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Abstract 

Unconventional gas resources from low-permeability formation, i.e., tight and shale gas, are currently received great attention 
because of their potential to supply the world with sufficient energy for decades to come. In the past few years, as a result of 
industry-wide R&D effort, progresses are being made towards commercial development of gas and oil from such 
unconventional resources. However, studies, understandings, and effective technologies needed for development of 
unconventional reservoirs are far behind the industry needs, and gas recovery from those unconventional resources remains 
low (estimated at 10-30% of GIP). 
 
Gas flow in low-permeability unconventional reservoirs is highly nonlinear, coupled by many co-existing processes, e.g., non-
Darcy flow and rock-fluid interaction within tiny pores or micro-fractures. Quantitative characterization of unconventional 
reservoirs has been a significant scientific challenge currently. Because of complicated flow behavior, strong interaction 
between fluid and rock, the traditional Darcy law may not be applicable for describing flow phenomena in general. In this 
paper, we will discuss a general mathematical model of gas flow through unconventional porous media and use both numerical 
and analytical approaches to analyze gas flow in unconventional reservoirs. In particular, we will present analytical and 
numerical solutions of incorporating Klinkenberg effect, non-Darcy flow with threshold pressure gradient, and flow behavior 
in pressure sensitive media. We will discuss the numerical implementation of the mathematical model and show applications 
of the mathematical model and solutions in analyzing transient gas flow in conventional reservoirs.  
 

Introduction 

This paper presents our continual effort in developing simulation models and tools for unconventional gas reservoirs (Wu and 
Fackahroenphol, 2011). As unconventional gas resources from low-permeability reservoirs are receiving great attention in the 
world, many studies and progresses are being made towards commercial development of gas and oil from these 
unconventional resources (Denny, 2008; Bybee, 2008; King, 2010). However, our understandings of gas flow and effective 
tools for effective development of unconventional reservoirs are far behind the industry needs (Wu et al. 2009). Unlike flow in 
traditional reservoir s, nanoscale observations and field data analysis tell us that gas flow in such extremely low-permeability 
formations is complicated by flow condition and many co-existing processes, such as severe heterogeneity on any scales, 
Klinkenberg effect or known as Knudsen diffusion (Klinkenberg, 1941), non-Darcy flow behavior (Wu, 2002), 
adsorption/desorption (Silin and Kneafsey, 2011), strong interactions between fluid (gas and water) molecules and solid 
materials within tiny pores (Severino et al. 2010) as well as micro- and macro- fractures of shale and tight formations (Shabro 
et. al. 2011). As a result, there is a general lack in technologies or approaches available for effective gas production from 
unconventional reservoirs (MIT, 2010) or effective and applicable reservoir simulation technologies currently available and 
few modeling efforts (Kelkar and Atiq, 2010).  
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        Currently, there is little analysis of what the effect of Klinkenberg effect, non-Darcy flow behavior and 
adsorption/desorption terms is in flow and well tests in unconventional gas reservoirs. In order to study transient gas flow and 
provide type curves for well testing analysis, an accurate unconventional reservoir simulator should be built considering both 
the nonlinear flow and natural/hydraulic fractures (Wu and Fackahroenphol, 2011). Some related studies using double-porosity 
or discrete fractures model (DFM) are carried out for fracture modeling (Mirzaei and Cipolla, 2011; Gong et al. 2011; Wu et 
al. 2009). 
        This paper presents a two-phase flow model for simulating both gas and water flow in shale oil/gas and tight gas 
reservoirs. Single-phase gas flow is handled as a special case of the proposed model and used for transient flow and well 
testing analysis. The two-phase flow model incorporates many of the key nonlinear gas physical processes in unconventional 
reservoirs, such as non-Darcy flow, Klinkenberg effect, and sorption. In addition, we have derived several analytical solutions 
for gas flow through unconventional porous medi, which are used for verifying the numerical model formulation and results. 
The mathematical model has been implemented into a multiphase, multidimensional reservoir simulator (Wu, 2000). The 
proposed numerical modeling approach is suitable for modeling various types of shale and gas reservoirs, including discrete- 
hybrid- double-, and other multiple-continuum conceptual models for multi-scaled fractures and matrix systems and various 
flow domains. The simulator can be used for quantitative studies of transient gas flow behavior as well as well testing analysis. 
As an application example, the model is used to generate several transient flow curves in terms of the pseudo gas pressure and 
dimensionless time.  
 

