
SPE-173227-MS

An Efficient Adaptive Nonlinearity Elimination Preconditioned Inexact
Newton Method for Parallel Simulation of Thermal-Hydraulic-Mechanical
Processes in Fractured Reservoirs

Shihao Wang, Philip H. Winterfeld, and Yu-Shu Wu, Colorado School of Mines

Copyright 2015, Society of Petroleum Engineers

This paper was prepared for presentation at the SPE Reservoir Simulation Symposium held in Houston, Texas, USA, 23–25 February 2015.

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents
of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect
any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written
consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may
not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract

In this paper, we introduce a physics-based nonlinear preconditioner, based on the Inexact Newton
method, to accelerate the highly nonlinear thermal-hydraulic-mechanical (THM) simulation of fractured
reservoirs. Inexact Newton method has become a popular iterative solver for solution of partial differential
equations (PDE). Instead of solving the PDEs exactly with the expensive Newton method, the Inexact
Newton method finds a direction for the iteration and solves the equations inexactly. The Inexact Newton
method is very efficient when the initial guess is close to the objective solution. However, when the
equations are not smooth enough, especially when local discontinuities exits, the Inexact Newton method
may be slow or even stagnant.

Local discontinuities are commonly encountered during oil and gas flow in reservoirs. One problem
that involves lots of local discontinuities is the simulation of multiphase flow in fractured reservoirs.
Fractures in petroleum reservoirs are typically sensitive to the change of pressure and stress. The
thermal-hydraulic-mechanical (THM) effects of injection and production can dramatically change the
properties of fractures, resulting in a huge variation in the permeability, which adds nonlinearity to the
governing partial differential equations. Considering these characteristics of fractured reservoirs, applying
the Inexact Newton method directly to them faces severe difficulties. In this work, we have proposed and
studied a nonlinear preconditioner to resolve the above problem. In this nonlinear preconditioner, a
restricted additive Schwarz approach is used to coarsen the problem and the Inexact Newton method is
used as a global iterative solver. We have developed a physics-based strategy to adaptively identify the
highly nonlinear zones by computing and comparing the gradient of the stress/temperature-permeability
correlations of the fractured zones. These nonlinear zones are treated as a subspace problem, which is
solved locally. The results of the subspace problem are used to modify the global residual. By conducting
the above operations, the local nonlinearity is eliminated and the global iteration is accelerated. An
adaptive strategy is adopted to dynamically choose between the Inexact Newton method and the Newton
method.

The above algorithm has the advantage of remarkable scalability and is easy to implement in massively
parallel reservoir simulators. We have programed the algorithm and implemented it into our fully coupled,



fully implicit THM reservoir simulator to study the effects of cold water injection on fractured reservoirs.
The numerical and parallel framework of the simulator has been described by Wang et al. (2014).
Previously, the cold water injection problem suffered from slow convergence at the injection zone where
fracture permeability changes rapidly. The results of this work show that after the implementation of this
nonlinear preconditioner, the iterative solver has become significantly more robust and efficient.

Introduction
The Inexact Newton method with Backtracking (INB) solves a nonlinear system approximately within
each iteration. It can save much computational time spent that would otherwise be used for the linear
solver. However, one of the drawbacks of the INB algorithm is that it is not as robust as Newton-Raphson
algorithm (NR) in certain cases. For INB algorithm, it has been proven by Cai and Li. (2011) that if the
target nonlinear equation is continuously differentiable and there is a limit point at which the Jacobian
matrix is nonsingular, then the INB converges at that limit point. With the existence of local disconti-
nuities, the target equation is no longer continuously differentiable and the more the discontinuities, the
farther the system is away from a continuously differential condition. Therefore as the number of local
discontinuities increases, INB may suffer from convergence problems.

For several types of reservoir simulation problems, such as water-oil displacement, nonlinearity exists
only in a small portion of the entire field. This local nonlinearity will dramatically slow down the
convergence of nonlinear solvers. For the INB method, if the local nonlinearity is too high, the iteration
will tend to be stagnant. Therefore, to guarantee the robustness of the INB, a nonlinear preconditioner is
typically required, such as the Addictive Schwarz Preconditioned Inexact Newton (ASPIN), as proposed
by Cai and Keyes. (2002). Recently, ASPIN has been applied to groundwater and oil simulation problems
by Skogestad et al. (2013) and Sun et al. (2013), respectively. ASPIN has been shown to be able to
improve the convergence rate for highly heterogeneous reservoir simulation problems. However, as far as
we know, there have no attempts to adopt the nonlinearity elimination (NE) technique to precondition
reservoir simulation problems that have high nonlinearity on certain areas of the computational domain.

