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Abstract 
Non-Darcy flow is an important factor affecting productivity of gas and high production rate oil wells and the analysis of 

pressure-transient well tests in porous media. The motivation for this study to investigate, validate and extend the Barree-

Conway model (BCM) for pressure-transient analysis of wells involving hydraulic fractures and naturally fractured reservoirs. 

Numerical models based on finite control-volume method were developed according to not only the Forchheimer equation 

and, for the first time in the literature, but also the Barree-Conway model specifically for pressure-transient analysis of single-

phase fluid flow in porous and fractured reservoirs. The developed numerical models are capable of simulating all near 

wellbore effects coupled with the non-Darcy flow behavior in porous and fractured reservoirs.  

This study shows that the BCM can be applied, similar to the Forchheimer model, to analyzing and interpreting pressure-

transient responses of non-Darcy flow in porous and fractured reservoirs. The BCM predicts similar pressure-transient 

responses of non-Darcy flow as predicted by the Forchheimer model. The parameter of characteristic length among the BCM 

model parameters is more sensitive than the minimum permeability. The minimum permeability is only sensitive at low values 

of characteristic length or at extremely high flow rates. Numerical simulation results indicate that the value of characteristic 

length must be low for significant effect of non-Darcy flow and it is related to small effective radius. The non-Darcy flow 

parameters of the BCM may not be all estimated from single-rate tests in single-porosity reservoirs using conventional analysis 

approaches. However, they can be estimated by a fitting process based on non-linear optimization algorithm incorporated into 

the numerical model. Type curves generated by the BCM are provided to demonstrate a methodology for analyzing the effect 

of non-Darcy flow on pressure-transient tests in porous and fractured reservoirs. As application examples, numerical models of 

non-Darcy flow are used to model and interpret actual field pressure-transient data from high production rate oil wells in 

Kuwait. 

 

Introduction 
In studies of non-Darcy flow through porous median, the Forchheimer equation is generally used to describe single-phase non-

Darcy flow (Forchheimer, 1901). Forchheimer observed that at high flow velocities the relationship between pressure gradient 

and fluid velocity is no longer linear, as described by linear Darcy’s flow. In an attempt to describe this nonlinear relationship, 

Forchheimer added an additional quadratic flow term to the Darcy’s linear form. Forchheimer’s equation is given by 
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where  is the non-Darcy flow coefficient. The non-Darcy flow coefficient is estimated by analysis of laboratory experimental 

data and multi-rate pressure transient tests, but such data are not always available. The usual practice to estimate values of the 

 factor is to use empirical correlations or theoretical equations obtained from the literature. 

  In hydraulically fractured wells, pressure transient tests are run to evaluate both fracture and formation properties. 

Unfortunately, most analysts use conventional well-testing techniques that do not account for effects of non-Darcy flow on the 

pressure distribution. In hydraulically fractured wells, the pressure drop in the hydraulic fracture under high flow rates is 

dominated by non-Darcy flow. The resulting pressure distribution due to non-Darcy flow effects in the fracture affects the 

pressure distribution in the entire reservoir. Numerous efforts have been made to study non-Darcy flow effects and to explain 

how they affect estimates of the fracture half-length and fracture conductivity (McGuire and Sikora, 1960; Wattenbarger and 
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Ramey, 1969; Holditch and Morse, 1976; Lee and Holditch, 1981; Guppy et al., 1982; Gidley, 1991; Umnuayponwiwat et al., 

2000). From these efforts we can conclude that depending on flow rate non-Darcy flow is more important inside the fracture 

than within the reservoir. A numerical model that incorporates non-Darcy flow effects is the best technique to correctly 

analyze pressure-transient tests in hydraulically fractured wells. The effect of non-Darcy flow on transient pressure responses 

of hydraulically fractured wells of finite-conductivity fractures has been investigated in the literature (Wattenbarger and 

Ramey, 1969; Holditch and Morse, 1976; Guppy et al., 1982). Holditch and Morse (1976) developed a numerical model to 

analyze the effect of non-Darcy flow in the reservoir and fractures. They studied non-Darcy flow effects on various flow 

patterns and concluded that non-Darcy flow effects, mainly in the fracture, reduced the apparent conductivity. Guppy et al. 

(1982) showed that the changes in the flux distribution along the fracture under non-Darcy flow that caused reduction in the 

apparent conductivity of the fracture. Umnuayponwiwat et al. (2000) studied non-Darcy flow effects on the interpretation of 

pressure-transient response from wells in low-permeability reservoirs. They concluded that the results from well tests conflict 

with those expected from the original design, if non-Darcy flow effect is not considered. 

Significant progress has been made in understanding and modeling fracture flow phenomena in porous media (Barenblatt 

et al., 1960; Warren and Root, 1963; Kazemi, 1969; Pruess and Narasimhan, 1985). Kazemi (1969) presented a new idealized 

conceptual model for naturally fractured reservoirs, where he considered unsteady-state flow in both matrix and fractures. 

Kazemi presented solutions for both pressure drawdown and buildup using his new model.  He compared his results with those 

obtained using other models previously published, in particular the Warren and Root model. The generalized dual-continuum 

method (Pruess and Narasimhan, 1985), such as the MINC (Multiple Interacting Continua) concept and the multiporosity 

model (Wu and Pruess, 1988), can describe flow in a fracture/matrix system with any size and shape of matrix blocks and with 

fully transient handling of fracture/matrix interactions. Studies on modeling non-Darcy flow in naturally fractured reservoirs 

are limited. Villalobos-L et al. (1989) derived an expression of a rate-dependent pseudo-skin term similar to that in single 

porosity reservoirs based on numerical results of a radial liquid flow model using the Forchheimer equation. Wu (2002) 

modeled non-Darcy flow in a naturally fractured system using the MINC method. He applied the results of Darcy flow to 

approximate the characteristic distance of non-Darcy flow between fractures and the matrix crossing the interface for the dual 

porosity formation. Wu (2002) observed that semi-log plots of pressure drop versus time are extremely sensitive to the values 

of the non-Darcy flow coefficient. In particular, effects of non-Darcy flow on early transient pressure responses are very 

strong, such that the first semi-log straight lines may not develop when non-Darcy flow is involved. Tavares et al. (2004) used 

a 2D finite difference model to study combined effects of non-Darcy flow and skin damage in gas well performance. They 

found that skin damage may accentuate the non-Darcy flow effect and drastically influence pressure transient characteristics of 

low pressure, naturally fractured reservoirs; in high pressure reservoirs, this effect is significant only at high flow rates.  

