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Abstract

For processes such as production from low permeability reservoirs and storage in subsurface formations,
reservoir flow and the reservoir stress field are coupled and affect one another. This paper presents a
thermal-hydrological-mechanical (THM) reservoir simulator that is applicable to modeling such pro-
cesses. The fluid and heat flow portion of our simulator is for general multiphase, multicomponent,
multi-porosity systems. The geomechanical portion consists of an equation for mean stress, derived from
linear elastic theory for a thermo-poro-elastic system, and equations for stress tensor components that
depend on mean stress and other variables. The integral finite-difference method is used to solve these
equations. The mean stress and reservoir flow variables are solved implicitly and the remaining stress
tensor components are solved for explicitly. Our simulator is verified using analytical solutions for stress
and strain tensor components and is compared to published results.

Introduction
For processes such as oil and gas production from low permeability and unconsolidated reservoirs, energy
production from geothermal reservoirs, and carbon dioxide storage in deep saline aquifers, an analysis of
fluid and heat flow coupled with rock deformation is advantageous over one of fluid and heat flow alone
because reservoir flow and the reservoir stress field affect one another.

In order to simulate such a thermal-hydrological-mechanical (THM) process, the two sets of equations,
fluid and heat flow, and geomechanics, are both solved on a discretized medium. The different ways these
two sets of equations can be coupled have been described by Settari and Walters (1999) and Tran et al.
(2005). Three of these methods are iterative, explicit, and full coupling. In iterative coupling, the fluid and
heat flow equations, and the geomechanical equations, are solved iteratively and sequentially until
solutions for both sets converge. An example of THM processes being simulated using iterative coupling
is Chin et al. (2002). In explicit coupling, one set of equations is solved for first and the other set is solved
for next using the updated variables of the previously solved for set. Explicit coupling is a special case
of iterative coupling, with only one iteration taken. An example of THM processes being simulated using
explicit coupling is Minkoff et al. (1999). In full coupling, both sets of equations are solved simultane-
ously. An example of THM processes being simulated using full coupling is given by Gutierrez and Lewis
(1996).



A fully coupled THM simulator was presented by Winterfeld and Wu (2014) and Hu et al. (2013). In
their approach, the geomechanical equations relating stresses and displacements were combined to yield
an equation for mean stress, a primary variable, and volumetric strain, a rock property. The computational
cost of fully coupling this geomechanical formulation to the fluid and heat flow equations is relatively
small since there is only one additional equation and primary variable. However, that formulation is not
able to calculate the stress tensor components and information from these components, such as principal
stress directions that are applicable to predicting rock failure (Jaeger et al. 2007), are lacking.

In this paper, we present a technique to obtain stress tensor components in the context of this mean
stress geomechanical formulation. We begin by summarizing the mean stress geomechanical formulation,
along with the associated fluid and heat flow formulation, and then illustrate the technique for how to
obtain stress tensor components. Three example problems are then used to provide verification of our
technique. The first is a comparison of simulation results to the analytical solution for displacement by a
uniform load on a semi-infinite elastic medium. The second is a comparison of simulation to the analytical
solution for the two-dimensional Mandel-Cryer effect. The last, a single-phase depletion problem, shows
a comparison of our simulator to published results.

Fluid and Heat Flow Formulation
Our simulator’s fluid and heat flow formulation is based on the TOUGH2 one (Pruess et al., 1999) for
general multiphase, multicomponent, multi-porosity systems. Fluid advection is described with a multi-
phase version of Darcy’s law. Heat flow occurs by conduction and convection, the latter including sensible
as well as latent heat effects. The description of thermodynamic conditions is based on the assumption of
local equilibrium of all phases and rock media. The conservation equations for mass and energy can be
written in differential form as:

(1)

where superscript k refers to a component, M is mass per unit volume, q is source or sink per unit
volume, and F is mass or energy flux. Mass per unit volume is a sum over phases:

(2)

where � is porosity, subscript l refers to a phase, S is phase saturation, � is phase mass density, and
X is phase mass fraction.

Energy per unit volume accounts for internal energy in rock and fluid and is the following:

(3)

where �r is rock density, Cr is rock specific heat, U is phase specific internal energy, and N is the
number of mass components.

Advective mass flux is a sum over phases:

(4)

and phase flux Fl is given by the multiphase version of Darcy’s law:

(5)

where k is absolute permeability, kr is phase relative permeability, � is phase viscosity, Pc is phase
capillary pressure, and g is the gravity vector. Capillary pressure is relative to a reference phase, which
is the gaseous phase. Energy flux includes conductive and convective components:
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(6)

where kt is thermal conductivity and h is specific enthalpy.

