
URTeC: 1923960 

Coupled Geomechanics and Pore Confinement Effects for Modeling 
Unconventional Shale Reservoirs 
Yi Xiong*, Philip. H. Winterfeld, Yu-Shu Wu, Colorado School of Mines; Zhaoqin Huang, 

China University of Petroleum (East China)   

Copyright 2014, Unconventional Resources Technology Conference (URTeC)   DOI 10.15530/urtec-2014-1923960

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, 25-27 August 2014. 

The URTeC Technical Program Committee accepted this presentation on the basis of information contained in an abstract submitted by the author(s).  The contents of this paper 

have not been reviewed by URTeC and URTeC does not warrant the accuracy, reliability, or timeliness of any information herein.  All information is the responsibility of, and, is 

subject to corrections by the author(s).  Any person or entity that relies on any information obtained from this paper does so at their own risk.  The information herein does not 

necessarily reflect any position of URTeC.  Any reproduction, distribution, or storage of any part of this paper without the written consent of URTeC is prohibited.   

Abstract 

The pore sizes of shale and tight-rock formations are on the order of nanometers. The thermodynamic phase 

behavior of in-situ hydrocarbon mixtures in such small pores is significantly different from that of bulk fluids in the 

PVT cells mainly due to effect of large capillary pressure, which has been a subject of great interest for shale 

reservoir study. For example, it has been recognized that the critical pressure and temperature of reservoir fluids 

may change due to the pore spatial confinement, thus the phase envelop shifts for unconventional shale reservoirs. 

Those shifts of phase envelop could favor the productions of shale reservoirs, especially for tight oil systems 

because of suppressed bubble-point pressure leading to longer single phase production.  

On the other hand, the pore sizes, especially the pore-throats, are subjected to change due to rock deformation 

induced by the fluid depletion. As the fluids are being produced from the pore space, the pore pressure will decrease; 

thus the effective stress on reservoir rock increase, resulting in the reduction of the pore and pore-throat sizes. This 

reduction on pore spaces affects again the fluid flow through impacts on the thermodynamic phase behaviors, as 

well as stress induced changes on porosity and permeability. Thus a coupled flow-geomechanics model including 

pore confining effects is in general necessary to examine the unconventional shale reservoir behavior. 

In this paper, we present a multiphase multi-component reservoir model, fully coupling fluid flow, geomechanics 

and pore confining effects for shale reservoirs. This model is based on general mass conservation law for each 

component. The geomechanical model is derived from the elasticity theory extended to porous and non-isothermal 

media. The Peng-Robinson EOS-based flash calculation is used to analyze the large capillary pressure effects on 

shale reservoir phase behavior. This theoretical model can be readily discretized and implemented with control 

volume based numerical methods, and generally applied to both dew-point and bubble-point systems. Eventually it 

could improve the forecast accuracy for long-term production rate and recovery factors of unconventional reservoirs. 

Introduction 

Ultra-tight and shale reservoirs are playing a significant part to oil and gas production of U.S. in recent years, thanks 

mainly to technological advances in horizontal drilling and multi-stage hydraulic fracturing. However, the reservoir 

fluid flow behaviors are still poorly understood due to the complexity of fluid properties in nano-size scales. Kuila 

and Prasad (2011) pointed out that shale matrix has predominantly micro-pores with less than 2 nm diameter to 

meso-pores with 2-50 nm diameters. Such small pores lead to significant interfacial curvature and capillary pressure 

between confined vapor and liquid phases. The researchers have been investigating the impacts of capillary pressure 

on fluid properties and phase behavior since 1970s in oil and gas industry. It was found that the dew-point and 

bubble-point pressure were same in the 30- to 40-US-mesh porous medium and in bulk volume (Sigmund et al., 

1973), and concluded that capillary effects on vapor-liquid equilibrium (VLE) is negligible for conventional 

reservoirs. The recent studies on unconventional reservoirs, however, show that the effect of capillary pressure on 
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reservoir phase behavior cannot be ignored (Du and Chu, 2012; Firincioglu et al., 2012;  Pang et al., 2012; Nojabaei 

et al., 2013; Wang et al., 2013 ).   