Many researchers have observed the limitations of the Forchheimer’s equation to describe all ranges of fluid velocities 

(Carman, 1937; Fand et al., 1987; Montillet, 2004; Barree and Conway, 2004; Lai et al., 2009). Barree and Conway (2004) 

developed a new flow model (BCM) that uses a new concept of an apparent permeability to describe Darcy’s (linear) and non-

Darcy or Forchheimer (nonlinear) flow in porous media. The complete nonlinear flow model, BCM, for non-Darcy flow 

extended to multidimensional fluid flow is given by 
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where kmr is the minimum permeability (kmin) relative to Darcy’s permeability (kd). The minimum permeability is defined as 

the permeability at high flow rate when non-Darcy flow effects exist. According to Barree and Conway
 
(2004), the value of the 

characteristic length,  indicates the magnitude of (v/) at which the apparent non-Darcy permeability is one-half the low-

rate Darcy apparent permeability. Therefore, smaller values of  indicate an earlier onset of non-Darcy flow effects. They 

suggest that  is related to the particle size or size distribution of the porous medium and may be determinable from an 

accurate description of the sieve distribution using the reciprocal of twice the mean diameter.  

Lai et al. (2009) recently presented laboratory data conducted in packed tubes, at 4000 psig and they used a single-phase 

nitrogen non-Darcy flow apparatus developed by Lopez-H. (2007) and a large number of experiments with proppant packs 

have been carried out. Proppant samples tested to date include a wide range of commonly used sizes and types, including 

ceramics and natural sands. Lai et al. (2009) showed that the experimental data and results support the BCM. Experimental 

data are analyzed using a regression method for the Forchheimer and BCM models. An example of the results using 

Forchheimer and BCM models is shown in Fig 1, where the x-axis is normalized for mass flow rate instead of fluid velocity. 

The data plotted in Fig 1 are taken under a confining stress of 27.5 MPa (4000 psig). As shown in Fig 1, the experimental data 

agree extremely well with the BCM across the entire flow velocity range from low to high gas flow rates. The Forchheimer 

correlation overestimates the associated pressure drop at high gas flow rates. According to Lai et al. (2009), all sample data 

taken to date show similar agreement with the BCM equation across the observed flow spectrum. 

In this study, we investigate, validate and extend the BCM for pressure-transient analysis of wells involving hydraulic 

fractures and in naturally fractured reservoirs. 



[SPE-SAS-984]  3 

Numerical Models of Non-Darcy Flow 
The numerical approach to simulate the non-Darcy flow consists of spatial discretization of the mass conservation equation, 

time discretization; and iterative approaches to solve the resulting nonlinear, discrete algebraic equations. A mass-conserving 

discretization scheme, based on control-volume or integral finite-difference, IFD (Pruess, 1991) is used. The control-volume 

approach provides a general spatial discretization scheme that can represent a one-, two- or three-dimensional domain using a 

set of discrete meshes. Time discretization is carried out using a backward, first-order, fully implicit finite-difference scheme. 

The general continuity equation for single-phase fluid flow is given by 
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Equation (3) is discretized in space using an integral finite-difference or control-volume scheme for a porous non-fractured 

and/or fractured medium with an unstructured grid as shown in Fig 2. The time discretization is carried out with a backward, 

first-order finite difference method.  Then the discrete non-linear equations of element i are as follows: 
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where n denotes the previous time level, n+1 is the current time level, Vi is the volume of element i (porous non-fractured or 

fractured block), t is the time step size, i contains the set of neighboring elements (j) (non-fractured or fractured) to which 

element i is directly connected, Qi is the mass sink/source term at element i, for the fluid and Fij
n+1 

is the mass “flow” term for 

the fluid between elements i and j. 
 

 

Forchheimer Flow Model 

If the Forchheimer’s flow model is used to simulate the pressure transient responses of non-Darcy flow then the mass flow 

term for the fluid between elements i and j is defined (Wu, 2002) as 
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where  is the non-Darcy flow coefficient, subscript ij+1/2 denotes a proper averaging of properties at the interface between 

the two elements, Aij is the common interface area between connected elements i and j,  is the mobility of phase   is the 

transmissivity of flow between elements i and j, and  is the flow potential gradient of phase     

 

Barree-Conway Flow Model (BCM) 

If the BCM is used to simulate the pressure transient responses of non-Darcy flow effects, the mass flow term for the fluid 

between elements i and j is defined (Al-Otaibi and Wu, 2010) as 
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where 

 

 
 



















ji

ij

ijmrdij
DD

kkf
2/1

2                                (7) 

and 
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The numerical solution method used is based on solving Equation (4) fully implicitly using a Newton-Raphson iteration 

method for any flow model, i.e. Forchheimer’s or BCM, and the numerical model formulation is implemented into a general-

purpose reservoir simulator of MSFLOW (Wu, 1998). Equation (4) can be written in a residual form as follow: 
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where N is the total number of nodes, elements or grid blocks of the grid system. Equation (9) defines a set of (N) coupled 

nonlinear mass balance equations that need to be solved simultaneously. One primary variable per node is needed to use in the 

Newton-Raphson iteration for solving one equation per node. In the numerical simulator, for single-phase fluid flow, the fluid 

pressure is selected as the primary variable. 

 In a previous work, a steady-state analytical solution for non-Darcy radial flow has been derived according to the BCM 

and was used to verify the numerical model (Al-Otaibi and Wu, 2010). Excellent results are obtained from the numerical 

simulation, as compared to the analytical solution. 

 

Apparent Permeability of Non-Darcy Flow 

The common factor between non-Darcy flow models considered in this study (Forchheimer’s and BCM) is the apparent 

permeability of non-Darcy flow. This can be used to compare between the two nonlinear flow models under specific flow 

conditions in single- or double-porosity (fractured) reservoirs for a well producing at a constant production rate. The apparent 

permeability of non-Darcy flow according to BCM and Forchheimer models for 1-D flow are given by Equations (10) and 

(11), respectively. 
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The apparent permeability of non-Darcy flow estimated by the two models, i.e. Equations (10) and (11) should be the same. 

Thus solving for kmin and  parameters of the two flow models gives: 
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Equation (13) is very useful and can be used to compare between Forchheimer and BCM models. The fluid velocity, v, in 

Equations (12) and (13), is still a function of coordinates and time and may be approximated using the constant production rate 

and cross-sectional area of flow at the well. 

In the first example, we show a comparison of non-Darcy flow models for a vertical well in a single-porosity reservoir. 