In this work, we propose another type of preconditioned INB method to deal with the local nonlinearity
problems. We aim to eliminate the local discontinuity to enhance the numerical performance of the INB
algorithm. Nonlinearity elimination techniques for INB have been studied by Hwang et al. (2010, 2014)
with Computational Fluid Dynamics (CFD) problems. In this work, we will introduce an adaptive
nonlinearity elimination (ANE) algorithm. This ANE algorithm adopts a physics based criterion to choose
a highly nonlinear region out of the computational domain and eliminates the local nonlinearity before the
start of INB. The highly nonlinear region can be adaptively chosen in each time step. Hwang et al. (2014)
first proposed such combined ANE-INB approach and applied it to the solution of the transonic full
potential equation. In their work, the target equation is in steady state. In this work, we will implement
ANE-INB into a transient reservoir simulation problem. We will investigate the performance of ANE-INB
in the study of coupled THM behavior of fractured reservoirs, especially for the elastic-plastic responses
of fractures induced by cold water injection into oil/gas reservoirs. Moreover, as our simulator is
massively parallel, we implement a restricted Schwarz nonlinear preconditioner to balance the nonlin-
earity. The restricted Schwarz preconditioner can be conveniently implemented in an existing code with
very little additional communication and computation.

Problem Description
Governing Equations
We have developed a massively parallel simulator to study the coupled thermal-hydraulic-mechanical
(THM) behavior of fractured reservoirs. The simulator is based on the framework of MSFLOW (Wu.
1998) and is able to simultaneously solve the coupled thermal-hydraulic-mechanical field of fractured
reservoirs. The governing equation for hydraulic and thermal flow is as follows
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(1)

In our simulator, k�1 refers to the hydrocarbon component; k�2 refers to the water component; k�3
refers to heat. In the above equation, q is the sink/source term; M is the conserved component in-place;
and F is the flux. For water/oil equations, the mass componenent in-place is,

(2)

where � is the rock porosity; S� and �� are the saturation and density of phase �, respectively.
The flux term is given by,

(3)

where K is the absolute permeability; P� is the pressure of phase �; Kr� and �� are the relative
permeability and viscosity of phase �, respectively; and g is the gravitational acceleration vector.

The heat flux term includes conduction and convection,

(4)

where and KR and K� are thermal conductivity of the rock and the liquid phase, �, respectively; is
the liquid flux term used in the oil/water equation; T is temperature; and h� is enthalpy of liquid phase �.
The accumulation term for the heat equation is the following,

(5)

where �R and CR are the density and heat capacity of rock, respectively; and u� is the internal energy
of liquid phase �.

For the mechanical simulation, we start from the following displacement equation for a thermo-
poroelastic material (Winterfeld and Wu, 2014),

(6)

where � is the Biot’s coefficient; � is the Lame’s parameter; G is the shear modulus; and is the body
force and is the displacement vector.

The normal stresses appearing in Hooke’s law for a linear thermo-poro-elastic material are,

(7)

where �kk is the normal stress along the kth direction; � is the thermal expansion coefficient; Tref is a
reference temperature; and 	v is the volumetric strain; and the summation of normal strain 	kk is over the
three directions,

(8)

We introduce the mean stress �m as follows,

(9)

Then, after several steps of derivation, we arrive at the governing mean stress equation (Winterfeld and
Wu, 2014),
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(10)

Integral Finite Difference (IFD) Method
We use Integral Finite Difference (IFD) method to solve the above governing equations. By integrating
each conservation equation over a representative element volume (REV), we get the following integrated
governing equation,

(11)

Using the IFD method, the governing equations are discretized as the following general form,

(12)

The details of the simulator framework and this IFD implementation can be found in (Winterfeld and
Wu, 2014). The above equation is solved by our proposed nonlinear solvers, to be described in the next
session.