Flow Model  

A multiphase system of gas and water in a porous or fractured unconventional reservoir is assumed to be similar to the black 
oil model, composed of two phases: gaseous and aqueous phases. For simplicity, the gas and water components are assumed to 
be present only in their associated phases, and adsorbed gas is within the solid phase of rock. Each fluid phase flows in 
response to pressure, gravitational, and capillary forces according to the multiphase extension of Darcy law or several non-
Darcy laws, discussed below. In an isothermal system containing two mass components, subject to flow and sorption, two 
mass-balance equations are needed to fully describe the system, as described in an arbitrary flow region of a porous or 
fractured domain for flow of phase ! (! = g for gas and ! = w for water), 
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where !"  is the density of fluid !;  !v is the volumetric velocity vector of fluid !;  !S  is the saturation of fluid !; ! is the effective 

porosity of formation; t is time; km is the adsorption or desorption term for gas component (k=g only) per unit volume of 

formation; and  !q is the sink/source term of phase (component) ! per unit volume of formation,  

The flow velocity in Eq. (1) will be evaluated (1) using the Darcy’s law with Klinkenberg effects (for gas flow); (2) using 
the nonlinear flow models to describe non-Darcy flow behavior (e.g., Wu, 2002); and (3) flow condition where flow may not 
occur until the pressure or potential gradient reaches a certain threshold value (Wu and Pruess, 1998). Specifically, !v  is the 

flow velocity (or volumetric flow rate) in Eq. (1), defined differently under different flow regimes or situations, as discussed in 
the following.  
 Darcy’s Flow: When the Darcy’s law is applicable, the velocity, !v , is defined as, 

  ( )!
!

!
! "#

µ
$= rkkv            (2) 

where k is the absolute permeability of the porous media, treated as a function of gas pressure with Klinkenberg effect 
accounted for; kr" is relative permeability to phase ", treated as a function of fluid saturation; µ" is the viscosity of phase " as a 
function of pressure; and !"# is flow potential gradient, defined as, 

  ( )DgP !"#!=$! %%%           (3) 

where P" is the pressure of phase "; g is gravitational acceleration constant; and D is the depth from a datum.  
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Non-Darcy’s Flow: In addition to multiphase Darcy flow, non-Darcy flow may also occur between and among the 
continua in tight or shale gas reservoirs. The flow velocity, !v , for non-Darcy flow of each fluid may be described using the 

multiphase extension of the Forchheimer equation (e.g., Wu, 2002), 
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       (4) 

 
where !! is the effective non-Darcy flow coefficient with a unit m-1 for fluid " under multiphase flow conditions. 

       Flow with Threshold Pressure Gradient: The phenomenon of flow with threshold-pressure-gradient concept has been 
observed in laboratory and is commonly used to describe nonlinear flow behavior in low permeability reservoirs (Xiong et al. 
2008; Lei et al. 2007). This flow condition is similar to Bingham non-Newtonian flow through porous media (Wu and Pruess, 
1998), which is used in this work to describe conditions where flow may not occur until the pressure or potential gradient 
reaches a certain threshold value. Instead of introducing an apparent viscosity for Bingham fluid, an effective potential 
gradient approach, as follows, has been proven to be more efficient numerically (Wu et al., 1992).  Using the effective 
potential gradient, the flow of gas or liquid in a low-permeability reservoir is described by, 

  ( )!
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where µb,"  is the Bingham plastic viscosity coefficient for phase "; and !"# e  is the effective potential gradient whose scalar 

component in the x direction (the flow direction) is defined as,  
 

( ) ( ) ( ) GforG xxxe >!"#!"=!"       (6a) 

( ) ( ) ( )!" = !" + !" < #e x x xG for G       (6b) 

( ) ( ) GGfor0 xxe <!"<#=!"                               (6c) 

 
where G is the threshold (or minimum) potential gradient for the fluid to become mobile. 
       Adsorption: Natural gas can be present as a free gas phase or as adsorbed gas on solids in pores. In shales, methane 
molecules are adsorbed mainly to the carbon-rich components, i.e. kerogen (Silin and Kneafsey, 2011). As observed, adsorbed 
mass of gas can provide significant fraction of gas reserves and recovery. As the pressure decreases with gas production from 
reservoirs, more adsorbed gas is released from solid to free gas phase, contributing to the total production. In our model, the 
mass of adsorbed gas in formation volume V is described (Alana, 2011): 
 
                         !!!!! ! !!!!!!!!!!!                                (7) 
 
where !! is kerogen density, !!is gas density at standard condition, !! is the average volume relative of kerogen in bulk 
volume, !!!!! is the adsorbed gas mass in bulk formation volume V. In Eq. (7),  !!!! is the adsorption isotherm function. 
If the adsorbed gas molecules form a thin layer on the solid surface, adsorption terms can be well represented by the Langmuir 
isotherm (Langmuir, 1916), as shown in Fig. 1, which describes the dependency of adsorbed gas volume on pressure at 
constant temperature. 
 

