
SPE-193879-MS

A General Framework Model for Fully Coupled
Thermal-Hydraulic-Mechanical Simulation of CO2 EOR Operations

Shihao Wang, Colorado School of Mines; Yuan Di, Peking University; Yu-Shu Wu and Philip Winterfeld, Colorado
School of Mines

Copyright 2019, Society of Petroleum Engineers

This paper was prepared for presentation at the SPE Reservoir Simulation Conference held in Galveston, Texas, USA, 10–11 April 2019.

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents
of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect
any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written
consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may
not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract
In this work, we present the development of a comprehensive mathematical formulation and reservoir
simulator for thermal-hydraulic-mechanical simulation of CO2-EOR processes

We adopt the integral finite difference method to simulate coupled thermal-hydraulic-mechanical
processes during CO2-EOR in conventional and unconventional reservoirs. In our method, the governing
equations of the multiphysical processes are solved fully coupled on the same unstructured grid. A multiscale
algebraic linear solver is adopted to speed up the non-isothermal flow calculation. Inspired by the meshless
method, the algebraic solver eliminates the low-frequency terms through smoothing on a coarse grid. In
order to simulate the phase behavior of a three-phase system, a three-phase flash calculation module, based
on direct minimization of Gibbs energy, is implemented in the simulator.

We have investigated the impact of cold CO2 injection on injectivity as well as on phase behavior.
We conclude that cold injection is an effective way to increase injectivity in tight-oil reservoirs. We have
observed and studied the temperature decreasing phenomena near the production well, known as the Joule-
Thomson effect, induced by expansion of in-situ fluids.

The novelty of this work lies in the fully coupled simulation scheme, including non-isothermal effects on
CO2-EOR processes and recoveries, which has been ignored in almost all modeling studies of CO2-EOR.
The multiscale solution strategy and the unique phenomena of non-isothermal compositional modeling
coupled with geomechanics are captured by our simulator.

Introduction
CO2 flooding is a proven and promising EOR technique for tertiary recovery. The injected CO2 has a variety
of impacts on the in-situ oil-water system, including the expansion of oil volume and the reduction of oil
viscosity as well as capillary forces (Grigg and Schechter 1997). During the past three decades, the number
of active CO2 flooding projects in the United States has increased by more than 300% (Manrique et al.
2010). CO2 flooding has brought many water-flooded reservoirs back to life by increasing the recovery
factor by up to 30%, as summarized in (Rao 2001). For immiscible CO2 flooding, CO2 usually turns into
a supercritical phase in the high-pressure high-temperature downhole environment. The density of injected
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supercritical CO2 is usually lighter than that of the in-situ hydrocarbons. Therefore supercritical CO2 may
override oil. Meanwhile, as the viscosity of injection CO2 is much smaller than that of the oil phase, viscous
fingering and channeling are likely to occur in immiscible CO2 flooded reservoirs. Although CO2-EOR
has achieved huge success in conventional reservoirs, it faces difficulties in applying to unconventional
reservoirs. This is primarily because that the extremely low permeability of unconventional reservoirs limits
the injectivity of CO2.

According to the mechanism of the thermal unloading process (Tang et al. 2019), when cold liquids are
injected into the reservoir, the injectivity of the injector should increase. In practice the injectivity increase
phenomena near the cold water injector have been widely observed in geothermal reservoirs (Kaya et al.
2011; Stefansson 1997). Such phenomena could be explained by the shrinkage of rock induced by change
of thermal stress field (thermal uploading). Especially, in the fractured geothermal reservoir, the injected
cold water causes the matrix rock to shrink, increasing the fracture aperture. As the fracture permeability
is approximately the cubic power of the fracture aperture, the increase of fracture permeability could be
considerable. In this work, we propose to investigate the thermal impact of CO2 injectivity by conducting
a fully coupled thermal-hydraulic-mechanical simulation of CO2-EOR. We have developed a 3D non-
isothermal compositional simulator, named MSFLOW_CO2. MSFLOW_CO2 is fully implicit. It solves the
thermal-hydraulic-mechanical (THM) in a fully coupled manner, guaranteeing the best numerical stability
and the most accurate mass/energy conservation.