Cold Water Injection Induced Fracture Aperture Change
For fractured reservoirs, the fractures are sensitive to coupled THM effects. In this work, we first propose
a semi-analytical correlation of the fracture aperture change induced by cold water injection. Consider the
dual continua matrix-fracture system. We focus on a matrix block surrounded by fractures of length Li on
the ith direction. The temperature and pressure in the fractures are kept constant as Pƒ and Tƒ, respectively.
The initial temperature and pressure of the matrix block are Pm0 and Tm0, respectively. For a 1-D problem,
and ignoring leak-off into the matrix block, the temperature distribution inside the matrix rock can be
solved analytically from the governing heat equation as,

(13)

where Tini is the initial temperature of the system and Li is the fracture spacing.
We obtain the displacement distribution inside the matrix block using an analytical solution. We

rewrite the displacement equation in three dimensions as follows,

(14)

(15)

(16)

If we ignore leak-off and rewrite the 1-D version of the governing displacement equation with respect
to matrix block as,

(17)

and implement the following boundary conditions,

(18)
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(19)

where kƒ is the ‘stiffness’ the fracture and kƒux is the resistance of the fracture.
The displacement at the fracture-matrix interface is then solved as,

(20)

The fracture aperture change �bi is,

(21)

Therefore, the fracture aperture change can be expressed as

(22)

Fracture permeability can be calculated using the cubic law as,

Figure 1—Conceptual model of fracture-matrix network

Figure 2—Elastic-plastic deformation of fracture. Blue line: fracture stiffness curve. Red line: fracture resistance curve.
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(23)

where Ci is a parameter to correlate between the mechanical aperture and the hydraulic aperture. In this
work, Ci is set to be 1.

The correlation can be also applied to cases where the fractures have elastic-plastic resistance. If the
fracture is treated as elastic-plastic material, then the fracture has different stiffness within elastic and
plastic zone. When deformantion is relatively small, the fracture has elastic behaviors with constant elastic
stiffness. The fracture resistance transit into plastic material, when the entire the fracture aperture change
exceed a certain ‘breaking’ criteria. For example, we assume the deformation at which fracture breaks is
1 mm (3.2*10�3 ft). Within the elastic zone, the resistance of the fracture is set to be 16 GPa/m (250000
psi/ft.). Within the plastic zone, the resistance of the fracture is set to be 1 GPa/m (16000 psi/ft), as shown
in Fig 2.

With the above fracture properties, for a typical reservoir with a fracture spacing of 20 inches (0.508
m), the fracture aperture change curve of each grid block is similar to the curve shown in the following
figure,

As demonstrated by the above figures, the fracture stiffness has a ‘plunge’ at the transition point. Once
the elastic-plastic transition point is reached, the fracture stiffness suddenly drops, resulting in a
discontinuity of the fracture permeability. The fracture aperture rapidly increases by 200% to 300% and
exceeds the elastic region. Because of the cubic law, the fracture permeability will increase accordingly
by one order of magnitude. The above change of fracture permeability takes place within the time period
of less than one day, which is smaller than the usually time step in reservoir simulation. Actually we have
observed frequent time step cut during the simulation run using either Newton method or Inexact Newton
method.

Description of algorithm
As described in the above section, a local discontinuity exists in the cold water injection problem. In this
section, we describe the nonlinearity elimination Inexact Newton method. Suppose the THM coupled
nonlinear system is,

Figure 3—Elastic-plastic fracture aperture change. The arrow indicate the transition point from elastic deformation region to plastic deformation
region.
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(24)

We consider the nonlinear equations resulting from integral finite difference method as,

(25)

where J(x) is the Jacobian matrix; X is the primary variable array; and R is the residual vector.

Restriction of Highly Nonlinear Region
Within each time step, before the start of the Inexact Newton iteration, we first eliminate the local
nonlinearity to smooth the nonlinear equations. We firstly divide the entire set of all grid blocks, S, into
two sets: grid blocks with high nonlinearity Sh and grid blocks with low nonlinearity Sl.

(26)

Sh contains all grid blocks, whose nonlinearity has not been eliminated yet. Then we define two
restrictors, Rh and Rl, which restrict the entire system to the high nonlinearity and low nonlinearity
subdomains, respectively,

(27)

(28)

Then we solve the subspace problem

(29)

where is the subspace correction. Then we update the primary variables as
This way, the local nonlinearity is eliminated by the above restriction before the start of nonlinear

iterations. This local nonlinearity elimination step can be view as a preliminary nonlinear preconditioner.
As observed by Hwang et al. (2014), this preliminary elimination process only requires one or two
iterations. This step eliminates the local nonlinearity within a very small region of the whole domain. The
region can be adaptively chosen using a physics-based criteria. Since the number of highly nonlinear grid
blocks is typically much smaller compared to the total number of grid blocks, the subspace problem can
be simulated by one or two processors and without an elaborate domain partitioning. With the preliminary
preconditioner, the nonlinearity can be eliminated more efficiently, as shown below.