 

On the other hand, the reservoir rock properties such as pore size, porosity and permeabilities, are subjected to 

change due to rock deformation. Han et al. (2013) claimed that stress-dependency is more pronounced in low 

permeability rock than in conventional reservoir rock. They investigated a nano-Darcy permeability unconventional 

oil reservoir rock under triaxial stress conditions and concluded that the hydraulic and mechanical properties of 

unconventional rocks depend strongly on the loading and confining stress. Mokhtari et al. (2013) performed 

laboratory tests on Mancos Shale and Eagle Ford Shale excluding fractured samples, and found strong functions 

between effective stress and matrix porosity and permeability. The above tests on unconventional rocks imply that 

nano-pores within matrix are stress-sensitive. This implication is also observed in unconventional field by Chu et al. 

(2012), Honarpour et al. (2012), and Orangi et al. (2011). For example, Chu et al. (2012) claimed that the increased 

net confining stress has very large impact on pore-throat size rather than pore-size, therefore it results in the 

reduction of matrix permeability varies between 3 to 10 times and pore throat size within 20% to 60%, therefore 

significant increase of capillary pressure. Thus the effects of pore-confinement and geomechanics are interlinked in 

unconventional reservoirs. However, models with capability to couple both geomechanical and pore confining 

effects are rarely available.  

 

In this paper we present a compositional reservoir model fully coupling geomechanical effects. The compositional 

model is formulated through mass conservation law for each component. The geomechanical equations are derived 

based on the classical theory of elasticity, extended to porous media in the form of mean normal stress as a function 

of pore pressure and temperature. The pore confinement effects are incorporated by including capillarity influence 

on vapor-liquid equilibrium (VLE). In the following sections, we firstly present a general multiphase multi-

component model. Then the geomechanical model is derived by yielding an equation between stress, pore pressure, 

and reservoir temperature. After that the effects of capillary pressure on VLE and reservoir phase behavior are 

addressed. Finally we discuss how to implement this model with numerical methods in order to use it for fluid flow 

simulation of unconventional reservoirs.  

 

Fluid Flow Model 

 

The physical processes associated with multiphase multi-component fluid flow in unconventional shale reservoirs 

are governed by the fundamental mass conservation law. It is often represented mathematically by a set of partial 

differential or integral equations on the macroscopic level. Those mathematical equations are usually called 

governing equations, which are generally nonlinear as long as compressible or multiphase fluids are involved (Wu 

and Qin, 2009).   

 

Let us consider three fluid phases, oil, gas and water in unconventional reservoirs, with each fluid phase consisting 

of a number of mass components. For example, methane (C1) accounts for about 0.37 molar fraction in Bakken oil 

(Nojabaei et al., 2013); it is also the main component of the gas phase after reservoir pressure depleted under 

bubble-point pressure. For a component within a representative elementary volume (REV) in the reservoir, a 

generalized conservation equation can be written as follows: 

 

       
   

  
  (1) 

  

where superscript k is the index for the components, k= 1, …, Nc with Nc being the total number of mass components 

in the reservoir system. F is the mass flux term; M is the accumulation term; q is an external source/sink term 

representing mass production or injection.   

 

For multiphase fluid flow, the accumulation term is evaluated as 

 

     ∑(      
 )

 

 (2) 
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where   
  is the mass fraction of component  k in fluid phase β;       and    are phase density and saturation;   is 

the reservoir porosity. The total mass of component k is the summation of mass of k in phase β = oil, gas and water. 
 

The mass flow term is determined with similar way as accumulation term, where the total mass flow of component k 

is the summation of mass of k in the flow of each phase as 

 

     ∑  (      
 )

 

 (3) 

 

where    is a vector of the Darcy’s velocity or volumetric flow, defined by Darcy’s law to describe multiphase 

fluids flow as 

 

     
    

  
(         )  (4) 

 

where   ,    and     are pressure, viscosity and relative permeability of fluid phase β respectively; and g is  the 

gravitational constant; z is the vertical coordinate; k is absolute permeability.  