Mean Stress Geomechanical Formulation
Our simulator’s mean stress geomechanical formulation is based on the classical theory of elasticity
extended to multi-porosity non-isothermal media. In the theory of elasticity, the stress-strain behavior of
an isothermal elastic material is described by Hooke’s law:

(7)

where G is shear modulus and � is the Lamé parameter. For a thermo-poroelastic medium, a porous
medium subject to changes in both temperature and stress, a pore pressure and a temperature term are
added to Equation 7 (McTigue, 1986) yielding:

(8)

where � is Biot’s coefficient, Tref is reference temperature for a thermally unstrained state, K is bulk
modulus, and � is linear thermal expansion coefficient.

Bai et al. (1993) present a generalization of Hooke’s law for a multi-porosity medium, a common
example of which is the dual-porosity medium consisting of a network of fractures and rock matrix:

(9)

where the summation is over multi-porosity continua. We obtain Hooke’s law for a thermo-multi-
poroelastic medium by including the temperature term from Equation 8 in Equation 9 for each multi-
porosity continuum, since temperature varies between multi-porosity continua. We also weight each
temperature term by the porous continuum volume fraction, �j, since the bulk modulus and linear thermal
expansion coefficient describe the overall porous medium:

(10)

Expressions for the generalized Biot’s coefficients, �j, for a dual-porosity medium have been presented
by Wilson and Aifantis (1982):

(11)

and

(12)

where Ks is the solid modulus, K* is the modulus of the porous medium without the fractures, subscript
1 refers to the fractures, and subscript 2 refers to the matrix.

Two other fundamental relations in the theory of linear elasticity are the relation between the strain
tensor and the displacement vector u:

(13)

and the static equilibrium equation:

(14)

where Fb is the body force. We combine Equations 10, 13, and 14 to obtain the thermo-multi-
poroelastic Navier equation:
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(15)

Taking the divergence of Equation 15 yields:

(16)

The trace of the stress tensor, an invariant, is obtained from Equation 10 as:

(17)

where 	m is the mean stress, the average of the normal stress tensor components, and 
v is the
volumetric strain, the sum of the normal strain components. Finally, combining Equations 16 and 17, and
noting that the divergence of the displacement vector is the volumetric strain, yields an equation relating
mean stress, pore pressures, and temperatures (Winterfeld and Wu, 2014):

(18)

where � is Poisson’s ratio.
We couple fluid and heat flow to geomechanics by solving Equation 18 along with the mass and energy

conservation equations (Equation 1) from the fluid and heat flow formulation. Equation 18 is a momentum
conservation equation in terms of mean stress, the primary thermodynamic variable associated with our
geomechanical formulation. Volumetric strain is an additional property arising from our geomechanical
formulation and is calculated from Equation 17.

Rock properties, namely porosity and permeability, are correlated to effective stress, a general
definition of which was given by Biot and Willis (1957):

(19)

One such correlation for porosity is based on its definition, the ratio of fluid volume to bulk volume:

(20)

where Vs is the solid or grain volume and V0 is the unstrained bulk volume. Other such correlations for
these properties used in our simulator appear in Winterfeld and Wu (2014).

Stress Tensor Component Formulation
In this section, we derive equations for calculation of the stress tensor components. Consider the
x-component of Equation 15:

(21)

where

(22)

Differentiating Equation 21 by x and eliminating strains and displacements in favor of stresses using
Equations 10, 13, and 17 yields an equation relating the xx-normal stress component, mean stress, pore
pressures, and temperatures:

(23)

Repeating this procedure for the y- and z-components of Equation 15 yield similar equations for the
yy- and zz-normal stress components:
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(24)

(25)

Consider the y-component of Equation 15:

(26)

Differentiating Equation 26 by x, differentiating Equation 21 by y, averaging the two, and eliminating
strains and displacements as before yields an equation relating the xy-shear stress component, mean stress,
pore pressures, and temperatures:

(27)

Repeating this procedure for the y- and z-components of Equation 15 yields an equation for the
yz-shear stress component; repeating this procedure for the x- and z-components of Equation 15 yields an
equation for the xz-shear stress component:

(28)

(29)

Equations 23–25 and 27–29 relate each normal or shear stress component to mean stress, pore
pressures, and temperatures, the primary variables of the mean stress geomechanical formulation.

