTRACT 

We present a comprehensive workflow, in the presence 

of water-based-mud drilling fluids, to estimate in-situ 

relative permeability and capillary pressure curves by 

integrating multiphysics wireline measurements 

including array resistivity, dielectric, nuclear magnetic 

resonance (NMR), and formation testing and sampling 

data. Array resistivity logs are used for estimating the 

radial invasion profile and formation connate water 

saturation. Dielectric logs have shallow depths of 

investigation and hence are ideal for estimating residual 

oil saturation. Also, they provide vital information for 

determining Archie’s parameters 𝑚  and 𝑛 . NMR data 

are used to estimate irreducible water saturation, and 

from the T2 distribution, we can estimate a pore size 

distribution index (PSDI), which can help constrain the 

solution when inverting for relative permeability and 

capillary pressure curves. NMR data can also be input to 

the computation of a continuous permeability log that 

can be calibrated to permeabilities from cores or 

formation tests. Based on the derived PSDI, we can 

further narrow the physical bounds for Corey’s 

exponents in the relative permeability model, i.e., the 

curvatures of relative permeability curves for the water 

phase and the oil phase. This workflow demonstrates an 

efficient method to obtain in-situ relative permeability 

and capillary pressure parameters, which can help fill the 

gap in reservoir modeling and simulation. The method 

has been successfully applied to different reservoir 

formations including shaly sands, carbonates, and 

unconsolidated siliciclastic reservoirs. 

INTRODUCTION 

Relative permeability and capillary pressure parameters 

play a vital role in reservoir modeling because they 

govern the spatial distribution and the flowing behavior 

of multiphase fluids, which coexist in the pores. 

However, efficiently obtaining representative relative 

permeability and capillary pressure parameters remains 

a long-standing challenge for the oil industry. To date, 

special core analysis (SCAL) in the laboratory is still the 

most-applied method for determining these parameters. 

This technique has obvious limitations. First, the length 

scale of the cores is usually much smaller than the scale 

required for reservoir modeling. Therefore, one 

upscaling step is needed to apply the core measurement 

to reservoir modeling, which is another challenging 

issue. Also, the process is costly and time-consuming. 

The experiments often require months or years to 

complete depending on resource availability and other 

logistics. Another critical issue is that the cores are often 

contaminated and altered and so do not represent the 

reservoir conditions. These factors make the relative 

permeabilities and capillary pressure measurements 

from SCAL unreliable for reservoir performance 

prediction. Fine-tuning on those parameters is often 

needed for history matching the production data before 

using them for forecasting. 

It is of great advantage to develop a method to estimate 

relative permeability and capillary pressure parameters 

from in-situ downhole measurements so that the 

obtained parameters are under reservoir conditions, i.e., 

not subjected to contamination and alteration and ideally, 

with a more representative scale. Some work has been 

done in this direction in last decades. For example, 

Semmelbeck et al. (1995) and Ramakrishnan and 

Wilkinson (1999) integrated the mud-filtrate invasion 

process with array induction logs to characterize the 

relative permeability of the formation, which is more 

representative of an imbibition process. Zeybek et al. 

(2004) attempted to estimate relative permeability from 

the integration of array induction logs combined with 

pressure transient and water-cut measurements from a 

packer-probe wireline formation tester in a trial-and-

error way. Alpak et al. (2004) developed a deterministic 

simultaneous joint inversion algorithm for deriving the 

relative permeability and capillary pressure curves from 

wireline array resistivity logs and formation testing data. 

Utilizing a stochastic optimization platform, Cig et al. 

(2014, 2015) developed a workflow to estimate relative 

permeability and capillary pressure from pressure 

transient and water-cut measurements from different 

types of wireline formation testers, which is more 
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representative of a drainage process although the 

imbibition process was honored by the invasion profile 

match. 