We used the developed numerical models to generate synthetic pressure transient responses for two flow cases (Darcy and 

non-Darcy flow). The porous reservoir system is assumed uniform, radially finite of 100 ft thick (total thickness) and is 

represented by a one-dimensional radial grid of 2,000 volume elements with a r size that increases logarithmically away from 

the wellbore (rw = 0.33 ft). The perforated thickness is same as the formation thickness (fully penetrating well, hp = h). The 

formation is initially at a constant pressure of 5,000 psi and is subjected to a constant production rate of 10,000 STB/day at the 

producing well, starting at time of zero. Input data used for simulating the pressure transient responses in numerical models are 

listed in Table 1. We first run the BCM using the input data shown in Table 1 for Darcy flow case (kmin = kd) and non-Darcy 

flow case (kmin = 1 md,  = 100 ft
-1

). Then we compute the equivalent  factor for Forchheimer model using Equation (13) and 

run the numerical model of Forchheimer with the same input data for Darcy flow ( = 0 ft
-1

) and non-Darcy flow ( = 

9.064E+09 ft
-1

, calculated using Equation (13)). Fig 3 shows semi-log plot of wellbore pressure versus time for all simulation 

cases. Also, Fig 3 shows the difference in percentage of pressure transient responses predicted by BCM compared to the same 

responses predicted by Forchheimer model for the case of non-Darcy flow. Results shown in Fig 3 indicate that both models 

predict approximately the same pressure transient responses of non-Darcy flow with a maximum computational difference of 

0.42% for this example.  

Interporosity flow is the fluid exchange between the matrix and fractures constituting a dual-porosity system. The 

interporosity flow coefficient is a measure of how easily fluid flows from the matrix to the fractures. Warren and Root (1963) 
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defined the interporosity flow coefficient, , as 
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where km is the permeability of the matrix, kf is the permeability of the natural fractures, L is a characteristic dimension of a 

matrix block and n is the number of normal sets of planes limiting the less-permeable medium (n =1, 2 or 3). The storativity 

ratio, , is a measure of the relative fracture-storage capacity in the reservoir and is given by Equation (15) (Warren and Root, 

1963) where the subscripts f and m refer to the fracture and matrix, respectively. 
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In the following examples, the naturally fractured reservoir is represented by a 2D radial grid of 2,051 volume elements 

with a r size that increases logarithmically away from the wellbore (rw = 0.33 ft). We used the MINC approach (Pruess, 

1983) to generate fracture-matrix (double-porosity system) elements and connections for the radial reservoir. In creating the 

mesh for the double-porosity reservoir using the MINC approach, three sets of plane parallel infinite fractures at right angles is 

used. We used a fracture spacing of 9.843 ft (3m) and fracture porosity of 0.1% in the following examples. The formation is 

initially at a constant pressure of 5,000 psi and is subjected to a constant production rate of 6,000 STB/day at the producing 

well, starting at time of zero. Input data used for simulating pressure-transient responses of Darcy and non-Darcy flow in the 

numerical models for the naturally fractured reservoir is listed in Table 2. Fig 4 shows log-log plots of wellbore pressure drop, 

pwf, and pressure derivative (logarithmic) versus time predicted by Forchheimer and BCM models assuming Darcy flow for a 

vertical well in a naturally fractured reservoir. The non-Darcy flow coefficient, , of Forchheimer model is set zero and the 

minimum permeability parameter in BCM is set equal to Darcy permeability in both matrix and natural fractures. Results 

shown in Fig 4 indicate excellent agreement between Forchheimer, BCM models and known Darcy flow transient responses 

(pressure and its derivative) under the same Darcy flow conditions.  

In the following example, we compare results from Forchheimer and BCM models for two non-Darcy flow cases. In the 

BCM, the minimum permeability in the fracture is equal to 0.001 of the fracture permeability (kfmin = 0.001 kf) and the 

characteristic length, , is 20 ft
-1

. Using Equation (13) the estimated equivalent  factor of Forchheimer model under the same 

flow conditions is 4.624E+09 ft
-1

. Results shown in Fig 5 indicate excellent agreement between pressure-transient responses of 

non-Darcy flow predicted by the numerical models of BCM and Forchheimer. The pressure derivative (Fig 5) indicates that 

under severe non-Darcy flow effects the characteristics of early-times pressure-transient responses of non-Darcy flow is not 

the same as Darcy flow. Thus non-Darcy flow effects alter characteristics of early-time pressure-transient responses and 

double-porosity behavior known in Darcy flow and change the slope of the first straight-line.  

 

Non-Darcy Flow Effects in Single-Porosity Reservoirs 
The dimensionless wellbore pressure (pwD), time (tD), wellbore-storage (CD) and skin factor (S) are defined by Equation (16) to 

Equation (19), respectively, for constant production in a single-porosity radial reservoir. 
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The dimensionless parameter, kmr, of BCM is defined as: 
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The dimensionless non-Darcy flow parameter, D, is defined based on distance in radial-direction as: 

 

rD                                                                                                                             (21) 

 

In Equation(21), if we analyze pressure-transient data for wellbore pressure, as the case of this example, then r = rw and 

 

wwD r                                                                                                                          (22) 

 

Input data used for generating pressure transient type-curves in this example are listed in Table 3. In numerical simulation 

using the non-Darcy flow model (BCM), the porous reservoir system is assumed uniform, radially finite of 100 ft thick and is 

represented by a 1-D radial grid of 2,010 volume elements with a r size that increases logarithmically away from the 

wellbore (rw = 0.3 ft). Fig 6 and Fig 7 show example type-curves generated from the numerical model study of effect of non-

Darcy flow parameters of BCM (kmr and D) with combined effect of skin (S = 1) and wellbore storage (CD = 500). Fig 6 

shows log-log plot of dimensionless wellbore pressure versus dimensionless time for different values of dimensionless non-

Darcy flow parameter kmr (1, 0.5 and 0.2) with a fixed value of D of 0.1, skin factor of 1.0 and CD of 500. The early time, unit-

slope, straight line indicates clearly the effect of wellbore storage. The value of kmr of 1.0 is simulating Darcy’s flow with skin 

factor of 1.0. Note that the generated type-curves combine both effects of skin (damage in this example) and non-Darcy flow. 

As the value of kmr decreases we can see clearly more increase in pressure drop due to non-Darcy flow.  