Discretization and Solution of Simulator Equations
The fluid and heat flow and geomechanical equations are discretized in space using the integral finite
difference method (Narasimhan and Witherspoon, 1976). In this method, the simulation domain is
subdivided into grid blocks and those equations are integrated over a grid block volume, V:

(30)

where � is the grid block surface. Because geomechanical effects result in grid block geometry
changes, the integrands of Equation 25 depend on strain. This dependence is formulated as:

(31)

where subscript 0 refers to zero strain, A refers to area, D refers to distance, and V refers to volume.
Replacing volume integrals with grid block volume averages and surface integrals with discrete sums over
grid block surface segment averages yields the following discrete form of the simulator equations:

(32)

where the summation is over grid block surface segments, superscript i is time step, and superscript i*

bracketing the flux and generation terms denotes that those terms are evaluated at the previous time step
(i) or the current one (i�1).

The simulator equations and primary variables comprising the single-porosity version our formulation
are summarized in Table 1. This system of equations is solved in a sequential manner using the
Newton-Raphson method. The Jacobian matrices consist of square sub matrices that are associated with
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a grid block or a connection between two grid
blocks. Conservation of mass, energy, and the mean
stress equation are solved simultaneously first. Nor-
mal and shear stresses appearing in those equations
are evaluated at the previous time step and the rest
of the primary variables are evaluated at the current
time step. Solution of those equations yields pres-
sure, mass fractions, temperature, and mean stress at
the current time step. The size of that Jacobian’s sub
matrices is two plus the number of mass compo-
nents. The normal and shear stress equations, Equations 23–25 and 27–29, are solved next. In those
solutions, pressure, mass fractions, temperature, and mean stress are evaluated at the current time step.
Normal and shear stresses appearing in the Laplacian terms are also evaluated at the current time step, and
other instances of those stresses are evaluated at the previous time step. The Jacobian matrix for each
stress tensor component is linear, independent of the other stress tensor components, and has a sub matrix
size of one. Figure 1 is a flow chart illustrating this equation solution.

Our simulator is massively parallel, with domain partitioning using the METIS and ParMETIS
packages (Karypsis and Kumar, 1998; Karypsis and Kumar, 1999). Each processor computes Jacobian
matrix elements for its own grid blocks and exchange of information between processors uses MPI
(Message Passing Interface) and allows calculation of Jacobian matrix elements associated with inter-
block connections across domain partition boundaries. The Jacobian matrix is solved in parallel using an
iterative linear solver from the Aztec package (Tuminaro et al. 1999).

Example Problems
We provide three example problems for verification of our technique. The first is a comparison of
simulation to the analytical solution for displacement caused by a uniform load on a semi-infinite elastic
medium. There is no fluid or heat flow in this problem. The second is a comparison of simulation to the
analytical solution for the two-dimensional Mandel-Cryer effect. The last, a single-phase depletion
problem, shows a comparison of our simulation to published results.

Displacement from Uniform Load on Semi-infinite Elastic Medium
Given a semi-infinite elastic medium, the displacement caused by a uniform load acting on its surface over
a circular area of radius a is given by Timoshenko and Goodier (1951) as:

(33)

where p is the load, w(r) is displacement at a radius r from the center of the circle, and the integrals
in the brackets are elliptic integrals of the first and second kind. The normal z-direction stress along the
z-axis at the center of the circle is given as well:

(34)

Table 1—Summary of single-porosity version formulation including
equations and associated primary variables for N mass components.

Equation Associated Primary Variables

Conservation of mass (Eqn. 1) Pressure, N-1 mass fractions

Conservation of energy (Eqn. 1) Temperature

Mean stress (Eqn. 18) Mean stress

Normal stresses (Eqn. 23) xx, yy, zz normal stresses

Shear stresses (Eqn. 24) xy, yz, xz shear stresses
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We used this analytical solution to verify calculation of normal stress tensor components. We
approximated the semi-infinite medium as a large rectangular parallelepiped 194 m in the x- and y-
directions and 1320 m in the z-direction. We subdivided this medium into a 200x200x800 Cartesian grid.
Grid block x- and y-direction length in the vicinity of the center was 0.1 m and increased further away
from it. Grid block z-direction length was 0.2 m in the vicinity of the surface and increased further away
from it. The loaded circle was located at the center of the top xy-face and had a 1.0 m radius. Because
our grid was Cartesian, we approximated this circle as 314 loaded squares of radius 0.1 m, as shown in
Figure 2. The rest of the medium’s surface had no load exerted on it.