We propose and develop a comprehensive workflow, in 

the presence of water-based-mud drilling fluids, to 

estimate in-situ relative permeability and capillary 

pressure curves by integrating multiphysics wireline 

measurements including array resistivity, dielectric, 

nuclear magnetic resonance (NMR), and formation 

testing and sampling data. The workflow is based on the 

framework developed previously in Liang et al. (2011) 

and Liang et al. (2017), which focused on the integration 

of array resistivity logs and formation testing and 

sampling data. As demonstrated in these works, the 

inverse problem becomes highly nonunique when 

inverting for relative permeability and capillary pressure 

from the formation testing and sampling data, which 

means multiple solutions could be obtained, with all of 

them being able to reconstruct the measurements almost 

equally well. Therefore, uncertainty is always a concern 

when using the workflow for field data processing. 

In this work, we extend the above workflow by 

integrating additional measurements to effectively 

narrow down the solution space for the improved 

certainty of the interpretation. Array resistivity logs are 

widely used for estimating the radial invasion profile and 

formation connate water saturation. However, they are 

not sensitive to the residual oil saturation because these 

measurements are relatively deep whereas the movable 

oil is not completely displaced by mud-filtrate invasion. 

Dielectric logs have shallow depths of investigation and 

hence are ideal for estimating residual oil saturation. 

Also, they can be used to determine Archie’s parameters 

𝑚 and 𝑛 (Venkataramanan et. al., 2016). NMR data can 

be used to estimate the irreducible water saturation, and, 

from the T2 distribution, we can estimate a pore size 

distribution index (PSDI), which can help constrain the 

solution when inverting for relative permeability and 

capillary pressure curves. NMR data can also be input to 

the computation of a continuous permeability log that 

can be calibrated to permeabilities from cores or 

formation tests. With that, we can build the near-

wellbore reservoir model for simulation. Based on the 

derived PSDI, we can further narrow the physical bounds 

for Corey’s exponents in the relative permeability model, 

i.e., the curvatures of relative permeability curves for the 

water phase and the oil phase. 

Integration of multiphysics wireline measurements 

produces a reliable workflow for the determination of 

relative permeability and capillary pressure parameters 

with less uncertainty. The representative scale of these 

estimated parameters can be inches to feet, depending on 

the filtrate invasion depth. The time needed for data 

processing is negligible compared with laboratory core 

analysis experiments. Importantly, the relative 

permeability and capillary pressure parameters are 

estimated from downhole measurements, hence at in-situ 

reservoir conditions, which eliminates the need for 

further calibration or corrections for reservoir modeling. 

This work demonstrates an efficient multiphysics 

integrated method to obtain in-situ relative permeability 

and capillary pressure data from a variety of wireline 

measurements, which can help fill the gap in reservoir 

modeling and simulation. The method has been 

successfully applied to different reservoir formations 

including shaly sands, carbonates, and unconsolidated 

siliciclastic reservoirs with heavy oil (Rashaid et. al., 

2017). 

GENERAL FRAMEWORK 

We have previously developed a general framework for 

estimating in-situ relative permeability and capillary 

pressure from array-resistivity logs and formation testing 

and sampling data as shown in Figure 1 (Liang et al., 

2017). In the workflow, a near-wellbore reservoir model 

is built based on all acquired data and prior knowledge. 

The mud-filtrate invasion process is modeled based on 

the actual job sequence. Wireline resistivity logging and 

formation testing and sampling processes can be 

simulated based on the scenario models generated from 

the mud-filtrate invasion simulation. The inversion 

process tunes the identified unknowns, which include 

parameters defining relative permeability and capillary 

pressure curves, until all the simulated data match the 

measurements. The inversion workflow is adaptive 

depending on the data availability and the parameters to 

be estimated. Usually, the invasion profile and the 

irreducible water saturation can be estimated from array-

resistivity logs by coupling with the invasion simulation. 

This inverse problem is convex and can be solved 

reliably using deterministic optimization method such as 

Gauss-Newton. Inversion of relative permeability and 

capillary pressure relevant parameters from formation 

testing and sampling data is highly nonunique. 

Therefore, hybrid methods combining stochastic and 

deterministic methods are needed to ensure proper 

exploration of the solution space. More details about this 

workflow are provided in Liang et al. (2017). 
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Fig.1 Framework for estimating relative permeability 

and capillary pressure from in-situ measurements. 