Fig 7 shows type curve (log-log plot of pwD versus tD) for different values of dimensionless non-Darcy flow parameter D 

(0.01, 10, 1000) with fixed value of kmr of 0.5, skin factor of 1.0 and CD of 500. As the value of D decreases we can notice the 

increase in pressure drop due to non-Darcy flow effect. However this increase in pressure drop is less than that from the effect 

of decreasing kmr (see Fig 6). In actual cases we expect low values of the characteristic length, , thus the major contributing 

parameter of non-Darcy flow of BCM, in this example, is the minimum permeability plateau, kmin. However, this is not a 

general conclusion. In different examples, we have seen that if the value of the characteristic length is high, then changing the 

minimum permeability does not has any impact on the pressure transient responses. In some cases, depending on the 

production rate of the well, the value of the characteristic length of BCM controls how significant the non-Darcy flow is. 

 

Non-Darcy Flow Effects in Hydraulically Fractured Wells 
First we compare pressure transient responses generated by the BCM simulating Darcy flow (kmin = kd) with known analytical 

responses of Darcy flow at different flow patterns in hydraulically fractured well. This comparison was performed for three 

cases of hydraulic fracture conductivity: (1) low finite-conductivity, (2) high finite-conductivity, and (3) infinite-conductivity. 

In the numerical model we used a 3-D, XYZ, reservoir grid system for a hydraulically fractured well. We used a refined mesh 

of 141 grid blocks in x- and y- directions and 1 layer in z-direction (141x141x1), total of 19,881 volume elements. The input 

data of the reservoir and hydraulically fractured well used in the numerical simulation is shown in Table 4. Fig 8 and 9 show 

2-D view of reservoir grid system used for numerical simulation of a hydraulically fractured well of infinite and finite fracture 

conductivity, respectively. In all examples presented in this paper, we simulate a vertical hydraulic fracture. For a 

hydraulically fractured well, the dimensionless time is given by 
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The first comparison case is for a low finite-conductivity fracture of CfD of 10 (Case 1) and fracture half-length, xf, of 400 

ft. Fig 10 shows a log-log plot of dimensionless wellbore pressure and pressure derivative versus dimensionless time for Case 

1 for both numerical model and analytical solutions. In the numerical model of BCM, we set kmin parameter equal kd for 

hydraulic fracture elements (i.e. kfmin = kfd). As shown in Fig 10, pressure transient responses of the numerical model of BCM 

matches the analytical solutions for the three flow periods. The fracture-bilinear flow exists at early times and ends at 

approximately tDxf of 0.01. The formation-linear flow is not clear and lasts only for short time due to low fracture conductivity 

and it is only obvious in wells with high conductivity fractures (CfD   100). The pseudoradial-flow period starts at 

approximately tDxf of 2. The second comparison case is for a high finite-conductivity fracture of CfD of 100 (Case 2) and 

fracture half-length of 40 ft. As shown in Fig 11, pressure transient responses of BCM matches the analytical solutions for the 

two flow periods. The fracture-bilinear flow period ends too early because of high fracture conductivity and for actual pressure 

transient data it does not exist for high finite-conductivity fractures. The formation-linear flow exists and ends at 

approximately tDxf of 0.017. The pseudoradial-flow period starts at approximately tDxf of 1.5. The third comparison case is for 

an infinite-conductivity fracture (Case 3) and fracture half-length of 1,000 ft. As shown in Fig 12, pressure transient responses 
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of BCM match analytical solutions of linear and pseudoradial flow periods. The fracture-bilinear flow period does not exist 

because of infinite-conductivity fracture. The formation-linear flow exists and ends at approximately tDxf of 0.1. The 

pseudoradial-flow period starts at approximately tDxf of 2.5. 

In the following examples, we study the effect of the minimum permeability parameter and the characteristic length of 

BCM on pressure transient responses of a hydraulically fractured well for finite- and infinite-conductivity fractures. The input 

data used in the numerical model to simulate pressure transient responses for all non-Darcy flow cases are shown in Table 4. 

We present simulation cases for two finite-conductivity fractures (CfD = 1 and 100). The fracture half-length, xf, for Case 1 (CfD 

= 1) is 400 ft and for Case 2 (CfD = 100) is 40 ft. In these simulation cases, wellbore storage and skin effects are not considered 

(CD = 0, Sf = 0).  

Fig 13 shows log-log plots of dimensionless wellbore pressure and derivative versus dimensionless time of Case 1 for 

three values of kfmr (0.01, 0.1 and 1). The value of the dimensionless characteristic length, D, used is 100. We have seen that 

for values of D greater than 1,000 no significant change in pressure transient responses of non-Darcy flow compared to Darcy 

flow for any value of kfmr. As shown in Fig 13 as the value of kfmr (or kfmin) decreases, the pressure drop increases due to higher 

non-Darcy flow effects. The pressure derivative curves change to higher values with higher non-Darcy flow effects. The 

change in pressure transient responses, because of decreasing in the value of kfmr (increasing non-Darcy flow effects), is similar 

to the pressure change due to decrease in the fracture conductivity in Darcy flow case. 

Fig 14 shows a log-log plot of dimensionless wellbore pressure and derivative versus dimensionless time of Case 2 for 

three values of kfmr (0.01, 0.1, 0.5 and 1). As the value of kfmr decreases, the pressure drop increases due to high non-Darcy 

flow effects. The pressure derivative curves change to higher values with higher non-Darcy flow effects. Although we are 

using a lower value of D of 100, the value of kfmr of 0.5 matches pressure transient responses of Darcy flow case (kfmr = 1) for 

most of times except at early times. This indicates that kfmr, in this example, needs to be less than 0.5 for significant non-Darcy 

flow effects. Fig 15 shows log-log plots of dimensionless wellbore pressure and its derivative versus dimensionless time of 

Case 2 for two values of kfmr (0.1 and 1) with an additional case simulating Darcy flow for CfD of 11.24. Pressure transient 

responses (pressure and derivative) of the non-Darcy flow case (kfmr = 0.1 and D = 100 for CfD = 100) match responses of 

Darcy flow case (kfmr = 1, CfD = 0.1) as shown in Fig 15. This indicates that non-Darcy flow effects reduce the actual fracture 

conductivity (assuming Darcy flow) to lower values, in this example from CfD of 100 to 11.24. If we examine the pressure 

transient responses and pressure derivative (Fig 15) we find that responses due to non-Darcy flow of higher fracture 

conductivity matches exactly responses of Darcy flow of lower fracture conductivity. Therefore, if pressure transient data is 

analyzed assuming Darcy flow, when non-Darcy flow exist, incorrect estimates of fracture conductivity and fracture properties 

will be obtained.  