To accurately simulate the CO2-hydrocarbon-water system in the CO2 flooded reservoir, compositional
modeling with flash calculation is needed. The compositional simulator tracks the migration of each
component. Within each iteration step, the compositional simulator conducts flash calculation to predict
the phase behavior of the system. The flash calculation outputs the phase combination as well as the
concentration distribution at a given temperature and pressure. The first trail of flash calculation and
compositional modeling for two-phase system dates back to the 1960s (Hoffman 1968). The flash
calculation approach brought out by Michelsen (1982a, 1982b) has been widely adopted. Michelsen's
approach has two steps. It firstly conducts phase stability test to determine whether a phase exists. It then
solves the Rachford-Rice equations (Leibovici and Neoschil, 1992, 1995; Okuno et al. 2010a) using Newton
iteration based on the equilibrium ratio (K-value) of each component. Although Michelsen's method has
been successfully used in two-phase flash calculation, it has several drawbacks which cause it difficult to
be applied to the three-phase flash calculation. Firstly, Michelsen's method has convergence issues, due to
the discontinuity of the Rachford-Rice equation. Secondly, Michelsen's method requires multiple iterations
and complex phase stability calculation

Recently, Okuno (2010b, 2010c) brought out a reduced model for multiphase flash calculation. Although
the reduced model is more efficient compared to traditional K-value approach, its input parameters are
relatively hard to be determined. Moreover, the reduced model is only faster than the classic K-value method
when the number of components is above 15 to 20, where is not the usual cases for real applications. K-value
based flash calculation has been widely adopted in the simulation of CO2-EOR by research code (Pan and
Oldenburg 2016) and commercial simulators (Computer Modelling Group LTD. 2010; Schlumberger 2009).
In practice, people adopt a ‘hybrid’ framework for K- value based flash calculation, in which Newton's
method is combined with the bi-section method. When Newton's method fails to converge, the algorithm
switches to the bi-section method to search for the solution.

Besides the K-value approach, direct minimization of the Gibbs energy is another attractive approach
for flash calculation. Direct minimization of the Gibbs energy approach is based on the fact that at the
equilibrium state, the Gibbs energy of the system is at its minimum. In the direct minimization of the
Gibbs energy approach, the objective function is the total Gibbs free energy of the system. By iteratively
tuning the concentration distribution, the approach searches the global minima of the objective function
with Newton's method. Therefore, the flash calculation becomes an optimization problem and global
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optimization techniques, such as Branch and Bound method (Cheung et al. 2002), tunneling (Nichita et
al. 2002), linear programming (Rossi et al. 2009) and heuristic algorithm (Bhargava et al. 2013; Bonilla-
Petriciolet and Segovia-Hernández 2010; Walton et al. 2011), can be used to globalize the optimization
process. Zhang et al. (2011) have thoroughly reviewed the global optimization techniques for the direct
minimization of the Gibbs energy method.

Compared to the K-value approach, the direct minimization of the Gibbs energy method can be more
easily applied to multiphase systems. Moreover, this approach is also suitable for the calculation of phase
behavior in unconventional reservoirs, in which the capillary pressure has larger impact on the phase
equilibrium. To account for the capillary pressure impact, the direct minimization of the Gibbs energy
approach adds a surface energy term in its formulation (Rossi et al. 2009). Therefore, this approach has
the flexibility to handle the capillary pressure impact in a three-phase system, in which capillary exist both
in the gas-liquid phase interface and the liquid-water interface. Recently, Ma (Ma, 2013) adopts a similar
approach to investigate the capillary pressure impact on PV-flash by minimizing Helmholtz free energy.

To further improve the speed of the flash calculation, we have also implemented a deep- learning (DL)
based proxy flash calculation module. With the breakthrough in both algorithm and hardware, deep learning
technology (LeCun et al. 2015) is fast arising. There are already some trails in using DL technology to speed
up flash calculation (Al-Marhoun and Osman 2002; Gaganis and Varotsis 2012; Gharbi and Elsharkawy
1997; Zhong et al. 2017). In this work, the proxy flash calculation is based on fully connected networks. It
is of accuracy that is up to 97% and is used to replace the physical flash calculation in our compositional
simulator MSFLOW_CO2. Our results show that the DL based proxy flash calculation significantly reduces
the number of iterations of the flash calculation, and thus speeds up the modeling of CO2-EOR.