 

RELATIVE PERMEABILITY AND 

CAPILLARY PRESSURE MODEL 

Different formulations have been developed to describe 

the relative permeability and capillary pressure curves. 

We choose one widely used in reservoir modeling, i.e., 

the modified Brooks-Corey model (Lake, 1989): 

S𝑤
∗ =

𝑆𝑤−𝑆𝑤𝑟

1−𝑆𝑤𝑟−𝑆𝑜𝑟
                        (1) 

𝑝𝑐(𝑆𝑤) = 𝑝𝑐𝑒(S𝑤
∗ )−

1

𝜆                      (2) 

𝑘𝑟𝑤(𝑆𝑤) = 𝑘𝑟𝑤
0 (S𝑤

∗ )𝑛𝑤                      (3) 

𝑘𝑟𝑜(𝑆𝑤) = 𝑘𝑟𝑜
0 (1 − S𝑤

∗ )𝑛𝑜                (4) 

where 𝑘𝑟𝑤
0  and 𝑘𝑟𝑜

0  are the endpoint relative 

permeabilities for the water and oil phases, respectively; 

𝑆𝑤𝑟  and 𝑆𝑜𝑟  are the residual saturations for water and oil, 

respectively; 𝑛𝑤 and 𝑛𝑜 are Corey’s exponents for water 

and oil, respectively; 𝑝𝑐𝑒  is the capillary entry pressure; 

and 𝜆 is the PSDI. Note that this formulation is more 

suitable for a water-wet system, but the formulation for 

relative permeability is still widely used for mixed-wet 

and oil-wet systems. Other formulas can be adopted 

easily whenever necessary. A typical set of relative 

permeability and capillary pressure curves from the 

modified Brooks-Corey model is shown in Figure 2, in 

which the parameters 𝑛𝑤 , 𝑛𝑜, and 𝜆 are controlling the 

curvatures of water-phase relative permeability, oil-

phase relative permeability, and capillary pressure 

curves, respectively. These curves are defined by eight 

parameters, as denoted in Figure 2. If we define the 

formation absolute permeability as the effective oil 

permeability at irreducible water saturation, 𝑘𝑟𝑜
0  can be 

normalized to a unity, and we reduce the number of 

parameters to seven. 

 

 

 

Fig.2 Relative permeability (top) and capillary pressure 

(bottom) curves defined by eight parameters. 

 

WETTABILITY EFFECT ON RELATIVE 

PERMEABILITY AND CAPILLARY PRESSURE 

Wettability refers to the tendency of one fluid to spread 

on or adhere to a solid surface in the presence of other 

immiscible fluids. It governs the spatial distribution of 

multiphase fluids in the rock pores and affects their 

movement through pores. For example, an oil-wet 

formation tends to hold more oil in its micropores and 

produce more water, whereas a water-wet formation is 

more favorable for producing oil. Different experiments 

have been designed and developed to qualify or quantify 

the wettability states of rock samples, for example, 

Amott (1959), Donaldson et al. (1969), Morrow (1990), 

Graue et al. (2002), and Derahman and Zahoor (2008). 

Relative permeability and capillary pressure curves 
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contain information about the wettability state of the 

reservoir. Some general rules about reading wettability 

from relative permeability curves have been summarized 

in Craig (1971), Anderson (1987), and Falode and 

Manuel (2014). For example, as a rule of thumb, the 

irreducible water saturation is usually greater than 20% 

to 25% for a water-wet formation and less than 15% or 

even 10% for an oil-wet formation; the saturation at 

which oil and water relative permeabilities are equal is 

usually greater than 50% for water-wet and less than 

50% for oil-wet; and the endpoint relative permeability 

of water phase generally less than 30% for water-wet and 

greater than 50% for oil-wet, based on the effective oil 

permeability at irreducible water saturation (Craig, 

1971).  

If the wettability state can be interpreted from other 

measurements such as cores or dielectric and NMR logs, 

theoretically it is possible to combine this information to 

help define the relative permeability and capillary 

pressure curves. For example, Huang et al. (1997) 

developed a model for relative permeability and 

capillary pressure interrelating with wettability indices 

and PSDI. But this is still a very limited study, and it is 

still very challenging for practical applications. 