In the following example we present simulation cases for finite-conductivity fracture of CfD of 100 studying the effect of 

the parameter  of BCM on pressure transient responses. Fig 16 shows log-log plots of dimensionless wellbore pressure and its 

derivative versus dimensionless time for CfD of 100 for three values of D (10, 100 and 1000). The value of kfmr used is 0.1. As 

shown in Fig 16, as the value of D decreases, the pressure drop increases due to higher non-Darcy flow effects. The pressure 

derivative curves change to higher values with higher non-Darcy flow effects. For values of D greater than 1,000 we expect 

lower non-Darcy flow effects and the same responses as Darcy flow. Pressure transient responses (pressure and its derivative) 

of non-Darcy flow for D = 10 is close to responses of D = 100 because of constant value of kfmr of 0.1 used in both cases. In 

this example, if D is reduced below 10, pressure transient responses will match the case of D of 10 for constant value of kfmr 

of 0.1. The change in pressure transient responses, because of decreasing in the value of D (increasing non-Darcy flow 

effects), is similar to the pressure change due to decrease in the fracture conductivity for Darcy flow case. 

In the following examples, we present simulation cases studying the effect of non-Darcy flow parameters (kmin and ) of 

BCM for infinite-conductivity hydraulic fractures on pressure-transient type curves. For all simulation cases the fracture half-

length, xf, is 1,000 ft and the fracture width, wf, is 0.02 ft. In these simulation cases, wellbore storage and skin effects are not 

considered (CD = 0, Sf = 0). Fig 17 shows log-log plots of dimensionless wellbore pressure and its derivative versus 

dimensionless time of for infinite-conductivity fracture for four values of kfmr (0.001, 0.01, 0.1 and 1). The value of the 

dimensionless characteristic length, D, used in all cases is 10 to simulate high non-Darcy flow effects. As shown in Fig 17 as 

the value of kfmr decreases, the pressure drop increases due to higher non-Darcy flow effects. The pressure derivative curves 

change to higher values with higher non-Darcy flow effects. The change in pressure transient responses because of decreasing 

the value of kfmr (increasing non-Darcy flow effects) is similar to the pressure change due to decreasing the fracture 

conductivity in Darcy flow case. The pressure transient responses of non-Darcy flow case of kfmr of 0.1 match responses of 

Darcy flow of CfD of 100. Also, the pressure transient responses of non-Darcy flow case of kfmr of 0.001 match responses of 

Darcy flow of CfD of 3.3. The pressure transient responses of non-Darcy flow case of kfmr of 0.01 is close to responses of Darcy 

flow of CfD of 10. This indicates that non-Darcy flow reduces the fracture conductivity. Therefore we conclude that if non-

Darcy flow exists because of high fluid velocity near the wellbore, the infinite-conductivity fracture may behave as a fracture 

with lower finite-conductivity.  

Fig 18 shows log-log plots of dimensionless wellbore pressure and its derivative versus dimensionless time of infinite-

conductivity fracture for five values of D (1, 10, 100, 1000 and 10,000). The value of kfmr used is 0.01. As shown in Fig 18 as 

the value of D decreases the pressure drop increases due to higher non-Darcy flow effects. The pressure derivative curves 

change to higher values with higher non-Darcy flow effects. For values of D greater than 1,000, we expect low effect of non-
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Darcy flow behavior. And for values of D greater than 10,000, we expect pressure transient responses similar to Darcy flow 

for any value of kfmr. We have noticed that if D is less than 1,000 then the parameter kfmr become more sensitive. Pressure 

transient responses (pressure and its derivative) of non-Darcy flow for D of 1 is close to responses of D of 10 because of 

constant value of kfmr of 0.01 used in both cases. In this example, if D is reduced below 1, pressure transient responses will 

match the case of D of 1 for constant value of kfmr of 0.01. In general, reducing the value of D (the characteristic length), 

increasing non-Darcy flow effects, reduces the fracture conductivity similar to the effect of reducing the value of kfmr 

parameter (kfmin). In general, the characteristic length is a more sensitive parameter for non-Darcy flow, while the minimum 

permeability is sensitive at lower values of the characteristic length. Non-Darcy flow effects may cause infinite-conductivity 

fracture to behave as fractures of low finite-conductivity. If pressure transient data is analysed conventionally under these flow 

conditions, incorrect estimates of fracture conductivity and properties will be obtained. 

 

Non-Darcy Flow Effects in Naturally Fractured Reservoirs 
For pressure-transient type curves in naturally fractured reservoirs, the dimensionless wellbore pressure is given by Equation 

(16), the dimensionless time is given by Equation (24), and the dimensionless production rate by Equation (25). 

 

  2 

  0002637.0

wtfftmm
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                                                                                    (24) 
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Fig 19 shows a log-log plot of wellbore pressure drop and its derivative versus time for Darcy flow case and three cases of 

non-Darcy flow. In simulating Darcy flow case, the minimum permeability in natural fractures is set equal to the fracture 

permeability. The first non-Darcy flow case, Case 1, is for kfmin of 0.001 of kf and  is 100 ft
-1

 and the second non-Darcy flow 

case, Case 2, is for kfmin of 0.001 of kf and  is 20 ft
-1

. The third non-Darcy flow case, Case 3, is for kfmin of 0.1 of kf and  is 20 

ft
-1

. We have seen that if  is greater than 1,000 ft
-1

, there is no significant effect of non-Darcy flow on pressure-transient 

responses. The same conclusion was obtained before when using the BCM for analyzing pressure-transient behavior of non-

Darcy flow of vertical wells in single-porosity reservoirs (Al-Otaibi and Wu, 2010) and hydraulically fractured wells. If we 

compare between Cases 1 and 2, we find that the pressure drop due to non-Darcy flow increases as the value of  decreases 

under the same value of kfmin. Also, we find if kfmin decreases the pressure drop due to non-Darcy flow increases as we compare 

between Cases 2 and 3 under the same value of parameter . Non-Darcy flow effects change the early times characteristics of 

double-porosity behavior compared to Darcy flow. As shown in Fig 19, the pressure derivative curves show clearly the effect 

of non-Darcy flow on early time pressure-transient responses of a naturally fractured reservoir. Non-Darcy flow behavior 

affects the early time characteristics of double-porosity behavior and changes the slope and derivative responses depending on 

how severe non-Darcy flow effect is. Thus, under severe effects of non-Darcy flow, the analysis of pressure-transient data with 

early time responses assuming Darcy flow may lead to significant errors in estimating naturally fractured reservoir parameters. 