Our geomechanical formulation requires boundary conditions for mean stress and those stress tensor
components that are calculated. We specified a mean stress of 0.48 MPa and a normal z-direction stress
(the load) of 0.6 MPa over the loaded circle. The equal x- and y-direction normal stresses were then 0.42
MPa. There is no fluid or heat flow in this problem, so only mean stress and stress tensor components are
solved for. We solve for mean stress first, and calculate stress tensor components next using the mean
stress solution. Because grid block geometry depends on stress tensor components that are evaluated at
the previous time step, we must repeat these calculations over a number time steps, until the stress tensor
components are converged. This converged solution is that obtained by a fully coupled or fully implicit
solution to these stress equations.

The displacement caused by the load is the change of the medium’s overall length in the direction of
the applied load, given by:

(35)

Figure 1—Flow chart for solution of mass, energy, and geomechanical equations.
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where D0,z is z-direction grid block unstrained length and the sum is over a z-direction column of grid
blocks. The z-direction normal strain is calculated from Hooke’s law:

(36)

The analytical and simulated displacements are shown in Figure 3 and those for the z-direction normal
stresses are shown in Figure 4. In both cases, they are hardly distinguishable.

Figure 2—Approximation of loaded 1.0 m radius circle by 314 square grid blocks of length 0.1 m.

Figure 3—Analytical (solid line) and simulated (dotted line) displacements for semi-infinite medium subjected to circular load.
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Two-Dimensional Mandel-Cryer Effect
Consider a fluid-filled poroelastic material with a constant compressive force applied to the top and
bottom. There is an instantaneous compression and uniform pore pressure increase due to the force.
Afterwards, the material is allowed to drain laterally. Drainage is accompanied by a decrease in pore
pressure near the edges and the material there becomes less stiff, resulting in a load transfer to the center
and a pore pressure there that reaches a maximum and then declines. This pore pressure behavior is the

Figure 4—Analytical (solid line) and simulated (dotted line) z-direction normal stresses for semi-infinite medium subjected to circular load.

Figure 5—Match of simulated centerline pore pressure (dotted line) with analytical solution (solid line) for Mandel-Cryer effect.
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Mandel-Cryer effect (Mandel, 1953) and Abousleiman et al. (1996) derived an analytical solution to it.
We use this analytical solution to verify our coupled fluid flow and geomechanics calculations.

Our simulation domain is 1000 m square and is subdivided into a uniform Cartesian 200x200 grid.
Rock properties are the following: porosity is 0.094, permeability is 10�13 m2, Young’s modulus is 5.0
GPa, Poisson’s ratio is 0.25, and Biot’s coefficient is 1.0.

We simulate the compression and then the drainage. The initial unstrained state is pore pressure and
normal stress components at 2.0 MPa. The compressive portion of the simulation, with an imposed mean
stress of 5.0 MPa at the top and bottom, is run until equilibrium is reached. The pore pressure increases
to 3.28 MPa in this step and the mean stress becomes a uniform 5.0 MPa throughout the simulation
domain. Because the lateral boundaries are free, the x- and y-direction effective stresses are zero, so the
normal stresses in those directions are 3.28 MPa, and the normal z-direction stress is therefore 8.44 MPa.

In the drainage portion of the simulation, the initial pore pressure (2.0 MPa) is imposed at the lateral
boundaries. Because the effective stresses there are zero, the x- and y-direction normal stresses there have
that value. The normal z-direction stresses at the top and bottom remain at 8.44 MPa. The drainage
simulation is run for 100,000 seconds with 100 second time steps. Figure 5 shows the match of centerline
pore pressure with the analytical solution. The displacements in the x- and z- directions are calculated as
was done in the previous example problem. The applied stress causes the system to contract in the
z-direction and expand in the x-direction. The expansion, shown in Figure 6, is matched almost perfectly
and the match of the contraction, shown in Figure 7, shows only a small deviation from the analytical
solution at early times.