This paper is organized as follows. In Chapter 2 and Chapter 3 we present the flash calculation and
equation of state model, respectively. In Chapter 4 and Chapter 5, we discuss the governing equation
and mechanical property calculation module for the THM coupling. In Chapter 6, we validate the flash
calculation module. In Chapter 7, we present the algorithm and structure of the DL based proxy flash
calculation. In Chapter 8, we show a reservoir scale cold CO2 injection case. The paper is concluded by
the discussions in Chapter 9.

Flash calculation
In this session, we present the phase equilibrium (flash) calculation module of MSFLOW_CO2. The purpose
of conducting flash calculation is to obtain the phase combination as well as the component distribution of
the CO2-hydrocarbon-water system.

According to thermodynamic principals, at the equilibrium state the Gibbs free energy of the system
should be minimized, if the surface energy induced by capillary forces is ignored. The flash calculation in
MSFLOW_CO2 is based on the direct minimization of Gibbs energy, following the work of Ballard (Ballard
and Sloan 2004; Ballard 2002) and Di et al. (2015)

The Gibbs free energy of a multicomponent system is as follows

1

In the above equation, μiβ is the chemical potential of component i in phase β. niβ is the number of moles
of component i in phase β. NP is the number of phases and NC is the number of components. In this study, NP

=3. In every flash calculation, we need to define a reference phase r and assume that phase r always exits in
the system (If a reference phase disappears, then an alternative phase will be chosen as the reference phase).
By introducing the reference phase, we can rearrange Equation 1 as
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2

Meanwhile, the fraction of phase β among all the phases is calculated as

3

In the above equation, Nt is the total number of moles in the whole system, as follows

4

The mole fraction of the reference phase is

5

We then define the Lagrange function and the Lagrange multipliers as follows

6

To achieve the minimum Gibbs free energy, the derivative of the above function with respect to all
variables should be zero, as

7

8

9

According to the above equations, when phase β exists (αk > 0), λβ should be 0. Therefore, the condition
for phase β to exist is

10

Moreover, it can be solved that

11

Where fiβ and fir is the fugacity of component i in an arbitrary phase β and the reference phase r
respectively.

12

The K value of component i in phase β with respect to that in the reference phase r is defined as the ratio
of the fugacity coefficient, as follows
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13

We introduce a variable θ to quantify the stability of phase β as

14

Therefore, the concentration of component i in phase β is

15

Moreover, Equation 10 can be rewritten as

16

The total number of moles of component i can be expressed as

17

By combining the above equations, we can obtain that

18

Moreover, the total concentration of component i among all phases should be 1, as follows

19

We then define the objective functions for each component as

20

21

22

Therefore, to minimize the Gibbs energy G* is to minimize D, E and F simultaneously. The minimization
of G* is essentially an optimization process. By finding the global minima of the objective functions, we
can get the phase behaviors of the multiphase system. The parameters required for the flash calculation,
including the binary interaction factors, are from (Pan and Oldenburg 2016).
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Equation of state and fugacity models
As shown in the previous section, the calculation of the Gibbs energy requires the calculation of the fugacity
of the component, which is achieved by the reformulation of an equation of state. In MSFLOW_CO2,
Soave-Redlich-Kwong equation of state (SRK-EOS) is used for the calculation of the density as well as
fugacity of the vapor hydrocarbon and the liquid hydrocarbon phase. The fugacity of the vapor hydrocarbon
and the liquid hydrocarbon phase is shown in the two equations below.

23

24

In the above equation, the parameter a is defined as

25

aij is defined as

26

Where kij is the interaction parameter. ai and αi is defined as

27

Where  and  is the critical temperature and critical pressure of component i respectively.

28

Where

29

The reduced temperature and pressure is defined as

30
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31

In the above equation, ωi is the acentric parameter of component i

32

33

In SRK-EOS, the compressibility factor Z is expressed as a cubic function, as below.

34

In the above equation,

35

36

Equation 34 is solved analytically. For the three solved compressibility factors, the largest factor and the
smallest factor is assigned to the gas phase and the liquid phase respectively.