Inexact Newton with Backtracking
After the preliminary nonlinearity elimination, we solve the resulting nonlinear system using restricted
Schwarz preconditioned Inexact Newton with Backtracking method. We first describe the INB. Within the
kth iteration, INB solves the system J(xk) Sk � �Rxk approximately and update xk as,

(30)

until

(31)

where �k is the damping (linesearch) parameter ranging from 0 to 1. It shortens the Newton steps to
enhance the robustness of the iteration. 
 is the forcing term. If 
 is 0, INB reduces to Newton method.
In this work, 
 is set to be constant as 10�4.

Restricted Schwarz Preconditioning
The restricted Schwarz preconditioning step is called between two INB steps. We partition the grid
domain into N non-overlapping subdomains ,
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(32)

Such partition can be assisted by existing packages, such as METIS (Karypis and Kumar, 1995). Then,
we define the 1-level overlapping subdomain . For , every two subdomain overlaps with each other
for 1-level, which means there is a ‘rim’ for each subdomain locating in its neighboring subdomains.

After defining the subdomains, we can define restrictors and which restricts the nonlinear system
on S to subdomain and , respectively. A restrictor drops off the component outside its according
subdomain and only keeps those components belonging to the according subdomain. Note here unlike Sh

and Sl, these N subdomains will not adaptively change during the simulation.

(33)

Each subdomain solves the local problems approximately in parallel using INB method,

(34)

where is the correction for subdomain i. The boundary condition for each subdomain uses the
primary variables in the last time step of its neighboring subdomain. Here the information on the
overlapping part of each pairs of subdomains is dropped. Such treatment is called the restricted Schwarz
method. It has been observed by Cai and Li (2011) that the restricted Schwarz method has faster
convergence rate and less communication,

(35)

The restricted Schwarz step aims to balance the nonlinearity among different processors; in this step,
the stopping criteria is set as follows. For each type of equation, j(j � 1,2,3,4) evaluate the norm of the
residual . Let , therefore is the largest

residual of the jth type of equation among all the subdomains. The nonlinearity is balanced only when,

(36)

where the parameter �j is a tolerance, chosen by the user. In this work, �j is set as 0.75, as suggested
by Cai and Li (2011).

This nonlinearity balance step can be viewed as a preconditioner that is implemented between two INB
steps.

To briefly sum up, our approach implements a nonlinearity elimination preconditioner firstly to
preliminarily reduce the local discontinuity. Then a restricted Schwarz preconditioner is called between
INB steps to balance the nonlinearity among all processors. By conducting these operations, we aim to
eliminate the effect of local discontinuity from global iterations in order to improve the robustness of INB.
A flowchart of this proposed algorithm showing all operations in sequence is as follows.

Numerical Results
Problem Setup
We consider the type of cases in which one cold water injector and one production well locate
symmetrically at the two boundaries of a fractured reservoir. The size of the reservoir is 760.00 m*760.00
m*50.00 m. The reservoir is divided into 80*80*15�96000 structured grid blocks. The initial pressure is
5.00 MPa and the initial temperature is 368 K (203 °F). Cold water is injected for 5 years at a constant
rate of 1.0 kg/s (~ 545 bbl/d) from the injection well. The production well is producing at a constant
bottom hole pressure of 3.0 MPa. The reservoir is 3 km in depth. The vertical in-situ stress is estimate
from the density of caprock, which is assumed to be sandstone. Therefore the vertical in-situ stress vz is
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73.50 MPa. The minimum horizontal stress vmin,hor and maximum horizontal stress vmax,hor are both set
to be 51.45 MPa, which is 70% of the vertical in-situ stress. The rock properties are listed in Table 1. We
will investigate the numerical performance of INB-ANE with different combinations of injection tem-
perature, initial fracture permeability and breaking criteria. 8 cases have been run, the input parameters
of which are shown in Table 2. Each case is run by 8 processes in parallel. Note here we treat the fracture
permeability as a isotropy diagonal vector.