 

Geomechanical Model 

 

The geomechanical equations in our model are based on the classical theory of poro-thermal-elastic system, and the 

equilibrium equation can be expressed as (Jaeger et al., 2007; Zoback, 2007) 

 

     (           )               (5) 

 

where S is the total stress and subscript i, j represent the direction of stress; it is normal stress if i = j  otherwise it’s 

shear stress;     is Kronecker delta, given by                                          α is Biot’s coefficient; P is 

the pore pressure; ΔT is the temperature change to the reference temperature for a thermally unstrained state;    is 

linear thermal expansion coefficient; K, G and   are mechanical properties of rock, representing bulk modulus, shear 

modulus and Lame’s constant respectively.   stands for strain;    is volumetric strain evaluated as            

   . In general, Equation (5) is the extended Hooke’s law by including terms dependent on pore pressure and 

temperature.  

 

Two other fundamental relations in the linear elasticity theory are the relationship between strain tensor and the 

displacement vector and the condition of static equilibrium as Equation (6) and (7) 

 

     
 

 
(
   
   

 
   

   
)  (6) 

 

 0bS F    (7) 

 

where u is the displacement; S is stress tensor and F is body force vector.  

   

Combine Equations (5), (6) and (7) to obtain the thermo-poro-elastic Navier’s Equation   

  

 (       )  (   ) (   )            

         

The above equation has two terms containing the displacement vector, and taking the divergence of it to result in the 

equation with only one term containing the divergence of the displacement vector as follows 

     

   [ (       )  (    ) (   )    ]    (9) 

  (8) 
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 And the divergence of displacement vector     is the volumetric strain    as 

  

    
   
  

 
   
  

 
   
  

                

 

The trace of the stress tensor is an invariant with the same value for any coordinate system. Thus Equation (5) gives 

the trace of Hooke’s law for a thermo-poro-elastic medium as (Winterfeld and Wu, 2014), 

 

   (        )  (  
 

 
 )    

 

Where Sm is the mean stress with relationship with normal stress    
           

 
 , which corresponds to uniform 

confining stress in laboratory experiments (Zoback, 2007).  

 

Finally combining Equations (9) (10) and (11) yields an equation relating mean stress, pore pressure, temperatures 

and body force: 

   

  [ (       )  
    

  (  ⁄ ) 
 (           )    ]    

 

The coefficient of Equation (12) is related to the rock mechanical properties, and is only function of Poisson’s ratio 

ν. Thus the final governing equation for geomechanical model is therefore can be represented as following 

 

  [
 (   )

(   )
       

 (    )

(   )
 (       )]    

  

Equation (13) and (11) are the governing equations in our geomechanical model, and mean stress Sm and volumetric 

strain    are the geomechanical variables associated with those equations. 

 

Numerical Formulation 

 

The above multiphase multi-component fluid flow equations and geomechanical equations are readily discretized in 

time and space with numerical methods. We propose a control-volume based concept, an integral finite-difference 

method (Pruess, 1991) for space discretization. Time discretization is carried out using a backward, first-order, and 

fully implicit finite-difference scheme.  

 

 

 
Figure 1: Space discretization and geometry data in the integral finite difference method (Pruess, 1991) 

 

  (13) 

  (12) 

  (11) 

  (10) 
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The residual form of discrete nonlinear equations for each component k (k=1,2, …, Nc; Nc being total number of 

component) in node i (i=1,2, …N; N being total number of nodes in the grid) at time step n+1 can be written in a 

general form as  

  

  
      (  

        
   )

  
  
 ∑       

     

    

   
        

 

Where M is the accumulation term as Equation (2), Vi is the volume of node i; Δt is the time step size; ηi contains the 

set of direct neighboring nodes j of node i; The flow term can be evaluated as Equation (3) and (4). Q donates the 

sink/source at node i. 