The aqueous (water) phase properties are calculated based on Shock and Helgeson's (Shock and Helgeson
1988) approach. The chemical potential μiAq of the ith solute component (non-water component) in the water
phase is calculated as

37

In the above equation, T0 and P0 is the standard temperature and pressure respectively.  and  is
the partial molar Gibbs energy, partial molar enthalpy and partial molar volume of a hypothetical solution,
respectively. The detailed formulation of  and  can be found in (Shock and Helgeson 1988). The
chemical potential of water component in the water phase is calculated as

38

Where the subscript ‘pure’ refers to the pure water phase. The details of the implementation of water
fugacity can be found in (Bromley 1973; Jager et al. 2003).

We use Newton's method to minimize Equation 20, 21 and 22, as follows.

39

In the above equation, Ψ is the objective function, X is the primary variable and [∂Ψl/∂Xj]p is the Jacobian
matrix. The initial guess of the equilibrium ratio for the hydrocarbon component in oil and gas phase 
can be estimated by Wilson's equation, as
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8 SPE-193879-MS

40

The initial guess of the equilibrium ratio of water component in the oil and the gas phase. Moreover, the
solubility of the hydrocarbon components in the aqueous phase is set to be 0.

Mechanical properties
The mechanical properties have impacts on the permeability as well as the porosity of the formation rock.
In general, the porosity and permeability can be expressed as the function of the pressure, temperature and
mean stress, as

41

42

MSFLOW_CO2 has implemented several correlations of the permeability and porosity, from literature
(Rutqvist et al. 2002; Taronet al. 2009; Wang et al. 2016). Moreover, MSFLOW_CO2 allows the users
to input a table of permeability and porosity with respect to the primary variables. One example of the
correlations is as follows(Wang et al. 2017; Wang et al. 2017). The porosity of the rock can be calculated as

43

In the above equation, cp and βT is the compressibility and the thermal expansion coefficient, respectively.
Pref is a reference pressure, while Tref is a reference temperature. ϕ0 and ϕ is the initial porosity and the
transient porosity of the rock, respectively.

Based on the calculated porosity, the permeability can be calculated by the Carman-Kozeny equation
(Carman 1956; Kruczek 2014) as

44

The pore diameter changes as the stress condition varies. The change of the pore diameter results in the
variation of the capillary pressure of the multiphase system. In MSFLOW_CO2, the capillary pressure is
correlated with the permeability and porosity as follows (Leverett 1941)

45

Where Pc0 and Pc is the initial and the transient capillary pressure, respectively. Moreover, the mechanical
impact on the volume of the grid block is quantified via the volumetric strain εV as

46

Where V0 and V is the initial and the transient volume of the grid block, respectively.

Governing equations and numerical approach

Governing equations
Derived from the conservation law of mass and energy, the governing equations of the thermal-hydraulic
simulation module in MSFLOW_CO2 describes the fluid and heat transport in the porous media of the
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reservoir. For a compositional system consisting of NC components, the mass/energy conservation equation
for component k is as follows

47

In the above equation, the term M is the accumulation term for mass or energy.  is the flux term. t is
the time term and q is the sink/source term. k could refer to an aqueous (water) component, a hydrocarbon
component or an energy ‘component’. In MSFLOW_CO2, k =1 refers to the aqueous (water) component.
k = 2,‥, NC denote hydrocarbon components. k = NC +1 denotes the internal energy. For aqueous and
hydrocarbon components, the accumulation term is calculated as

48

Where ϕ is the porosity. β is the phase index. G refers to the gas (vapor) hydrocarbon phase; L refers to the
liquid hydrocarbon phase and A refers to the aqueous phase. Sβ and ρβ is the saturation and density of phase
β respectively.  is the mass fraction of component k inside phase β. Since the solubility of hydrocarbon
in the aqueous phase is very low, in this work we set

49

For the energy ‘component’,

50

where CR and ρR is the specific heat and density of the rock, respectively. Uβ is the internal energy of phase
β. T is the temperature of the system.