                    !!!! ! !!!!
!!!!!

                                                                                           (8) 

 
where, !!!is the Langmuir volume (the maximum adsorption capacity at a given temperature), and !! is the Langmuir pressure 
(the pressure at which the adsorbed gas content is equal to  !!

!
 ). 
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Fig. 1 Gas adsorption volume per mass of rock at standard condition with pressure   

 
Klinkenberg Effect: In low-permeability formation or under low pressure condition, the Klinkenberg effect 

(Klinkenberg, 1941) may be too significant to be ignored when modeling gas flow in reservoirs (Wu et al. 1998). Klinkenberg 
effect is expected to be larger in unconventional reservoirs, because of small size pores and low permeability associated. 
Under such flow conditions, absolute permeability for the gas phase is written as a function of gas pressure as,  
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where !k  is constant, absolute gas-phase permeability under very large gas-phase pressure (where the Klinkenberg effect is 
minimized); and b is the Klinkenberg factor, depending on the pore structure of the medium and formation temperature.  

Numerical Model  

As discussed above, the PDE that governs gas flow in gas reservoirs is nonlinear. In addition, gas flow in unconventional 
reservoirs is subject to many other nonlinear flow processes. In general, the flow model is solved using a numerical approach. 
This work follows the methodology for reservoir simulation, i.e., using numerical approaches to simulate gas and water flow, 
following three steps: (1) spatial discretization of mass conservation equations; (2) time discretization; and (3) iterative 
approaches to solve the resulting nonlinear, discrete algebraic equations. 
     Discrete Equations: The component mass-balance Equations (Eq.1) are discretized in space using a control-volume or 
integrated finite difference concept (Pruess et at. 1999), as shown in Fig. 2. The control-volume approach provides a general 
spatial discretization scheme that can represent a one-, two- or three-dimensional domain using a set of discrete meshes. Each 
mesh has a certain control volume for a proper averaging or interpolation of flow and transport properties or thermodynamic 
variables. Time discretization is carried out using a backward, first-order, fully implicit finite-difference scheme. The discrete 
nonlinear equations for components of gas and water at gridblock or node i can be written in a general form: 
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(k = 1, 2) and (i=1, 2, 3, …, N) 
 
where superscript k serves also as an equation index for gas and water components with k = 1 (gas) and 2 (water); superscript 
n denotes the previous time level, with n+1 the current time level to be solved; subscript i refers to the index of gridblock or 
node i, with N being the total number of nodes in the grid; #t is time step size; Vi is the volume of node i; $i contains the set of 

direct neighboring nodes (j) of node i; k
iM , k

im , k
ijflow , and k

iQ  are the accumulation and reaction (absorption or 

desorption) terms, respectively, at node i;  the component mass “flow” term between nodes i and j, and sink/source term at 
node i for component k, respectively, defined below.  
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Fig. 2  Space  discretization and flow-term evaluation in the integral finite difference method (Pruess et al. 1999) 

 
The “flow” terms in Eq. (10) are mass fluxes by advective processes and are described by a discrete version of Darcy’s 

law, i.e., the mass flux of fluid phase " along the connection is given by 
 

(( ))ijji2/1ij,ij,flow !!!! ""#$ %%== ++
      (11) 

 
where %",i j+1/2  is the mobility term to phase ", defined as  
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In Eq. (12), ij! is transmissivity and is defined as (Pruess et al. 1999), 

 

ji

2/1jiji
ji DD

kA
+
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where ijA is the common interface area between the connected blocks or nodes i and j (Fig. 2); Di is the distance from the 

center of block i to the common interface of blocks i and j; and kij+1/2 is an averaged (such as harmonic-weighted) absolute 
permeability along the connection between elements i and j. The flow potential term in Eq. (11) is defined as, 
   

i2/1ji,ii ZgP ++!!== """ #$       (14) 

 
where Zi is the depth to the center of block i from a reference datum. 
       Handling fractured media: to implement fractured modeling approaches, special attention is needed to calculate 
fracture-matrix mass transfer.  Commonly used double-porosity and dual-permeability models use a quasi-steady state 
assumption for handling fracture-matrix interaction.  In this work, the flow between fractures and matrix is still evaluated 
using Eq. (11); however, the transmissibility for the fracture-matrix flow is given by,  
 