Chosen of Nonlinearity Elimination Criteria
The nonlinearity elimination criteria determines the high nonlinearity zone. In this problem, the nonlin-
earity is mainly the local discontinuity introduced by the failure of fractured material. We set the

Figure 4—Flowchart of INB-ANE, showing the sequence of all operations within one time step.
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nonlinearity elimination criteria based on the relationship between the deformation (aperture change) �b
and the critical (breaking) deformation �bc of the fractured material as follows. For a given grid block �,
suppose

(37)

where � is a dynamically changing value.
The judgment that whether � belongs to the high nonlinearity region is made as

(38)

(39)

We adopt Case 1 as an example. For this case, the injection temperature is 288 K and the breaking
deformation �bc is 200 �m. The initial fracture aperture can be calculated as 350 �m. Then according to
Equ. 38 and 39, a grid block belongs to the high nonliearity group if its aperture change is between 430
�m to 590 �m. For the grid block locating at the injection point in Case 1, its fracture aperture change
curve is shown in Fig 6. According to Fig 6, the grid block belongs to the high nonlinearity region between
1.0E6s (11.5 day) to 7.3E6s (84.5 day). We plot the permeability field at 180 days and 7 years after the
start of the injection in Fig 7. Also, we plot the according distribution of the high/low nonliearity regions
in Fig 8. By comparing Fig 7 and Fig 8, we can see that as the permeability enhancement effect propates,

Table 1—List of input properties of the rock

Properties Values Units

Initial permeability of the matrix Kmx � Kmx�1.0*10-15 Kmz �1.0*10-15 m2

Initial porosity of the matrix 0.15 dimensionless

Initial porosity of the fracture 0.001 dimensionless

Young’s modulus 16.0 GPa

Fracture spacing 0.5 m

Poisson’s ratio 0.25 dimensionless

Biot’s coefficient 1.0 dimensionless

Linear thermal expansion coefficient 11.6 10-6 m/(m K)

Thermal conductivity of dry rock 1.0 W/(m K)

Heat capacity of rock 1,000 J/(kg K)

Density of rock 2.5 103 kg/m3

vz 73.50 MPa

vmin,hor 51.45 MPa

vmax,hor 51.45 MPa

Elastic resistance 12.0 GPa

Plastic resistance 0.7 GPa

Table 2—Input parameters for Case 1 to 8.

Case index Injection Temperature (K) Initial fracture permeability (m2) Breaking criteria (transition aperture) (*10�6 m)

1 288.00 1.00*10�11 200.00

2 288.00 1.00*10�11 250.00

3 288.00 5.00*10�12 200.00

4 288.00 5.00*10�12 250.00

5 298.00 1.00*10�11 200.00

6 298.00 1.00*10�11 250.00

7 298.00 5.00*10�12 200.00

8 298.00 5.00*10�12 250.00
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the highly nonlinearity region is around the heat front region. Besides, in either time point, the highly
nonlinearity region is a small portion of the entere domain.

Numerical Performance
The average number of iterations per time step and the average on-wall computing time per time step are
shown in Fig. 9 to Fig. 12. As the results demonstrates, the average number of iterations per time step of
INB-ANE is in the range to 4 to 6, comparable to that of NR method and much less than of INB without
preconditioning. It turns out that by implementing such a preconditioner, INB becomes more efficient and

Figure 5—Problem setup. Left: side view of the reservoir, showing the fractured rock system and the fluid flow direction. Right: vertical view of the
reservoir, showing the positions of the injector and the producer.

Figure 6—Fracture aperture curve at the cold water injector of Case 1 and Case 5. Red lines indicating the highly nonlinear zone determined by the
judging criteria.
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more robust. As INB type of method requires less time spent in the linear solver within each iteration, the
proposed INB-ANE method can accelerate the simulation by 10% to 30%, as demonstrated by Fig. 10 and
Fig. 12.

Parallel Performance
An important property of nonlinear solvers is their parallel performance. In this subsection, we show the
parallel speedup factor of INB-ANE and compare it with that of NR method. We re-run the above Case
1 with the same input parameters on a refined grid with 256*256*20 � 1,310,720 uniformly distributed
grid blocks. As our simulator cannot run on a single processor, the minimum number of processors we use

Figure 7—Permeability field of Case 1 after cold water injection. The unit of the fracture permeability is m2. Red/orange color indicates the
permeability enhanced zone near the injector. The figure on the left is the y-permeability field at 180 days of injection, while the figure on the right
is the y-permeability field at 7 years of injection. In this case, the initial fracture permeability 10-11 m2 (~10 Darcy)

Figure 8—Distribution of high/low nonlinearity regions of Case 1. Red/orange color indicates the high nonlinearity region that is determined by the
physics-based judging criteria. Blue color indicates the low nonlinearity region. The figure on the left is the distribution at 180 days of injection, while
the figure on the right is that at 7 years of injection
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is 2. Since the parallel performance is close to linear speedup when number of processors is low enough,
we use the parallel performance of the 2-processor cases as the benchmark.