51

In Equation 47, the flux term  is calculated as

52

In the above equation,  is the mass fraction of component k inside phase β. The phase flux  is
calculated by the multiphase Darcy's law, as shown in Equation 53, where Ka is the apparent permeability
of the rock. Krβ is the relative permeability of phase β, μβ is the viscosity of β, and  is the gravity vector.

53

For the liquid and aqueous phase, Ka is identical to the absolute permeability of the rock K∞. For the gas
phase, Ka= K∞(1+b/p), where b is the Klinkenberg parameter, which can be calculated from the work of
(Wang et al. 2019). The energy flux has heat conduction and convection as

54

where kt is thermal conductivity and hβ is the specific enthalpy of phase β.
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10 SPE-193879-MS

The mechanical simulation module of MSFLOW_CO2 is based on mean stress method, as discussed in
(Wang et al., 2016). In MSFLOW_CO2, the formation rock is assumed to be a linear poro-thermo-elastic
material.

55

where  is the stress tensor,  is the strain tensor, and  is a unit tensor. GS is the shear modulus and λL is
the Lame's coefficient. εii, k = x, y, z is the diagonal terms of the strain tensor.

Equation 55 was extended to non-isothermal materials by Nowacki (2013) and Norris (1992). Moreover,
McTigue (1986) brought out the poro-thermo-elastic version of the above equation, as shown below

56

where σii, k = x, y, z is the diagonal terms of the stress tensor. In Equation 56, βT and KB is the thermal
expansion coefficient and the bulk modulus respectively. εν is the volumetric strain, which is defined as
shown in Equation 57.

57

By rearranging Equation 56, we can get

58

in which

59

is the mean stress.
Meanwhile, the conservation of momentum for the poro-thermo-elastic process can be described by

Navier's equation (Eslami et al., 2013), as follow

60

In the above equation,  and  is the displacement vector and body force respectively. By implementing
divergence operations to Equation 60, we can get

61

Moreover, we have the following relationship between the displacement vector and the volumetric strain

62

By combing Equation 58 and Equation 62 with Equation 61 and rearranging them, we can get the
following governing equation for the mechanical simulation,

63

The relationship among the mechanical modulus is as follows.

64

65
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66

Numerical approach
In MSFLOW_CO2, all the governing equations are solved by integrated finite difference (IFD) method
(Narasimhan & Witherspoon, 1976a). Similar to finite volume method, integrated finite difference method
divides the computational domain into numerous grid blocks. After being integrated over grid blocks, the
governing equations are converted to accumulation terms on each grid blocks and flux terms on each pair
of neighboring grid blocks using the Gaussian divergence theorem. The details of the IFD method used in
MSFLOW_CO2 are as follows.

Firstly, integrating Equation 47 over the volume of the nth grid block Vn yields

67

Where n is the normal vector and Γ is the area. The accumulation term can be then expressed as

68

In the above equation,  is the discrete accumulation term of component k on grid block n.
Meanwhile, the flux term can be express as

69

Where m loops through all the neighboring grid blocks of grid block n. Anm and  is the area and
flux term of component k between grid block m and grid block n, respectively. The time derivative is
approximated by the first-order finite difference scheme. Therefore, Equation 67 becomes

70

where Δt is the time step length and l is time level. By rearranging the terms, the above equation can be
expressed in the residual vector form as

71

Where R is the residual vector form and xl +1 is the primary variable vector at time level l+1. The above
equation is a nonlinear equation and is solved iteratively by the Newton-Raphson method. A conceptual
model of the IFD method is shown in Figure 1. MSFLOW_CO2 is fully implicit and adopts upwind
weighting scheme to calculate the flux term.

Figure 1—Conceptual model of integral finite difference method (Narasimhan and Witherspoon 1976b; Pruess 1985).
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12 SPE-193879-MS

The Newton-Raphson method has been widely used in solving the nonlinear equations arising in scientific
computing. The basic idea of the Newton-Raphson method is to use the gradient of the equation to calculate
the searching direction of the iteration. The gradient of a vector equation is expressed by the Jacobian matrix.
The formulation of the Newton-Raphson method is as below.