However, this information can be used to narrow down 

the solution space by confining the range of Corey’s 

exponents based on accepted heuristics. A water-wet 

formation has a lower ratio of 𝑘𝑟𝑤
0 𝑘𝑟𝑜

0⁄  in comparison to 

an oil wet formation. It has higher  𝑆𝑤𝑟  and, because oil 

is often trapped by the surrounding water, it also has a 

lower 𝑆𝑜𝑟 . The shape of the relative permeabilities 

defined by 𝑛𝑤 and 𝑛𝑜 also varies with wettability. The 

nature of the variation of this shape is shown in Figure 3. 

In this illustration, the endpoint saturations and 

maximum relative permeabilities are fixed at 0.2 and 1, 

respectively.  

In a water-wet scenario, water stays bound to the surface, 

and oil is expected to be in the middle of larger pores. 

Thus, it is characterized by a higher 𝑛𝑤  and lower 𝑛𝑜 in 

Equations 3 and 4. It has a higher oil relative 

permeability curve and a lower water relative 

permeability curve compared to an oil-wet rock, which 

is characterized by a lower 𝑛𝑤 and higher 𝑛𝑜.  

Goda and Behrenbuch (2004) provide a range of 𝑛𝑤 and 

𝑛𝑜  for different scenarios of a rock wettability index. 

They showed that, for most cases, the values of both 𝑛𝑤 

and 𝑛𝑜  are in the interval 2–8. Based on this range, a 

space of all possible solutions for relative permeability 

curves can be obtained, as illustrated as the shadowed 

regions (gray plus yellow) in Figure 4. If we can further 

confine the bounds of these two parameters, it is possible 

to narrow down the solution space as indicated by the 

gray regions, as an example of oil-wet scenario. 

 

Fig.3 Effect of wettability on the shape of the relative 

permeability curves. WW, SWW, SOW, OW denotes 

water-wet, slightly water-wet, slightly oil-wet, and oil-

wet, respectively. 

 

Fig.4 Using wettability information to narrow down the 

solution space. The gray plus yellow regions illustrate 

the full solution space if 𝑛𝑤 and 𝑛𝑜 are in the range of 2–

8. The gray region illustrates a feasible solution region 

for an oil-wet formation, and we can narrow down the 

range of 𝑛𝑤 and 𝑛𝑜 values based on wettability state. 

 

HETEROGENEITY EFFECT ON RELATIVE 

PERMEABILITY AND CAPILLARY 

PRESSURE 

The relative permeability and capillary pressure curves 

are affected by the heterogeneity of the porous medium, 

𝜆, in Equations 1–4. From the Brooks and Corey (1964) 
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study of porous media, 𝜆  can take any positive value 

greater than zero; it is small for media with a wide range 

of pore sizes and large for media with a relatively 

uniform pore size. In their studies, 𝜆  was found to take 

values from 1.8 (silty loam) to 8 (glass bead pack). 

Today, 𝜆 is often found from mercury porosimetry data 

on cores. When cores are homogenous, with increasing 

pressure, there is almost a sharp change in saturation as 

mercury goes into many identical pores at the same time. 

On the other hand, when the cores are heterogenous, 

there is a gradual increase in mercury saturation with 

increasing pressure. Thus, using Equation 2, the slope of 

the mercury saturation versus pressure is used to obtain 

𝜆 in the laboratory. 

There are many models in the literature that predict 

relative permeability and capillary pressure curves. 

These models are either capillary or network models. 

Although there is variation between rocks, a modified 

Brooks-Corey method has been widely accepted for 

water-wet rocks, with 𝑛𝑤 = 3 +
2

𝜆
  and 𝑛𝑜 = 1 +

2

𝜆
  

fitting the measured experimental brine/oil data 

reasonably well (Honarpour et al., 1986). The effect of 𝜆  

on relative permeabilities is illustrated in Figure 5, 

where, as before, the endpoint saturations and maximum 

relative permeabilities are fixed. When 𝜆  is small 

(heterogenous cores), the fluid phases tend to be more 

tortuous, and the relative permeabilities are smaller than 

when 𝜆 is large (homogenous cores).  