The BCM uses two parameters (kmin and ) to describe non-Darcy flow behavior while the Forchheimer model uses only 

one parameter (). We know that is not possible to combine non-Darcy flow parameters of BCM into one parameter for type-

curve analysis of pressure-transient data. To illustrate this point, we developed a dimensionless relationship that combines 

non-Darcy flow parameters of BCM into one dimensionless parameter (FnD). The new dimensionless non-Darcy flow 

parameter of the BCM is given by 

 

f

wf
DfmrnD

k

rk
kF

  min 
                                                                                   (26) 

 

In Equation (26) the wellbore radius, rw, and the permeability of the fracture, kf, are constants and the variables are the non-

Darcy flow parameters, kfmin and . In the following example we show that it is not possible to use such relation, Equation (26) 

and we must use the two parameters, kfmr and D of the BCM to model non-Darcy flow in porous fractured media. The input 

data used in the following type-curve examples for numerical simulation is shown in Table 5. 

We use input data shown in Table 5 with interporosity flow coefficient, , of 1x10
-5

 and storativity ratio, , of 0.01 in this 

example. Fig 20 shows a log-log plot of dimensionless wellbore pressure and its derivative versus dimensionless time (type 

curve) for two non-Darcy flow cases. For the first non-Darcy flow case, Case 1, kfmr is 0.001 and D is 100 and for the second 

case, Case 2, kfmr is 0.1 and D is 10. Using Equation (26), to find value of FnD parameter for the two non-Darcy flow cases, we 

obtain the same value of FnD of 1. Although Cases 1 and 2 have the same value of FnD parameter, results shown in Fig 20 

indicate that pressure-transient responses of Cases 1 and 2 are not the same. Thus, it is not possible to combine non-Darcy flow 

parameters of the BCM into one parameter for type-curve analysis of pressure-transient data. Case 2 has more significant non-

Darcy flow effects compared to Case 1 because of lower value of parameter D, which adds more pressure drop and changes 
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early-time pressure-transient behavior. As we concluded earlier in this study, the characteristic length, , is the more sensitive 

parameter of the BCM where at high values of  the minimum permeability, kmin has no significant impact on pressure-

transient responses. For low values of , however, the minimum permeability has significant impact on pressure-transient 

responses. 

 

Effect of Production Rate  

Type curves shown in Fig 21 show the effect of production rate on pressure-transient responses of non-Darcy flow in a 

naturally fractured reservoir. Fig 21 shows a log-log plot of dimensionless wellbore pressure and its derivative versus 

dimensionless time (type curve) for two non-Darcy flow cases under two production rates. The wellbore storage and skin 

damage effects are not considered in these type curves. In the first non-Darcy flow case, kfmr is 0.1 and D is 1,000 which 

simulates low non-Darcy flow effects and for two production rates, qD of 1 and 0.5. In the first non-Darcy flow case, kfmr is 0.1 

and D is 10 which simulates high non-Darcy flow effects and for two production rates, qD of 1 and 0.5. Note that for qD of 1 

represents maximum production rate of 10,000 STB/day and qD of 0.5 represents a production rate of 5,000 STB/day for this 

particular example. The increase in production rate under the same conditions of non-Darcy flow effects (low or high) causes 

significant increase in pressure drop at the wellbore and changes the early-time characteristics of pressure-transient responses 

of a dual-porosity reservoir, as shown in Fig 21. The changes in early-time pressure-transient behavior of the double-porosity 

reservoir can be more significant for high non-Darcy flow effects under high production rates. This indicates that non-Darcy 

flow effects on pressure-transient responses, especially, on early-times responses, can be more severe at high production rates. 

 

Effect of Double-Porosity Parameters  

Type curves shown in Fig 22 show the effect of interporosity flow coefficient (), the double-porosity parameter, on pressure-

transient responses of non-Darcy flow in a naturally fractured reservoir. Fig 22 shows a log-log plot of dimensionless wellbore 

pressure and its derivative versus dimensionless time for two cases of non-Darcy flow and two cases of Darcy flow. For non-

Darcy flow cases, kfmr is 0.1 and D is 10 which simulates high non-Darcy flow effects and for two cases of interporosity flow 

coefficient, of 1x10
-5

 and 1x10
-6

. For Darcy flow cases, kfmr is 1, and for two cases of interporosity flow coefficient, of 

1x10
-5

 and 1x10
-6

. In all cases, the storativity ratio, , is 0.01. As expected, reducing the value of  shift the concave up curve, 

characteristics of a double-porosity reservoir, of the pressure derivative to the right for both Darcy and non-Darcy flow cases. 

Non-Darcy flow effects changes the early-time pressure-transient behavior of the double-porosity reservoir compared to Darcy 

flow for all cases of  as shown in the pressure derivative curves in Fig 22. However, non-Darcy flow does not change the 

intermediate- and late-time characteristics of the pressure-transient behavior of the double-porosity reservoir for all cases of 

interporosity flow coefficient which matches the Darcy flow behavior. 

Type curves shown in Fig 23 show the effect of storativity ratio (), the double-porosity parameter, on pressure-transient 

responses of non-Darcy flow in a naturally fractured reservoir. For non-Darcy flow cases, kfmr is 0.1 and D is 10 which 

simulates high non-Darcy flow effects and for two cases of storativity ratio, of 0.01 and 0.1. For Darcy flow cases, kfmr is 1, 

and two cases of storativity ratio, of 0.01 and 0.1 is considered. In all cases, the interporosity flow coefficient, , is 1x10
-5

. 

Increasing the value of  moves the concave up curve, characteristics of double-porosity reservoir, of the pressure derivative 

to the top for both Darcy and non-Darcy flow cases. Non-Darcy flow effects impact the early-time pressure-transient behavior 

of the double-porosity reservoir compared to Darcy flow for all cases of  as shown in the pressure derivative curves in Fig 

23. However, non-Darcy flow does not change the intermediate- and late-time characteristics of the pressure-transient behavior 

of the double-porosity reservoir for all cases of storativity ratio which matches the Darcy flow behavior. 

 

Effect of Wellbore Storage and Skin Damage 

Type curves shown in Fig 24 show the combined effect of wellbore storage and non-Darcy flow on pressure-transient 

responses of a naturally fractured reservoir. Fig 24 shows four cases of wellbore storage (CD of 0, 10, 100 and 1,000). For non-

Darcy flow, kfmr is 0.1 and D is 10 which simulates high non-Darcy flow effects, the storativity ratio, , is 0.01 and the 

interporosity flow coefficient, , is 1x10
-5

. The wellbore storage can be identified clearly by the unit-slope line on a log-log 

plot (Fig 24). As concluded earlier in this chapter, non-Darcy flow effects impact mainly the early-time behavior of pressure-

transient responses of the double-porosity reservoir. The wellbore storage effects usually complicate the analysis of the 

pressure-transient data in naturally fractured reservoirs. When the value of the wellbore storage coefficient increases, it is more 

difficult to identify the double-porosity reservoir responses. The wellbore storage masks the early-time responses of pressure-

transient data and therefore may be difficult to identify non-Darcy flow effects on early-time responses. If the wellbore storage 

is significant, case of CD of 1,000 in this example, the double-porosity reservoir behavior may be masked as well as indicated 

in pressure derivative curves in Fig 24. Thus for high wellbore storage effects pressure-transient responses of the double-

porosity reservoir may look similar to responses of a single-porosity reservoir. Since type curves are used to match actual 

pressure-transient data for pressure buildup and drawdown tests, wellbore storage effects with non-Darcy flow may complicate 

the analysis of pressure-transient data and increases the problem of solution uniqueness of type-curve analysis. 