FM

MFM
ij

kA
==!           (15) 

 
where AFM is the total interface area between fractures and matrix of element i and j (one of them is a fracture and the other is 
a matrix blocks); kM is matrix absolute permeability; and lFM is a characteristic distance or equivalent length for flow between 
fracture and matrix blocks. It can be calculated from ideal one-, two, and three-dimensional rectangular matrix block under 
quasi-steady state flow.  
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Handling Klinkenberg effect: To include the Klinkenberg effect on gas flow, the absolute permeability to gas phase in 
(13) should be evaluated using Eq. (9) as a function of gas phase pressure. 

Handling “non-Newtonian” flow: In the case that gas or water flow is subject to a threshold potential gradient, the 
discrete potential gradient in (11) should be replaced by the effective potential gradient, Eq. (6) for phase flow term evaluation. 

Handling non-Darcy flow: Under the non-Darcy flow condition of Eq. (4), the flow term ( ij,flow!
) in Eq. (11) along the 

connection (i, j), between elements i and j, is numerically defined as (Wu, 2002), 
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in which the non-Darcy flow transmissivity is defined as, 
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In evaluating the “flow” terms in the above Eqs. (11)-(17), subscript ij+1/2 is used to denote a proper averaging or 
weighting of fluid flow properties at the interface or along the connection between two blocks or nodes i and j. The convention 
for the signs of flow terms is that flow from node j into node i is defined as “+” (positive) in calculating the flow terms. 

     Eq. (10) presents a precise form of the balance equation for each mass component of gas and water in a discrete form. It 
states that the rate of change in mass accumulation (plus adsorption or desorption, if existing) at a node over a time step is 
exactly balanced by inflow/outflow of mass and also by sink/source terms, when existing for the node. As long as all flow 
terms have the flow from node i to node j equal to and opposite to that of node j to node i for fluids, no mass will be lost or 
created in the formulation during the solution. Therefore, the discretization in Eq. (10) is conservative. 

Numerical Solution  

In this work, we use the fully implicit scheme to solve the discrete nonlinear Eq. (10) with a Newton iteration method. Let us 
write the discrete nonlinear equation, Eq. (10), in a residual form as,  
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(k = 1, 2 ;  i = 1, 2, 3, …, N). 
 
Eq. (18) defines a set of 2&N coupled nonlinear equations that need to be solved for every balance equation of mass 
components, respectively. In general, two primary variables per node are needed to use the Newton iteration for the associated 
two equations per node. The primary variables selected are gas pressure and gas saturation. The rest of the dependent 
variables, such as relative permeability, capillary pressures, viscosity and densities, adsorption term, as well as nonselected 
pressures, and saturation,—are treated as secondary variables, which are calculated from selected primary variables.  
     In terms of the primary variables, the residual equation, Eq. (18), at a node i is regarded as a function of the primary 
variables at not only node i, but also at all its direct neighboring nodes j. The Newton iteration scheme gives rise to 
  

( )( ) ( )p,m1n,k
i1p,m

m m

p,m
1n,k

i xRx
x
xR

+
+

+

!="
#

#
$     (19) 

 
where xm is the primary variable m with m = 1 and 2, respectively, at node i and all its direct neighbors; p is the iteration level; 
and i =1, 2, 3, …, N. The primary variables in Eq. (19) need to be updated after each iteration, 
 

1p,mp,m1p,m xxx ++ !+=       (20) 
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The Newton iteration process continues until the residuals 1n,k
iR

+  or changes in the primary variables 1p,mx +! over iteration 

are reduced below preset convergence tolerances.  
Numerical methods are generally used to construct the Jacobian matrix for Eq. (19), as outlined in Forsyth et al. (1995). 

At each Newton iteration, Eq. (19) represents a system of (2&N) linearized algebraic equations with sparse matrices, which are 
solved by a linear equation solver.  