 

The geomechanical governing equation can be discretized with similar method. Applying divergence theorem on 

Equation (13) to yield an integral form as 

  

∫[
 (   )

(   )
       

 (    )

(   )
 (       )]   ̂     

 

where  ̂ is a normal vector on surface element   , which can be evaluated as a discrete sum of averages over surface 

segments as 
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(   )
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where     and     are the distance and area between node i and its neighboring nodes j respectively. 

 

A set of non-linear discretized equations of Equation (14) for each component and Equation (16) for mean stress, 

can be solved with Newton-Raphson method.  

 

Capillarity Effects on VLE 

 

The capillary pressure in the ultra-tight rocks with nanometer pore throats could reach as high as 1,000 psi (Du and 

Chu, 2012). The large capillary pressure has significant effects on VLE in unconventional reservoirs, which cannot 

be ignored in tight and shale reservoir modeling.  In this section the effects of capillary pressure on two-phase VLE 

is analyzed with fundamental principles of reservoir phase behaviors. In multi-component system under VLE, the 

chemical potential μ of each component i throughout all the co-existing phases should be equal. This general 

requirement becomes a practical engineering tool if the chemical potential can be related to measurable or calculable 

quantities, such as fugacity f as follows.  

    

  
    

                 
    

                     
 

The practical way to get fugacity of each component is to evaluate the fugacity coefficient,  i, which is defined as 

the ratio of fugacity to partial pressure of the corresponding phase by Equation (18).  

 

  
  

  
 

   
 
           

  
  
 

   
 

 

where    and   are mole fraction of component i in liquid and vapor phase respectively;    and    are the pressure 

of corresponding fluid phase. The fugacity coefficient is related to pressure, temperature and volume by Equation 

(19) (Danesh, 1998) 
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 (25) 

Where R is gas constant, ni is the number of moles of component i; V is the total volume, and Z is the mixture 

compressibility factor. Equation (19) can be determined with the aid of an Equation of State (EOS), relating 

pressure, temperature, volume and compositions. For example, Equation (19) can be evaluated for liquid and vapor 

phase as follows using Ping-Robinson (P-R) EOS: 
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where a and b are parameters defined by P-R EOS; they are functions of critical pressure, critical temperature, 

composition, acentric factor, binary interaction coefficient, etc. For each phase, Equation (20) can be calculated 

according to the phase pressure and mole fraction xi within this phase. 

 

Equilibrium ratio Ki = yi/xi for component i is usually used to solve Rachford-Rice (R-R) equation (Rachford Jr and 

Rice, 1952) for flash calculation. 

 

∑
  (    )

  ̃    (    ̃)

  

   

   

 

where   ̃ is the mole fraction of liquid phase. And the initial guesses of K factors could be estimated from the 

Wilson’s equation (Wilson, 1968): 

 

   
   
 
   [    (    ) (  

   
 
)] 

where    is the acentric factor of component i. 

 

The initial guess of K factor are inputted in Rachford-Rice equation for flash calculation; and its outputs are used in 

Equation (20) to evaluate the fugacity coefficients, which are further used to update the K factor according to the 

relationships of Equation (17) and (18) by 

 

   
  
  
 
  

  
  
 

  
  

In conventional reservoirs simulation, the above relationship is usually treated with neglected capillary pressure by 

assuming Ki =   
    

 , which is not valid in unconventional system. The pressures of two phases are correlated by 

capillary pressure as 

              

On the other hand, interfacial tension (IFT) is a function of composition and should be updated according to flash 

calculation results. Weinaug and Katz (1943) proposed a simple molar averaging for the parachor to calculate the 

IFT of compositional system as  

 

 
 
  ∑   

  

   

(    
      

 ) 

 

Based on above analysis and relationships, the VLE calculation including capillary pressure follows steps below: 

1) Estimate initial K values with Equation (22); 

2) Plug the K values into R-R equations (21); 

3) Calculate fugacity coefficients with results of step (2) using Equation (20); 

4) Calculate IFT with results of step (2) with Equation (25) and updated capillary pressure; 

5) Update K values with Equation (23); 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 
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 (26) 

 (27) 

 (28) 

 (29) 

6) Check the convergence criteria by comparing updated K values and last step K values; If not converged, go 

back to step 2 with updated K values;  

7) Repeat step (2) to (6) until K values are converged. 