Type curves shown in Fig 25 show the combined effect of skin damage and non-Darcy flow on pressure-transient 

responses of a naturally fractured reservoir. Fig 25 shows four cases of skin damage (S of 0, 2, 5 and 10). For non-Darcy flow, 
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kfmr is 0.1 and D is 10 which simulates high non-Darcy flow effects, the storativity ratio, , is 0.01, the interporosity flow 

coefficient, , is 1x10
-5

 and the dimensionless wellbore storage coefficient, CD, is 10. The skin damage adds an additional 

pressure drop and does not change the characteristics of early-time responses of the pressure-transient behavior of the double-

porosity reservoir. As the value of the skin factor increases the pressure drop at the wellbore increases because of physical 

formation damage, however, the shape and characteristics of the pressure derivative curves does not impact significantly for 

early- and late-time pressure-transient responses. Note that in this example because of wellbore storage effects, the early-time 

responses cannot be identified in Fig 25. However, we have studied the effect of skin damage with non-Darcy flow without 

wellbore storage effects earlier in this chapter and concluded that skin damage does not change the early-time characteristics 

of the double-porosity reservoir. The combined effect or co-existence of non-Darcy flow, skin damage, and wellbore storage 

may further complicate the analysis of a single-rate well test in a naturally fractured reservoir using type-curves. This is 

because many related matching parameters and solution uniqueness problem usually exist in well-testing type curves analysis. 

 

Analysis of Multi-Rate Test 

The combined effect or co-existence of physical skin damage and non-Darcy flow usually complicates the analysis of actual 

pressure transient data using a single-rate test. This is because it is very difficult to differentiate between the skin effect and 

non-Darcy flow behavior using a single flow rate test (pressure drawdown or buildup test) in a naturally fractured reservoir. In 

previous sections, we found that the late-time behavior of pressure-transient responses of non-Darcy flow is similar to physical 

skin behavior and the only difference is in early-time responses if non-Darcy flow behavior is significant. Furthermore, the 

early-time behavior of non-Darcy flow may be masked by wellbore storage effects. If physical skin does not exist, which is 

typically not the case; it is possible to estimate the skin factor due to non-Darcy flow, similar to estimating the physical skin, 

and further use the type-curve regression to analyze the data using BCM or Forchheimer models. In presence of combined 

effects of skin and non-Darcy flow, a multi-rate test (minimum of two variable flow rates) is required for an accurate estimate 

of the physical skin damage and non-Darcy flow skin. The total skin factor, St, can be estimated using Equation (27). The total 

skin factor, Equation (28), is the sum of physical skin, S, and the skin due to non-Darcy flow, SND. 
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In this example, we use the input data of the double-porosity reservoir shown in Table 2 to simulate a multi-rate well test 

under combined effect of non-Darcy flow and skin damage using the BCM. Synthetic pressure transient responses are 

generated for a high non-Darcy flow case of kfmr is 0.1 and  is 10 ft
-1

. Four different flow tests, simulating four pressure 

drawdown tests at variable production rates (2000, 3000, 4000 and 6000 STB/day) are considered in which each flow test lasts 

for 10 hours.  In each flow test, three cases of physical skin damage are considered (S = 0, 2 and 4). Also, in each flow test we 

simulate Darcy flow responses without skin damage to show the significance of non-Darcy flow effects.  

Fig 26 shows the wellbore pressure versus time for the multi-rate well test with non-Darcy flow effects. A quick look at 

Fig 26 shows that when the production rate increases the pressure drop due to non-Darcy flow and formation damage 

increases. The increase in pressure drop due non-Darcy flow is more noticeable compared to the increase in pressure drop due 

to formation damage only even for higher skin factor case. Also it is noticeable that the combined effect of non-Darcy flow 

and formation damage tends to increase the pressure drop due to formation damage when the production rate increases. Each 

flow test is analyzed using the standard straight-line analysis technique to estimate the effective permeability and the total skin 

factor for each non-Darcy and formation damage case. We have seen that the estimated effective permeability is less than the 

input fracture permeability due to non-Darcy flow effects but the estimated error is insignificant which depends on how severe 

is non-Darcy flow. The estimated total skin factor does change in each case because of the combined effect of non-Darcy flow 

and formation damage. The total skin factor, St, is estimated using Equation (27). The estimated total skin is the sum of the 

skin due to formation damage (S) and non-Darcy flow skin (SND). Thus if total skin and physical skin are known, then the non-

Darcy flow skin can be estimated using Equation (28).  

Results of the analysis of pressure-transient responses for all cases of physical skin and non-Darcy flow considered in the 

multi-rate test are shown in Fig 27. Fig 27 show plots of the estimated total skin factor versus production rate for all cases 

considered in the multi-rate test. The non-Darcy flow skin is a function of the production rate, as the production rate increases 

the skin factor due to non-Darcy flow increases with or without physical skin damage. However, the physical skin of formation 

damage tends to decrease the estimated value of the non-Darcy flow skin, thus as the value of physical skin increases the 

estimated value of non-Darcy flow skin decreases for all cases. The slope of the straight line of the estimated total skin factor 

versus production rate is approximately constant for all cases of physical skin damage and the non-Darcy skin could be 

estimated by multiplying the slope with the production rate and the physical skin damage can be estimated from the intercept 

of the straight-line.  
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Field Examples 
In the first field example, we show analysis results of a pressure buildup test for high-rate oil producer well in a single-porosity 

reservoir in Kuwait using BCM. Analysis of pressure buildup test data shows that St = -0.244 and C = 0.1108 bbl/psi using 

standard well testing techniques. Although the estimated skin factor is negative which indicates a stimulation case, non-Darcy 

flow effects may exist and affects the well performance. Type curves generated by the numerical model of BCM were used to 

match the actual field data assuming Darcy and non-Darcy flow. An equivalent shut-in time suggested by Agarwal (1980) is 

used to account for the effects of producing time on pressure-buildup. Fig 28 shows a log-log plot of wellbore pressure drop 

and its derivative versus equivalent shut-in time for actual pressure buildup data and the numerical model for two matched 

cases of Darcy and non-Darcy flow. Note that the matching process requires the knowledge of all reservoir properties except 

the physical skin factor and non-Darcy flow parameters.  