Analytical Solution 

In this section, we present several analytical solutions for steady-state gas flow in unconventional reservoirs with considering 
the Klinkenberg effect and non-Darcy flow. We also use analytical solutions for transient flow with Klinkenberg effect. In 
general, the gas flow governing equation with Klinkenberg effect and non-darcy flow needs to be solved by a numerical 
method. However, under 1-D flow, it is possible to obtain certain analytical solutions of steady-state or transient state, as 
proven in the following flow conditions. Detailed derivation processes for the steady-state solutions are provided in the 
Appendix A. 
       Klinkenberg Effect Steady-State Flow: Under horizontal and steady-state flow conditions, Equations for flow with 
Klinkenberg effect can be simplified as: 
 
       Klinkenberg effects:                ! ! !!!! !

!
!
!                                                                                                         (21.a) 

       Mass conservation equation:    !!" ! !!                                                                                                               (21.b) 
       Darcy’s Law:                           ! ! ! !

!
!!                                                                                                               (21.c) 

       Ideal gas equation:                   ! ! !!                                                                                                                     (21.d) 
 
Detailed description of the model and derivation process can be seen in the Appendix A. 
 

Solution for 1-D linear flow is:             ! ! ! !! ! !! ! !!! ! !"!! !
!!!!!!!!!

!!!!
                                                   (22) 

Solution for 1-D radial flow is:            !! ! ! !! ! !! ! !!! ! !"!! !
!!!!
!"!!!!

!" !!
!

                                            (23) 

 
       Klinkenberg Effect in Transient Flow Under horizontal radial flow towards a well, approximated as a line source/sink, 
in an infinite, uniform, and horizontal formation, the gas flow equation and solution could be expressed in terms of  !!! (Wu et 
al. 1998), 
 

                                                     !
!
!
!!

! !!!!
!

!!
! !

!
!!!!

!

!!
,                                                                                         (24) 

                                                    !!! !! ! ! !!!"! !
!!!
!"!"!

!" ! !!

!"!
                                                                    (25) 

 
where:                                         !!! ! ! ! !                                                                                                  (26) 

                                                            ! ! !!!
!"

                                                                                                      (27) 

 
       Non-Darcy Flow Steady-State Flow: Under horizontal and steady-state flow condition, Equations for non-darcy flow 
with can be simplified as: 
 
       Mass conservation equation:    !!" ! !!                                                                                                                (28.a) 
       Forchheimer flow:                    !!! ! !

!
! ! !"! !                                                                                                 (28.b) 

       Ideal gas equation:                  ! ! !!                                                                                                                       (28.c) 
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Solution for linear flow is:            !! !
!!
!!!!!

!
!

!"#
! ! ! ! !!!                                                                                        (29) 

Solution for radial flow is:            !! ! !!! !
!!
!

!"#
!
!
! !

!!
! !!!

!!"
!" !!

!
                                                                        (30) 

 

Model Verification 

This session is to examine the accuracy of our simulator formulation in simulating porous medium gas flow with the 
Klinkenberg effect and non-Darcy flow. The problem concerns steady-state and transient gas flow across a 1-D reservoir. The 
system contains steady/transient-state gas flow at an isothermal condition and a constant gas mass injection/production rate is 
imposed at one side of the rock or well. The other boundary of the rock/reservoir  is kept at constant pressure. Eventually, the 
system will reach steady state, if the production is maintains for a long period of time. A comparison of the pressure profiles 
along the rock block from the simulation and the exact, analytical solution is shown in Figs. 3-8, indicating that our simulated 
pressure distribution is in excellent agreement with the analytical solutions for all the problems of 1-D linear or 1-D radial 
flow with Klenkenberg effect or non-Darcy flow. The input parameters used in the calculations are provided in Table 1.  

314+.5)6)/1%1-.7.%#)8$%)91#):+$;)*.%<8<=17<$()

Parameter Value Unit 

Porosity ! ! !!! 
 Permeability !! ! !!!"!!" !! 

klinkenberg coefficient ! ! !!!!!"! Pa 

 
! ! !!!!!"! 