 

The above steps are outline as Figure 2; it includes above steps and also coupled geomechanics effects, which are 

discussed in the next section.  
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Figure 2: The VLE calculation process including geomechanical and pore confining effects 

 
 

Coupled Geomechanics and Pore Confinement Effects 

 

The stress-dependent properties of reservoir rock are subject to change during reservoir depletion. In this model we 

consider reservoir permeability and porosity are functions of effective stress. The researchers have been actively 

investigating the correlations between effective stress and rock properties for a variety of rock types. The shale rocks 

are intensively under laboratory investigation for the stress-dependent properties. In general, the relationship 

between stress and rock properties can be represented as 
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Conventional VLE calculation 
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 (30) 

where   is the effective stress;   is Biot coefficient;   and   are rock permeability and porosity respectively; Vb is 

the bulk volume with function of volumetric strain. The mean stress and volumetric strain are solved with numerical 

methods in our model, and the rock properties are dynamically updated accordingly. 

 

Capillary pressure is another function related to stress, and it has a significant effect on the VLE calculation as 

analyzed above. Capillary pressure is usually determined by the well-known Young-Laplace equation: 

 

   
      

 
 

 

where   is the IFT; r is the pore or pore-throat size; and   is the contact angle. Since it is difficult to build the direct 

relationship between pore space and the effective stress, the Leverett J-function approach (Leverett, 1941) as 

Equation (31) is used to obtain the capillary pressure based on measured reference capillary pressure, plus the results 

of current saturation, stress-dependent permeability and porosity, and IFT.  
 

  ( )  
 ( )     

√  ⁄

 

where S is the saturation of wetting phase;   is the surface tension;   is the contact angle; k and   are permeability 

and porosity respectively. J(S) is the J function, which is a dimensionless number and used to correlate capillary 

pressure data for the reservoir rocks with same lithology.  

 

Figure 2 illustrates the coupled process between pore confining (capillary pressure) and geomechanical effects. The 

conventional VLE calculations neglect the capillary effects by assume Ki =   
    

 , which is not valid in 

unconventional reservoirs. In our model the capillary pressure is included and subjected to change through J-

function with stress-dependent permeability and porosity.  

 

Results and Discussions 

 

In this section, we present an example to illustrate the stress and pore confinement impacts on the reservoir fluid 

phase behaviors. Especially for the bubble point system, like tight oil reservoirs, the bubble point pressure is 

suppressed due to the large capillary pressure. The accurate bubble point pressure is essential for estimation of 

reservoir performance and recovery factor. We take the Bakken oil as the example to calculate the bubble point 

pressure with capillary effects, specifically the increased capillary effects due to rock deformation.   

 

We summarize the relationship between pore throat size and effective stress change, and the composition of Bakken 

oil from the published data (Chu et al., 2012; Wang et al., 2013; Nojabaei, 2013). Table 1 shows the pore-throat size 

as a function of effective stress change, and the corresponding estimated capillary pressure. Table 2 and 3 give the 

properties of Bakken oil composition, which are used in the P-R EOS for bubble point calculation. The Equation 

(32) is used to find the bubble point pressure through bisection search assuming the reservoir temperature is constant 

at 240°F.  
 

∑      

  

   

 

 

 
Table 1: Relationship of between pore throat size/capillary pressure and effective stress change for Bakken (Chu et al., 2012; Wang et al., 2013) 

 

Effective Stress Change (psi) Pore Throat Size (nm) Capillary Pressure(psi) 

0 50 102.20 

900 40 127.75 

2000 30 170.33 

4000 20 225.30 

7000 10 511.00 

 

 (31) 

 (32) 
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Table 2: Bakken oil compositional data (Nojabaei et al., 2013) 

Component Molar 
Fraction 

Critical 
Pressure (psi) 

Critical 
Temperature ( R) 