 

Fig.5 Effect of PSDI on the shape of the relative 

permeability curves for a water-wet rock. 

 

ESTIMATE PORE SIZE DISTRIBUTION 

INDEX (𝝀) FROM NMR 

An example of mercury porosimetry data on a core is 

shown in Figure 6A. As pressure is applied, mercury 

(Hg) fills the larger pores first. As pressure increases, Hg 

fills into smaller and smaller pores leading to increased 

saturation of Hg. The Brooks-Corey model in Equation 

2 predicts a power-law variation of capillary pressure 

with normalized Hg saturation in Equation 1. This 

power-law behavior of data in Figure 6A is highlighted 

in Figure 6B, and a fit of Equation 2 to the data provides 

a 𝜆 = 1.55 and 𝑃𝑐𝑒 = 10 psi.  

The NMR 𝑇2  and its cumulative distribution for this 

100% brine-saturated core is shown in Figure 6C. Under 

the assumption of a constant relaxivity and pore-body-

to-throat ratio, the cumulative distribution has similar 

information to Hg data. A scaling factor 𝜅 ≜ 𝑃𝑐𝑇2 is used 

to convert the cumulative 𝑇2 distribution to a capillary 

pressure curve (Volokitin et al., 1999). In the absence of 

core data, a universally accepted rule of thumb for cores 

is 𝜅 = 3 psi-s. Converting the cumulative 𝑇2 distribution 

to capillary pressure and the fit with the Brooks-Corey 

model is shown in Figure 6D and is seen to provide a 

very good fit to the Hg data with a  𝜆 = 1.5.  In the 

literature, an optimal procedure for converting 𝑇2 

distribution to capillary pressure for a particular 

reservoir involves selecting core plugs, acquiring 

laboratory Hg and NMR measurements on 100% brine-

saturated cores, and then finding either “an optimal” 𝜅 

(Volokitin et al., 1999) or a capillary-pressure dependent 

𝜅 (Altunbay et al., 2001). 

Computing 𝜆 from NMR data from a partially oil/brine-

saturated core is a challenging problem and requires 

many assumptions. From the analysis of the partially 

saturated data, a “best guess” 𝑇2 distribution of the 100% 

brine-saturated data is obtained (Volokitin et al., 1999). 

This best guess is often based on observed correlation in 

cores between the bound fluid volume and the peak of 

the 𝑇2 distribution of free water. A synthetic 100% brine-

saturated 𝑇2  distribution is obtained by applying a 

correction to the drainage 𝑇2  distribution. This 

correction attempts to remove the 𝑇2 distribution of the 

hydrocarbon and adds in the best-guess 𝑇2 distribution of 

the free water. This method strongly relies on being able 

to guess the  𝑇2 distribution of oil and water. We have 

developed an alternated method to estimate the pore size 

distribution index from partially saturated data. This 

method is based on a laboratory study of cores in 

different stages of brine/oil saturation and will be 

presented in a succeeding paper. 

Once 𝜆  is computed from NMR 𝑇2  data, approximate 

values of 𝑛𝑤  and 𝑛𝑜  are computed and used to derive 

upper and lower bounds for the inversion. 
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(A) 

 

(B) 

 

(C) 

(D) 

Fig.6 The first plot (6A) shows the mercury intrusion 

curve into the core. The same data plotted on a 

logarithmic axis and a normalized saturation are shown 

on the second plot (6B). The data are well fit by a 

modified Brooks-Corey (MBC) model with a 𝜆 of 1.55. 

The T2 distribution (blue) and its cumulative (red) for this 

core are shown on the third plot (6C). Under the 

assumption that the core is well described across scales 

with a constant (although unknown) relaxivity and pore-

body-to-throat ratio, the cumulative is also fit to a 

modified Brooks-Corey model. The data and the fit are 

shown on the last plot (6D). 