 
 

! ! !!!!!"! 
 compressibility factor ! ! !!!"!!"!! !"!!"!!! 

gas viscosity ! ! !!!"!!"!! Pa s 
formation temperature ! ! !"  
gas mass injection rate !! ! !!!"!! kg/s 

outlet boundary pressure !! ! !!!"! Pa 
cross-area A=1  !!  

model height H=1 M 
outlet radius !! ! !" M 
well radius !! ! !!! M 

non-Darcy flow constant !! ! !!!!!"!! !!!! 
 !! ! !!!!!"!!  
 !! ! !!!!!"!!  
 ! ! !!!!!!!!"!!!!"!  

transient flow time 1 days 
 10  
 100  
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Fig. 3 Steady-State Analytical and Numerical Results for Linear Gas Flow with Klinkenberg Effect 

 
 
 
 
 

 

 
Fig. 4 Steady-State Analytical and Numerical Results for Radial Gas Flow with Klinkenberg Effect 
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Fig. 5 Transient Flow Analytical and Numerical Results for Radial Gas Flow with Klinkenberg Effect 

 
 
 
 
 
 

 
Fig. 6 Transient Flow Analytical and Numerical Results for Radial Gas Flow with Klinkenberg Effect  
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Fig. 7 Steady-State Analytical and Numerical Results for Linear Non-Darcy Gas Flow  

 
 
 
 
 
 

 
Fig. 8 Steady-State"of Analytical and Numerical Results for Radial Non-Darcy Flow 
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Application  
In this section, we demonstrate the use of the proposed mathematical model for modeling gas production from a shale gas 
reservoir associated with hydraulic fracturing. Fig. 9 shows the schematic of the level of fracture complexities (Warpinski et 
al., 2008), which can all be handled by the proposed gas flow model. Here we present the simulation problem of gas flow in a 
hydraulic fractured well as an example to illustrate the capability of our hybrid fracture modeling approach to capture flow 
behavior of hydraulic fracture and nature fracture network in these reservoirs.  
     The system we model includes a single vertical hydraulic fracture in the drainage area of a well in a 3-D setting, and the 
reservoir is natural fractured. Fluids in the system include gas and water, but water is at residual or immobile, so it is a single 
gas transient flow problem. To simulate performance of this system using our model, the hydraulic fracture is represented by a 
discrete fracture with finite conductivity and the naturally-fractured reservoir is described by the double-porosity model. Since 
the system is symmetric, only a quarter of this hydraulically fractured reservoir system is modeled (Fig. 10). The basic 
parameter set for the simulation is summarized in Table 2. 

314+.5)C)/1%1-.7.%#)8$%)B.++)3.#7<(D)!(1+E#<#"

Parameter Value Unit 

matrix porosity !! ! !!! 
  natural fracture porosity !!" ! !!!  

hydraulic fracture porosity !!! ! !!!  
matrix permeability !! ! !!!"!!"!!" !! 

natural fracture permeability !!" ! !!!"!!"!!" !! 
hydraulic fracture permeability !!! ! !!!"!!"!! !! 

klinkenberg coefficient ! ! ! Pa 

 
! ! !!!!!"! 

 
 

! ! !!!!!"! 
 non-darcy flow constant !! ! ! !!!! 

 !! ! !!!!!"!!  
 !! ! !!!!!"!!  
 ! ! !!!!!!!!"!!!!"!  

standard gas density !!" ! !!!" !"!!! 
gas compressibility factor ! ! !!!"!!"!! !"!!"!!! 

gas viscosity ! ! !!!"!!"!! Pa s 
Langmuir volume  !! ! ! !! 

 
!! ! !!!"!!"! 

  !! ! !!!"!!"!  
Langmuir pressure !! ! !!!"!!"! Pa 

formation temperature ! ! !""  
reservoir length ! ! !"" M 
reservoir width ! ! !"" M 

reservoir thickness  ! ! ! m 
hydraulic fracture length !!! ! !" m 
hydraulic fracture width !!! ! !!!" m 

hydraulic fracture thickness !!! ! ! m 
matrix block thickness !!! ! !" m 

natural fracture volume fraction !!"# ! !!!"  
well radius !! ! !!! m 

initial reservoir pressure  !! ! !!!"!!"! Pa  
initial gas saturation !!" ! !!!"  
gas production rate !! ! !!!"#!!"! !!!!"# 

 
!! ! !!!"#!!"! 
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      Using the simulator, we are able to analyze well testing results of gas wells in unconventional reservoirs with including 
Klinkenberg effect, non-Darcy flow, and adsorption/desorption terms. Transient flow behavior and type curves simulated are 
shown in Fig. 11, Fig. 12, and Fig. 13, in terms of dimensionless pseudo-pressure change and dimensionless time. Fig. 11 
shows pressure transient under Klinkenberg, the large b value, the larger effect on gas permeability, the smaller flow 
resistance, and the lower pressure drop. Non-Darcy flow behavior is shown in Fig.12, indicating that the larger non-Darcy 
flow coefficient leads to larger flow resistance or large pressure drop at the well.  