72

In the above equation, J is the Jacobian matrix and Δx is the update the primary variable of each iteration.
The Jacobian matrix of a vector equation with N unknowns is defined as follows

73

In MSFLOW_CO2, the partial derivatives are calculated by the numerical derivative. Until convergence,
the above equation is iteratively constructed. Within each equation, the above equation is solved by a
multiscale linear solver (Hajibeygi and Jenny 2009). More details of the Newton-Raphson method used in
MSFLOW_CO2 can be found in (Wang et al. 2015).

Performance of flash calculation
In this section, we present the validation as well as the results of the flash calculation module.

Validation
We first present a seven-component case and compare it with experimental data. The feed mole fraction of
the seven-component acid gas system is shown in Table 1. The feed contains H2S, making it acid gas. We
calculate the variation of gas-liquid equilibrium ratio at 338.71K and compare the results with experimental
data (Yarborough 1972). The comparison is shown in Figure 2. According to comparison, our proposed
flash calculation module matches well with experimental data.

Table 1—Feed mole fraction of a seven-component acid gas system.

Component Feed mole fraction (%)

CH4 77.43

C2H6 5.74

C3H8 2.99

C5H12 4.66

C7H16 3.59

C10H22 2.63

H2S 2.96
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Figure 2—Comparison with laboratory measured gas-liquid equilibrium factor Kgo. at 338.71K.

Flash calculation for three phase systems
In this session, we present the results of the flash calculation module. We run two three- component three-
phase cases. The first case is a ternary mixture of CO2, water and nonane (n-C9H20). Figure 3 shows the
mole fraction of the aqueous phase at 333 K and 30 MPa. The distribution of the mole fracture of the
aqueous phase is almost proportional to the water component fraction. The second case is a ternary mixture
of a ternary mixture of methane, water and nonane (n-C9H20). Figure 4 shows the distribution of the mole
fraction of the liquid hydrocarbon phase at 333 K and 30 MPa. According to Figure 4, our flash calculation
module is able to capture the transition between the gas and the liquid hydrocarbon phase. Based on the
validation and the numerical results, it can be concluded that our flash calculation module is able to handle
complex multi-phase systems.

Figure 3—Mole fraction of aqueous phase of the CO2/n-C9H20/H2O mixture at 333 K and 30 MPa.
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14 SPE-193879-MS

Figure 4—Mole fraction of liquid hydrocarbon phase of the CH4/n-C9H20/H2O mixture at 333 K and 30 MPa.

Deep learning based proxy flash calculation

Overview
We aim to accerelate the flash calculation of compositional simulation by proxy flash calculation. We use
deep-learning based stochastic training technique to develop the proxy simulator. We have trained a neural
network using fully connected layers, which has an input layer, an output layer, and four hidden layers.
Within each layer, there are several neurons elements. All neurons belong to two neighboring layers are fully
connected with each other, as shown in Figure 5. In the fully connected layers, each neuron has its weight,
including a kernel value and a bias value. During the training process, the algorithm adaptively tunes the
weight and send the weight to an activation function, as shown in Figure 6. The summation of the weighted
values of all neurons gives the predicted output. The norm of the difference between the input value and the
predicted output is defined as the loss function. To minimize the loss function, Adam algorithm is used as
the optimizer. The algorithm of SDG is as follows. Firstly, all input samples in the training set are divided
into NB groups, each of which is called a ‘mini-batch.' Starting from an initial parameter w and learning
rate η, SGD randomly shuffle the samples in the training set and loops through all mini-batch to conduct
gradient descent optimization as follows

74

In the above equation, Q is the loss function. The above process is repeated until the number of iterations
reaches pre-defined epochs.

Network structure
In this work, we have implemented a two-step neural network for the proxy flash calculation. The first step,
namely phase classification, consists of a fully connected neural network, the purpose of which is to classify
the phase condition of the problem. The input dimension of the network is NC+2. The output dimension is
seven, since there are seven possible combination of phases. In between the input and output layer are four
hidden layer whose dimension is 64, 64, 64 and 64 respectively, as shown in the left of Figure 7. The input
data consists of the pressure, temperature as well as feed concentration (mole fraction of each component),
as shown in Equation 75. The output data consists of the tags for each phase condition, as shown in Equation
76 and Table 2.

75

76
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Figure 5—The structure of the artificial neural network.

Figure 6—Conceptual model of the fully connected layer and its neurons.