Depletion of a Single-Phase Reservoir
We ran the depletion of a single-phase reservoir, adapted from Dean et al. (2006), as a comparison of our
simulator to published results. A single phase (water) reservoir, 671 m2 in area and 61 m thick, with a
single vertical well at the center and completed along the entire thickness, was produced at a constant rate

Figure 6—Match of simulated x-direction displacement (dotted line) with analytical solution (solid line) for Mandel-Cryer effect.
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of 27.59 kg/sec for 500 days. Reservoir porosity was initially 0.20, horizontal permeability was 5·10�14

m2, vertical permeability was 5·10�15 m2, Young’s modulus was 6.87·107 Pa, Poisson’s ratio was 0.30,
and the rock density was 2700 kg/m3. The z-direction stress at the reservoir top was 41.4 MPa, and the
constant horizontal stresses were 27.6 MPa. Pore pressure at the reservoir top was 20.7 MPa. Pore pressure

Figure 7—Match of simulated z-direction displacement (dotted line) with analytical solution (solid line) for Mandel-Cryer effect.

Figure 8—Average pore pressure from our simulation compared to Dean et al. (2006).
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increased with increasing depth due to the hydrostatic gradient, and z-direction stress increased with
increasing depth due to the overburden.

Our Cartesian grid was 11x11x10 with constant grid block dimensions, and our time step size was 50
days. Porosity varied with effective stress according to Equation 20 and solid volume was constant. Figure
8 shows a comparison of average reservoir pressure, and Figure 9 shows a comparison of subsidence
around the well, between our simulation and Dean et al. (2006). The pore pressures at 500 days are similar
but ours lies above the published results. One contributor to that is our use of a compressible fluid versus
an incompressible one used by Dean et al. (2006). Our subsidence is also similar to the published results,
and is about 16 percent less at 500 days.

Summary and Conclusions
We developed a reservoir simulator for modeling THM processes in fractured and porous media. The
simulator geomechanical formulation consists of a momentum conservation equation for mean stress, pore
pressures, and temperatures, along with additional equations relating each stress tensor component to
mean stress, pore pressures, and temperatures. The fluid and heat flow formulation is for general
multiphase, multicomponent, multi-porosity systems. The simulator is an extension of a THM one whose
geomechanical formulation was the momentum conservation equation for mean stress alone.

We verified our technique using analytical solutions and published results. For the analytical solutions,
we matched the displacement from a uniform load on semi-infinite elastic medium and the two-
dimensional Mandel-Cryer effect. Both analytical solutions were matched by simulation extremely well,
verifying the technique for calculating stress tensor components. We also ran a simulation, published in
the literature, of single-phase depletion of a reservoir. The results from our simulation, namely average
pressure and subsidence versus time, were similar to the published results.

Figure 9—Subsidence from our simulation compared to Dean et al. (2006).
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Nomenclature

a � radius, m
A � area, L2, m2

C � specific heat, L2/t2T, J/kg-K
D � distance, L, m
F � mass flux, m/L2t, kg/m2-s
Fadv � advective mass flux, m/L2t, kg/m2-s
Fb � body force, mL/t2, kg-m/s2

g � gravity vector, L/t2, m/s2

G � shear modulus, m/Lt2, Pa
h � specific enthalpy, L2/t2, J/kg
I � identity matrix
k � permeability, L2, m2

kr � relative permeability
kt � thermal conductivity, mL/t3T, J/m-s-K
K � bulk modulus, m/Lt2, Pa
Ks � solid modulus, m/Lt2, Pa
K* � solid modulus without fractures, m/Lt2, Pa
M � mass per unit volume, m/L3, kg/m3

MN�1 � energy per unit volume, m/Lt2, J/m3

p � load, m/Lt2, Pa
P � pressure, m/Lt2, Pa
Pc � capillary pressure, m/Lt2, Pa
q � mass source/sink per unit volume, m/L3t, kg/m3-s
S � saturation
t � time, t, s
T � temperature, T, K
Tref � reference temperature, T, K
u � displacement vector, L, m
U � specific internal energy, L2/t2, J/kg
V � bulk volume, L3, m3

Vs � solid volume, L3, m3

w � displacement, m
X � mass fraction

Greek

� � Biot’s coefficient
� � linear thermal expansion coefficient, 1/T, 1/K
� � strain tensor

v � volumetric strain
� � Lamé parameter, m/Lt2, Pa
� � viscosity, m/Lt, Pa-s
� � Poisson’s ratio
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� � density, m/L3, kg/m3

� � stress tensor, m/Lt2, Pa
	m � mean stress, m/Lt2, Pa
	’ � effective stress, m/Lt2, Pa
� � porosity
� � volume fraction

Subscripts

l � phase
r � rock
0 � unstrained

Superscripts

i � time step
k � mass component
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