The effect of adsorption on transient pressure is shown in Fig. 13. Adsorption terms tend to slow down the drop of pseudo 
pressure. This is because with the drop of pressure, more adsorbed gases are released and serve as a source, slowing down the 
pressure drop, similar to a constatnt pressure boundary condition.    

 
 
 

  
Fig. 9  Schematic of the level of fracture complexities (Warpinski et al., 2008) 

 
 
 

 
Fig. 10  Configuration of a quarter of the hybrid fracture model of a hydraulically fractured reservoir system 
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Fig.11 Type curve analysis of Klinkenberg effect (d(mD):Dimentionless Pseudo Pressure Change; TD: Dimentionless Time) 
 
 
 

 
                                                               Fig.12 Type curve analysis for non-darcy flow 
                                [d(mD):Dimentionless Pseudo Pressure Change; TD: Dimentionless Time] 
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                                                           Fig.13 Type curve analysis of adsorption terms  

[d(mD):Dimentionless Pseudo] Pressure Change; TD: Dimentionless Time] 
 

 

Concluding Remarks 

In this paper, we present a numerical model for gas and water two-phase flow in unconventional, low-permeability porous or 
fractured reservoirs of shales or tight formations. The model incorporates several relevant physical processes, such as 
Klinkenberg effect, non-Darcy flow, and adsorption terms. The proposed mathematical model has been implemented and 
tested using a multiphase, multidimensional reservoir simulator. In addition, we derive several analytical solutions, which are 
used to verify the numerical model and its simulation results.  
     It should be mentioned that the present gas flow model uses on a general multiple-continuum concept, which is able to 
model various types of reservoir formations and multi-scaled fractures and matrix systems. As application examples, we use 
the simulator to study and analyze transient pressure responses of gas wells in unconventional reservoirs, realted to 
Klinkenberg effect, non-Darcy flow, and adsorption/desorption terms.  
 

Appendix A: Derivation of Analytical Solutions for 1-D Steady-State Gas Flow  

1. Steady-State Flow with Klinkenberg Effect 
 
Permeability with Klinkenberg effects:     ! ! !!!! !

!
!
!                                                                                             (1.1) 

Mass conservation equation:    !!" ! !!                                                                                                                      (1.2) 
Darcy’s Law:       ! ! ! !

!
!!                                                                                                                                          (1.3) 

Ideal gas equation:     ! ! !!                                                                                                                                          (1.4) 
 
1.1  1-D Linear Flow 
Under one-dimensional, linear, horizontal, and steady-state flow condition, the boundary conditions are: a constant mass 
injection rate !! is imposed at the inlet (x=0) and the gas pressure is kept constant at the outlet (x=L). Combining equations 
(1.1) to (1.4), we get: 
                                                  !!! !!

!
! ! ! !"

!"
! !!                                                                                             (1.5) 
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Solve this ODE with two boundary conditions and the solution is: 
 

                                 ! ! ! !! ! !! ! !!! ! !"!! !
!!!!!!!!!

!!!!
                                                                               (1.6) 

 
1.2 1-D Radial Flow  
Under the one-dimensional, radius, horizontal and steady-state flow conditions, the boundary conditions are: a constant mass 
injection rate !! is imposed at the well (r=!!) and the gas pressure is kept at constant, !!!! !"!!"#!!"#$%#!!! ! !!!. The 
formation thickness is h. Combining Eqs. (1.1) to (1.4) with in coporation of the well condition, we get: 
 
                                       !!"!"! !!

!
! ! ! !"

!"
! !!                                                                                                  (1.7) 

 
                                        ! ! ! !!" ! ! !!!

!"!!!!

!
!
!"                                                                                                   (1.8) 

 
Solve this ODE of (1.8) with the outer boundary condition: 
 

                             ! ! ! !! ! !! ! !!! ! !"!! !
!!!!
!"!!!!

!" !!
!

                                                                            (1.9) 

 
 
2  1-D Steady-State Non-Darcy Flow 
Mass conservation equation:    !!" ! !!                                                                                                                      (2.1) 
Forchheimer flow:       !!! ! !

!
! ! !"! !                                                                                                                    (2.2) 

Ideal gas equation:     ! ! !!                                                                                                                                          (2.3) 
 

2.1   1-D Linear Flow                                                                                                       

Under one-dimensional, linear, horizontal and steady-state flow condition, the boundary conditions are: a constant mass 
injection rate !! is imposed at the inlet (x=0), and the gas pressure is kept constant at the outlet (x=L).  
 