Figure 7—Structure of the fully connected network.
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Table 2—Summary of the possible phase combinations for the classification training step.

Classification Phase Combination

I1 L

I2 G

I3 A

I4 L+G

I5 L+A

I6 G+A

I7 L+G+A

For the hidden layers we use ReLU function as the activation function, which is defined as

77

For the output layer the softmax function is chosen as the activation function, defined as

78

The loss function is chosen as the cross-entropy function.

79

The training data contains 500,000 data sets, of which 100,000 data sets are used as testing data. Each data
set contains the input data and the output data‥ The physical meanings of the input data are shown in Table 3

80

In the above equation, L, V and W is the mole fraction of liquid, vapor and aqueous phase respectively.
The model is trained with 140 epochs (iterations). Within each iteration, 128 training samples are grouped
as a mini-batch. We measure the mean max absolute error (MMAE), mean absolute percentage (MAPE)
and mean absolute error (MAE) of the testing results. The three metrics are listed in Table 4, according to
which the average accuracy of our proxy simulator is above 97%.
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Table 3—Input parameters of the proxy calculation module.

Name Physical Meaning and Unit

P Pressure (MPa)

T Temperature (°C)

Z Feed (Mole concentration) (dimensionless)

Table 4—Summary of errors of the predicted results under different metrics

Phase
Classification

Concentration
Determination Overall Error Overall

Accuracy

Feed component

Mean
Absolute

Percentage
Error

Mean
Absolute

Percentage
Error

Mean
Absolute

Percentage
Error

Mean
Absolute

Percentage
Accuracy

C1+CO2+N2 0.02% 0.82% 0.84% 99.16%

C1+C2+C3+CO2 0.01% 0.65% 0.66% 99.34%

C1+C2+C4+C7 0.06% 1.63% 1.69% 98.31%

C1+C2+C3+C4+C5 0.07% 1.86% 1.93% 98.07%

C1+C2+C10+CO2+N2+H20 0.11% 2.02% 2.13% 97.87%

C1+C2+C3+C7+C9+C10+CO2+H20 0.11% 2.87% 2.98% 97.02%

Simulation of Cold CO2 injection
In this case, we present a cold CO2 injection study. Cold CO2 is injected at a rate of 0.3kg/s into a 100m by
100m reservoir for 1 year. One production well is producing at a constant bottom hole pressure of 16.2 MPa.
The initial temperature of the reservoir is 85 °C. The conceptual model of this case is shown in Figure 9.
The three-phase relative permeability is calculated using the Brooks-Corey model (Delshad & Pope 1989).
The initial distribution of component is shown in Table 5 and Figure 10. The rest input parameters are listed
in Table 6. We run three cases, in which the injection temperature (temperature of CO2 when it arrives at
the formation) is 20 °C, 40 °C and 60 °C respectively. The length and width of the domain is 100m*100m.
The domain is discretized uniformly into 50*50 grid blocks.
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18 SPE-193879-MS

Figure 8—Flowchart of the proxy flash calculation preconditioner in a reservoir simulator.

Figure 9—Conceptual model of the cold CO2 injection case.

D
ow

nloaded from
 http://onepetro.org/spersc/proceedings-pdf/19R

SC
/1-19R

SC
/D

010S017R
005/1163992/spe-193879-m

s.pdf/1 by C
olorado School of M

ines user on 12 Septem
ber 2021



SPE-193879-MS 19

Figure 10—The fraction of initial concentration of the for cold CO2 injection case.

Table 5—Initial distribution of component for cold CO2 injection case.