 

NUMERICAL EXAMPLES 

The integrated workflow has been successfully applied 

to a few field studies including the heavy oil field in 

Kuwait and a carbonate oil field in Saudi Arabia. In this 

paper, we demonstrate the concept using a numerical 

example. The structure of the model is based on the 

numerical example used in Liang et al. (2017) with 

modifications to some parameters, especially for facies 

0, which are listed in Table 1. In this example, the 

formation model is composed of eight layers, which can 

be categorized into three facies. Array induction logging 

is carried out for the entire depth interval two days after 

drilling, immediately followed by dual-packer formation 

testing and sampling in the interval 5,021.67 to 5,025 ft 

with an offset probe set at 5,017 ft for observing the 

pressure transient. An in-situ fluid analyzer is used to 

record the water-cut information (WCT) from the dual-

packer pumping. 
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Table 1: Input parameters for the numerical example. 𝑄, ∅, 𝑘ℎ, 

𝑘𝑣/𝑘ℎ, and 𝑠𝑑 denote average invasion rate, porosity, horizontal 

permeability, permeability anisotropy, and damage skin factor, 

respectively. 

Parameters Facies 0 Facies 1 Facies 2 

𝑄 (rb/day/ft) 0.05 0.015 0.005 

∅ 0.25 0.2 0.15 

𝑘ℎ (md) 300 80 5 

𝑘𝑣/𝑘ℎ 0.25 0.1 0.05 

𝑆𝑤𝑟  0.1 0.2 0.25 

𝑆𝑜𝑟  0.15 0.2 0.25 

𝑘𝑟𝑤
0  0.3 0.4 0.6 

𝑘𝑟𝑜
0  1.0 1.0 1.0 

𝑛𝑤 5.5 4.7 4.0 

𝑛𝑜 3.5 2.7 2.3 

𝜆 0.8 1.2 1.5 

𝑝𝑐𝑒  (psi) 0.67 0.89 1.6 

𝑠𝑑 0.15 0.1 0.05 

𝑚 1.8 1.9 2.0 

𝑛 1.9 2.0 2.1 

 

Following the similar workflow described in Liang et al. 

(2017), we first invert the array resistivity logs using the 

deterministic method, then invert the formation testing 

and sampling data using the Monte-Carlo-Gauss-

Newton method. From the first step inversion, we obtain 

invasion rates for each layer and the irreducible water 

saturation for each facies as shown in Figure 7 (Hu et al., 

2017). The inverted residual oil saturations usually 

deviate from the true values due to the weak sensitivity 

of array resistivity logs to the shallow region of the 

formation. Hence, it is necessary to determine the 

residual oil saturation from other sources such as 

dielectric logs, which have an investigation of 1 to 4 

inches into the formation. In the second step, assuming 

the residual oil saturations have been obtained from 

dielectric logs, we invert for a list of unknown 

parameters for the target layer, where the formation 

testing and sampling is performed, from the recorded 

pressure transient and sampling data. As stated, this 

inverse problem is highly nonunique. To avoid trapping 

in a local minimum, we start from 48 initial models 

generated by random sampling from normal distributions 

and run Gauss-Newton optimizations to search for the 

best solution from each initial model to fit the measured 

pressure and water cut data. In this example, the target 

layer is the sixth layer from the top, as shown in the left 

track of Figure 7, which belongs to facies 0, colored in 

blue. The inverted relative permeability and capillary 

pressure curves for facies 0 are shown in Figure 8. It 

shows that there are multiple solutions (the top 12 

solutions are plotted) fitting the formation testing and 

sampling data almost equally well. Figure 9 shows the 

comparison between the measurements and the dual 

packer pressure and water-cut data reconstructed from 

different solutions. The discrepancies between the 

results from different solutions are visually negligible 

and overlap with measurements. The pressure recorded 

by the probe is not shown here because it shares the same 

observation, i.e., almost perfect data fitting from 

multiple solutions. Figure 10 plots all inverted 

parameters with error bars shown in red presenting the 

variations from the selected top 12 solutions. Horizontal 

green lines denote the corresponding true value of each 

parameter used in the synthetic model. The top axis 

shows the physical bounds of each parameter we 

employed during the inversion. Here we used very loose 

bounds for the parameters 𝑛𝑤,𝑛𝑜, and 𝜆 assuming we do 

not have any prior information from other sources. 