From equation (2.2),      

          !"!! ! !
!
! ! !!

!!
! !                                                                                                               (2.4) 

 

                                      ! !
!!!!

!
!
!
!!"#!!!!

!"
                                                                                                                  (2.5) 

 
Substitutibg (2.1) and (2.3) into (2.5), we get: 
 

                                     
!!!!

!
!
!
!!"#!!!!

!"
! !!

!
                                                                                                                  (2.6) 

Assume!!!! ! !" !!
!

, then we have, 

                                  !! !
!
!
! !

!

!
! !"# !!

!!
                                                                                                             (2.7) 

 

                          !!! ! !!!
!
!

! ! ! ! !"# !!! ! !!!                                                                                                 (2.8) 
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The analytical solution is, 

                                !! !
!!
!!!!!

!
!

!"#
! ! ! ! !!!                                                                                                           (2.9) 

  

2.2  1-D Radial Flow 
Under the one-dimensional, radius, horizontal and steady-state flow conditions, the boundary conditions are: a constant mass 
production rate !! is maintained at the well (r=!!),, and at the outlet (r=!!), the gas pressure is kept constant !!. The reservoir 
thickness is h. 
 
From equation (2.2), !!!!"!! ! !

!
! ! !!

!!
! !                                                                                                                   (2.10) 

or, 

                                       ! !
!
!!

!
!
!
!!"#!!!!

!"#
                                                                                                                       (2.11) 

 
Substituting (2.1) and (2.3) into (2.11), we get: 
 

                                     !
!
!!

!
!
!
!!"#!!!!

!"
! !!

!"!
                                                                                                                   (2.12) 

Assume !! !
!!!
!!

, 

                                    !
!
! !!

!
! !

!

!
! !"# !!

!!
                                                                                                              (2.13) 

 

                        ! !
!

!
! !!

!

!
! ! !

!
!!
!
! !

!

!
! !"# !!

!!
                                                                                                    (2.14) 

 

                              ! !!
!

!!
! !!!!

!"
!" ! !"#!!!"                                                                                                                  (2.15) 

Solving the ODE above, we get: 
 

                     !!!!
!
!!
! !

!
! !!!!

!
!" !!

!
! !"#!!!! ! !!!                                                                                              (2.16) 

 
Or the final solution, 
 

                     ! ! !!! !
!!
!

!"#
!
!
! !

!!
! !!!

!!"
!" !!

!
                                                                                                          (2.17) 
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Nomenclature 
Aij  interface areas between two gridblock i and j (m2) 
b Klinkenberg factor (Pa) 
D depth from a datum, m 

ij,flow!
 mass flow of fluid " (kg/s/m2) along connection ij of time level n+1 

k
ij,flow!

 mass flow of component k in fluid " (kg/s/m2) along connection ij of time level n+1 

g gravitation constant (m/s2) 
G threshold pressure or potential gradient (Pa/m) 
k absolute permeability of porous media (m

2
) 

kr" relative permeability to phase " 

!k  absolute permeability at large gas pressure 

P Pressure (Pa) 
P" pressure of phase " (Pa) 

!q  source/sink - or fracture matrix interaction of mass for phase " (kg/s m3) 
1nQ +

!
 source/sink or fracture-matrix exchange terms for phase " (kg/s) of time level n+1 

kR!
 residual term of mass balance of phase " (kg/m3)  of time level n+1 

S"  fluid saturation of phase " 
t  time (s) 
#t time step (s) 

Vi volume of gridblock i (m3) 

!v  Darcy’s or volumetric velocity of phase " (m/s) 

Zi depth of the center of block i from a datum, m 
 
Greek  Symbols 

!!  effective non-Darcy flow coefficient for phase " (m-1)  of 

 ! effective porosity of formation 

!"  flow potential (Pa) 

ij!  transmissivity (m3) 

ij!  transmissivity for non-Darcy flow (m-1) 

21ij /, +!"  mobility of phase " between gridblcoks i and j 

!µ  viscosity of phase " (Pa•s) 

'"  density of phase " at in situ conditions (kg/m
3
)  

 
Subscripts 
g gas 
 i gridblock i 
 j gridblock j 
 " index of fluid phase 
 
Superscripts 
k   index for mass components. 
n   previous time level n   
n+1   current time level n+1 
p   iteration level 
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