Component Formula Mole fraction

Methane CH4 0.16736

Ethane C2H6 0.04885

n-Heptane C7H16 0.09334

n-Nonane C9H20 0.05751

n-Decane C10H22 0.33736

Carbon Dioxide CO2 0.05854

Water H2O 0.23704

Table 6—Input parameters for cold CO2 injection case

Property Value Unit

Young's modulus 26 GPa

Poisson's ratio 0.25 dimensionless

Rock permeability 1 md

Rock porosity 0.2 dimensionless

Biot's coefficient 1.0 dimensionless

Grid block length 4 m

Injection temperature 50 °C

Initial temperature 85 °C

Initial pressure 35.2 MPa

Production pressure 16.2 MPa

Initial mean stress 80.6 MPa

Residual gas saturation (Sgr) 0.1 dimensionless

Residual oil saturation (Sor) 0.1 dimensionless

Residual water saturation (Swr) 0.1 dimensionless

The distribution of gas phase saturation and temperature after 1 year of injection is shown in Figure 11
and Figure 12 respectively. According to Figure 11, the gas phase saturation increases near the injector.
Therefore, this is immiscible flooding. Moreover, the gas saturation decreases in certain region near the
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saturation front. This is because of pressure impact propagates faster than saturation impact. The buildup
of pressure decreases the gas saturation in the region near the saturation front.

Figure 11—Gas phase saturation distribution after one year of injection (injection temperature = 60 °C).

According to Figure 12, the temperature in the vicinity the producer slightly decreases. The reduction
of the temperature is because the energy of the system is consumed by the expansion of the in-situ fluids,
known as the Joule-Thomson effect. From this phenomenon, we can conclude that our simulator is capable
of capturing many aspects of the complex behaviors of the multiphysical system. The variation of scaled
permeability (transient permeability to initial permeability) at the injector with respect to time is shown in
Figure 13, according to which the injected cold CO2 effectively increases the injectivity near the injector.
When the injection temperature decreases from 60 °C to 20 °C, the eventual increase of the permeability
increases from 170% to 280%. Based on this observation, it can be concluded that cold CO2 injection can
be adopted improve the EOR performance of unconventional reservoirs.

Figure 12—Temperature distribution after one year of injection (injection temperature = 60 °C).
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Figure 13—Variation of scaled permeability at the injector with respect to time.

We have implemented the deep-learning based flash calculator into our simulator MSFLOW_CO2. We
have conducted several case studies to investigate the performance of the deep learning based compositional
simulator. In this chapter, all numerical cases are executed by an Intel i7- 6700 processor with 3.40 GHz.

We first compare the cold CO2 injection case presented in Chapter 7.05. We test cases with a different
number of grid blocks. The comparison of the CPU time with 25*25, 50*50, and 100*100 grid blocks with
and without the deep-learning based preconditioner is shown in Figure 14. The comparison shows that the
CPU time has been effectively reduced by 30% to 40% by the deep learning based preconditioner.

Figure 14—Comparison of the CPU time of the cold CO2 injection
cased with and without the deep- learning based flash calculation.
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Summary and Conclusions
We have developed a comprehensive non-isothermal compositional simulator, named as MSFLOW_CO2,
to simulate CO2-EOR processes. The simulator is based on the Integrated Finite Difference (IFD) method,
which is able to simulate multiphysical flow and transport processes in reservoirs using an unstructured grid.

We have implemented a fully couple thermal-hydraulic-mechanical framework in MSFLOW_CO2
to simulate the multiphysical processes during CO2-EOR. The hydraulic-mechanical module of
MSFLOW_CO2 has been verified against analytical solutions with sufficient accuracy. The mean stress
method used in this simulator is able to capture the poro-elastic effect during the recovery of petroleum
reservoirs. Moreover, the thermal-hydraulic module of MSLOW_CO2 has been benchmarked with a
commercial simulator. The results yielded by the two simulators show a good match. Therefore, the accuracy
of the multiphysical simulation framework of MSFLOW_CO2 is validated.

To simulate the complex phase behaviors in the REV, we have developed a novel flash calculation module
based on minimization of the Gibbs energy method. We have benchmarked the flash calculation module
with respect to experimental results. The minimization of the Gibbs energy method shows the flexibility
in capturing the phase transition during CO2 flooding. Moreover, this method can be potentially applied to
simulate even more complex systems, for instance, systems with four or more phases.

Based on the developed simulator, we have studied the impact of cold CO2 injection on the production
performance of unconventional reservoirs. Such impact is ignored by existing commercial simulators. We
discovered that, cold CO2 injection effectively increases the injectivity of unconventional reservoirs.

At last, we also developed a data-based proxy flash calculator to speed up the time-consuming flash
calculation. With the implementation of the proxy calculator, the CPU time of the simulation of cold CO2

injection case has been effectively reduced by 30%. This work is among the first trials in this area.
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