As demonstrated by Table 3 and Fig. 13, INB-ANE is nonlinearly scalable, instead of linearly scalable.
Compared to Newton-Raphson method, the speedup factor of INB-ANE deteriorates faster when number
of processors increases. This is mainly due to the fact that the preliminary nonlinearity elimination step
is not fully scalable. However, we should also notice that INB-ANE is still capable of saving around 10%
of the computing time when the number of processes is 256.

Figure 9—Comparison of the average number of iterations per time step of Case 1 to Case 4. Red columns: Inexact Newton method without
preconditioning. Green columns: the proposed INB-ANE method. Blue columns: Newton-Raphson method.

Figure 10—Comparison of the average computing time per time step of Case 1 to Case4. Green columns: the proposed INB-ANE method. Blue
columns: Newton-Raphson method.
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Conclusions
We have developed a nonlinearly preconditioned Inexact Newton method, INB-ANE. The proposed
method dynamically eliminates and balances the local nonlinearity/discontinuity. The method adopts a
physics-based criteria to determine the high nonlinear zone within the computing domain. Using algebraic
restrictors, the method can be easily implemented into the codes of existing massively parallel simulators.

We have used INB-ANE to simulate the coupled thermal-hydraulic-mechanical behaviors of fractured
reservoirs with elastic-plastic effects of the fractures induced by cold water injection. It has been shown
that the proposed method can improve the robustness of the Inexact Newton method, avoiding iteration

Figure 11—Average number of iterations per time step of Case 5 to Case 8. Red columns: Inexact Newton method without preconditioning. Green
columns: the proposed INB-ANE method. Blue columns: Newton-Raphson method.

Figure 12—Comparison of the average computing time per time step of Case 5 to Case 8. Green columns: the proposed INB-ANE method. Blue
columns: Newton-Raphson method.
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failures or time step cuts. Compared to commonly used Newton-Raphson method, the proposed method
can save 10% to 30% of the computing time, depending on the input parameters and the number of
processors used.

The proposed INB-ANE method is a competitive nonlinear solver in simulating the tightly coupled
multi-physics problems with high local nonlinearity in the practice of reservoir simulation
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Nomenclature

A area of a connection
bi fracture aperture on the ith direction
E Young’s modulus
F flux term
G shear modulus
g gravity terms
h enthalpy
J Jacobian matrix
K absolute permeability

Table 3—Comparison of the parallel speedup factor of INB-ANE and NR

Number of
processorses

time spent by
INB-ANE (s)

speedup factor
of INB-ANE

time spent by
NR (s)

speedup factor
of NR

Ideal (linear)
speedup

2 62490.62 2 77182.2 2 2

4 32554.01 3.82 39990.78 3.86 4

8 17058.48 7.29 20581.92 7.50 8

16 9273.40 13.41 11026.03 14.01 16

32 4892.06 25.42 5629.62 27.5 32

64 2952.42 42.12 3207.90 48.12 64

128 1778.552 69.92 1946.09 79.32 128

256 1137.544 109.33 1244.87 123.32 256

Figure 13—Comparison of the parallel speedup between INB-ANE, NR and ideal performance
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Kr relative permeability
KR formation heat conductivity
K� liquid heat conductivity
Li fracture spacing on the ith direction
M accumulation term
Q generation term
p pore pressure
Pc capillary pressure
R residual vector
Ri,j resctrictor on the ith subdomain
S phase saturation
T temperature
Tm matrix temperature
Tf fracture temperature
�t length of time step

displacement vector
u phase specific internal energy
V volume
v subspace correction
X mass component
xk primariy variables at the kth iteration step
� Biot’s coefficient
� thermal expansion coefficient

 Lame’s coefficient
� viscosity
vmax,hor maximum horizontal stress
vmin,hor minimum horizontal stress
� density
�= effective stress
�m mean stress
�n normal effective stress
A porosity
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