Acentric 
Factor 

Molar 
Weight 

C1 0.36736 655.02 335.336 0.0102 16.535 
C2 0.14885 721.99 549.969 0.1028 30.433 
C3 0.09334 615.76 665.97 0.152 44.097 
C4 0.05751 546.46 759.208 0.1894 58.124 

C5-C6 0.06406 461.29 875.479 0.2684 78.295 
C7-C12 0.15854 363.34 1053.25 0.4291 120.562 

C13-C21 0.0733 249.61 1332.095 0.7203 220.716 
C22-C80 0.03704 190.12 1844.491 1.0159 443.518 

 

 
Table 3:Binary interaction coefficients of Bakken oil composition 

 C1 C2 C3 C4 C5-C6 C7-C12 C13-C21 C22-C80 

C1 0 0.005 0.0035 0.0035 0.0037 0.0033 0.0033 0.0033 

C2 0.005 0 0.0031 0.0031 0.0031 0.0026 0.0026 0.0026 

C3 0.0035 0.0031 0 0 0 0 0 0 

C4 0.0035 0.0031 0 0 0 0 0 0 

C5-C6 0.0037 0.0031 0 0 0 0 0 0 

C7-C12 0.0033 0.0026 0 0 0 0 0 0 

C13-C21 0.0033 0.0026 0 0 0 0 0 0 

C22-C80 0.0033 0.0026 0 0 0 0 0 0 

 

 
 Table 4: Calculated bubble point pressure with P-R EOS 

Effective Stress 

Change (psi) 

Pore Throat Size 

(nm) 

Capillary Pressure 

(psi) 

Bubble Point Pressure 

(psi) 

Without pore 

confinement 

N/A 0 2793.7 

0 50 102.20 2520.8 

900 40 127.75 2457.4 

2000 30 170.33 2352.8 

4000 20 225.30 2154.0 

7000 10 511.00 1595.8 

 

 

 

 
Figure 3: Calculated bubble point pressure for Bakken oil 
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With above data as input, the bubble point pressures under pore confinement and stress effects are calculate as Table 

4 and plotted in Figure 3. The bubble point pressure is constant to the change of effective stress without considering 

pore confinement as in the conventional reservoirs, as the dash line in Figure 3. However, the capillary pressure of 

nanometers pores of unconventional reservoir rocks suppresses the bubble point pressure; and the geomechanical 

effect due to increase of effective stress intensifies the suppression. For example, the bubble point pressure is about 

2794 psi without including capillarity effect; the suppressed bubble point pressure is about 2521 psi with capillary 

pressure effect. The bubble point pressure keeps decreasing as the change of effective stress, which induces smaller 

pore throat size and larger capillary pressure. The final bubble point pressure could reach as low as 1596 psi with 

7000 psi change of effective stress.  

 

Conclusions 

 

In this paper we introduce a coupled geomechanics and pore confinement model for unconventional reservoir 

simulation. The geomechanical model is developed based on fundamental theory of elasticity extended to porous 

media, and a momentum conservation equation relating mean stress, pressure and temperature is derived. The pore 

confining effect is treated through incorporating large capillary pressure into the VLE calculation with Peng-

Robinson EOS, and results in suppressed bubble point pressure. The increase of the effective stress further 

exaggerates the suppression effect. In addition, the time and space discretization is introduced so that our model 

could be readily implemented with numerical method. We take Bakken oil as the example to demonstrate the effects 

of capillary pressure and stress on fluid phase behavior in unconventional reservoirs. It confirmed that the 

geomechanical and pore confining processes may make a significant difference. 

 

The effects of rock compaction and pore confinement are not constant during reservoir depletion because stress, 

pore pressure and rock properties keep changing. Those complex reservoir behaviors must be captured for accurate 

EUR (estimated ultimate recovery) estimation. For example, the calculated bubble point pressure without capillarity 

effect is much higher, which would result in underestimation for the single phase liquid production. Although the 

example presented is a tight oil reservoir, the theoretical model in this paper can be generally applied to both bubble-

point (tight oil) and dew-point (gas condensate) systems for unconventional reservoirs.  
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