According to the recommendation from experimental 

data in Goda and Behrenbuch (2004), the ranges of both 

𝑛𝑤 and 𝑛𝑜 can be confined in a range 2-8 for most cases. 

If we can estimate the PSDI from NMR data, the physical 

bounds of 𝜆, 𝑛𝑤, and 𝑛𝑜can be narrowed down for the 

inversion. Here we assume that the range of 𝜆 can be 

narrowed down to the range 0.7–0.9, based on the 

computation from the relationship between the Corey’s 

exponents and PSDI for a water-wet case; 𝑛𝑤 could be 

limited to ~4.5–5.8; and 𝑛𝑜 can be limited to ~3.3–4. The 

new inversion results (top 12 solutions) are shown in 

Figure 11. Figure 12 plots all inverted parameters with 

the applied physical bounds during inversion shown on 

the top axis. As expected, the solutions are still 

nonunique, but have been effectively narrowed down. 

D
ow

nloaded from
 http://onepetro.org/SPW

LAALS/proceedings-pdf/SPW
LA18/5-SPW

LA18/1185472/spw
la-2018-qqqq.pdf by C

olorado School of M
ines user on 12 Septem

ber 2021



SPWLA 59th Annual Logging Symposium, June 2-6, 2018 

 

8 

 

 

Fig.7 Inversion of array resistivity logs constrained by 

fluid flow. The first track shows the actual facies model 

and data-fitting on array resistivity logs. The second 

track shows the inverted invasion rates compared to the 

truth. The third track shows inverted irreducible water 

saturation compared to the truth (left part) and the 

inverted residual oil saturation compared to the true 

values (right part). 

 

 

 

Fig.8 Inverted relative permeability and capillary 

pressure for facies 0 using loose bounds compared to the 

true model. Multiple solutions are shown in different 

colors except that the true model is shown with the black 

dashed line. 

 

 

 

Fig.9 Comparison of reconstructed sink-pressure from 

12 solutions to the measured sink pressure (top) and 

reconstructed water cut from 12 solutions to the 

measured water cut (middle). The data are visually 

identical. The bottom plot shows the flow rate during the 

formation testing and sampling process. 
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Fig.10 Bar plot for all inverted parameters normalized to 

[0-1] by the corresponding physical bounds shown on the 

top axis. The horizontal green lines represent the true 

values of parameters used for generating the synthetic 

data. 𝐾ℎ𝑚 , 𝐾𝑣ℎ𝑟 , and 𝐾𝑟𝑤0  denote horizontal 

permeability multiplier, permeability anisotropy ratio, 

and endpoint relative permeability for water phase, 

respectively. 

 

 

Fig.11 Inverted relative permeability and capillary 

pressure for facies 0 using confined bounds compared to 

the true model. Multiple solutions are shown in different 

colors except that the true model is shown with the black 

dashed line. 

 

Fig.12 Bar plot for all inverted parameters normalized to 

0–1 by the corresponding physical bounds shown on the 

top axis. The horizontal green lines represent the true 

values of parameters used for generating the synthetic 

data. 

 

CONCLUSION 

We developed an integrated workflow for estimating in-

situ relative permeability and capillary pressure curves 

from the wireline measurements including a variety of 

well logs and the formation testing and sampling data. 

Among the data, array resistivity logs characterize the 

invasion profile and the irreducible water saturation. The 

dielectric log provides information on residual oil 

saturation and, by combining with NMR logs, provides 

insight on Archie’s parameters m and n. The NMR log 

can be used to estimate PSDI, which could be used to 

narrow down the feasible range of a few parameters 

including Corey’s exponents 𝑛𝑤  and 𝑛𝑜 . With these 

parameters being confined a priori, we can effectively 

reduce the solution space and the uncertainty in the 

interpretation. This workflow has been applied to a few 

field data studies including the heavy oil unconsolidated 

sandstone in Kuwait and the carbonates in Saudi Arabia. 

It needs to be noted that, although the water-based-mud 

invasion refers to an imbibition process, the inverted 

relative permeability and capillary pressure curves are 

dominated by the drainage process induced by the 

formation testing and sampling operation. The hysteresis 

effect has not been taken into account in this study. 
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