The physical skin factor is not known because no multi-rate test was available for this well, thus the estimated skin factor 

from the buildup test represents a total skin factor. In this example, we should emphasize that the estimated total skin factor 

(St) from a pressure buildup test was assumed to be mainly due to non-Darcy flow effects (St = SND), because no multi-rate test 

was available for this well and it was stimulated before the pressure transient tests. Therefore, in this particular example, the 

estimated non-Darcy flow parameters may represent low values of kmin and  (high non-Darcy flow). It was difficult to match 

some of the data at early times for Darcy and non-Darcy flow cases. Furthermore, using the numerical model type curves, it is 

possible to obtain many cases of non-Darcy flow and physical skin parameters that match the actual field data. The first 

matching case, Case 1, is for Darcy flow and a physical skin factor of -0.244. The second matching case, Case 2, is for non-

Darcy flow (kmin = 1.2 md and  = 49.98 ft
-1

) and a skin factor of -2.63. The results indicate that if non-Darcy flow effects exist 

then the actual physical skin factor of the well is -2.63 which represents a highly stimulated well. Thus, the productivity 

decline may be due to non-Darcy flow effects and not the physical skin damage. These results should be confirmed by the 

analysis of a multi-rate test to estimate actual skin factors of physical skin and non-Darcy flow. 

In the second field example, we show analysis results of actual pressure buildup test for a hydraulically fractured well in 

Kuwait using the numerical model BCM. Type curves generated by the BCM were used to match the actual field data 

assuming Darcy and non-Darcy flow. Fig 29 shows a log-log plot of wellbore pressure drop and its derivative versus 

equivalent shut-in time for actual pressure buildup data and the numerical model for two cases of Darcy and non-Darcy flow. 

It was difficult to match some of the data at early times for Darcy and non-Darcy flow cases. Analysis of pressure buildup test 

data shows that the average permeability of the formation is 2.47 md and the wellbore storage coefficient is 0.1235 bbl/psi. It 

was possible to obtain many cases of Darcy and non-Darcy flow parameters that match the actual field data by changing many 

parameters during type-curve matching using the numerical model. In this example, we show only two cases that match the 

actual field data for a finite-conductivity fracture with Darcy flow and an infinite-conductivity fracture with non-Darcy flow. 

As shown in Fig 29, the field data was matched with a type curve of a finite-conductivity fracture (CfD = 72, xf = 105 ft) 

assuming Darcy flow. Also, the field data was matched with a type curve of an infinite-conductivity fracture (xf = 100 ft) 

assuming non-Darcy flow (kfmr = 0.01 and  = 30.1 ft
-1

). In both cases, the fracture-skin factor is not considered (i.e. Sf = 0). 

The results indicate that if non-Darcy flow effects exist then an infinite-conductivity hydraulic fracture may behave as a 

fracture of lower finite-conductivity. The analysis of pressure-transient data under non-Darcy flow conditions assuming Darcy 

flow and using conventional methods will result in incorrect estimates of fracture conductivity.  

In the third field example, we use type curves generated by BCM to analyze non-Darcy flow behavior on a pressure-

transient data for a high flow rate well in a naturally fractured reservoir in Kuwait. Analysis of pressure buildup test data 

shows that the estimated average permeability is 1,812 md, the interporosity flow coefficient () is 2.149x10
-7

, the storativity 

ratio () is 0.0025, and the total estimated skin factor (St) is 5.29. Type curves generated by the numerical model of BCM 

were used to match the actual field data assuming Darcy and non-Darcy flow. An equivalent shut-in time is used to account for 

the effects of producing time on pressure-buildup tests. Fig 30 shows a log-log plot of wellbore pressure drop and its 

derivative versus equivalent shut-in time for actual pressure buildup data and the numerical model for two matched cases of 

Darcy and non-Darcy flow. Note that the matching process requires the knowledge of all reservoir properties except the 

physical skin factor and non-Darcy flow parameters. Again, it was difficult to match some of the data at early times for Darcy 

and non-Darcy flow cases. In this example, the physical skin factor is not known because no multi-rate test was available for 

this well, thus the estimated skin factor from the buildup test represents a total skin factor. Furthermore, using the numerical 

model type curves, it is possible to obtain many cases of non-Darcy flow and physical skin that all match the actual field data. 

The first matching case, Case 1, is for Darcy flow and a physical skin factor of 5.29. The second matching case, Case 2, is for 

non-Darcy flow (kmin = 17.9 md and  = 127 ft
-1

) and a skin factor of 1.48. The results indicate that if non-Darcy flow effects 

exist then the actual physical skin factor is less than the skin factor of non-Darcy flow. Thus, the non-Darcy flow, not the 

physical skin damage, is the main reason of the well productivity decline. These results should be confirmed by the analysis of 

a multi-rate test to estimate actual skin factors of physical skin and non-Darcy flow.  

 

Conclusions 
Non-Darcy flow is very important in flow calculations in porous and fractured reservoirs, especially in hydraulic fractures and 

stimulation design. The motivation for the work presented in this paper to investigate, validate and extend the Barree-Conway 

flow model (BCM) for pressure-transient analysis of wells involving hydraulic fractures and in naturally fractured reservoirs. 
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We developed and used 3D numerical models according to Forchheimer and BCM specifically for pressure-transient analysis 

of single-phase fluid flow in porous and fractured reservoirs. The developed numerical models are capable of simulating all 

near wellbore effects coupled with the non-Darcy flow behavior. An equivalent non-Darcy flow coefficient was derived based 

on the apparent permeability of non-Darcy flow for both Forchheimer and BCM equations. The numerical model of non-Darcy 

flow according to BCM have been used to model and interpret actual field pressure-transient data in both porous-medium and 

fractured reservoirs.  

      The specific conclusions obtained from the work presented in this paper are as follow: 

1. The Barree-Conway model (BCM) can be applied, similar to the Forchheimer model, to analyze and interpret 

pressure-transient responses of non-Darcy flow in porous and fractured reservoirs. The BCM predicts similar 

pressure-transient responses of non-Darcy flow to those as predicted by the Forchheimer model under the same fluid 

flow conditions for vertical wells in porous or fractured reservoirs. 

2. The non-Darcy flow parameters of the BCM may not be all estimated from single-rate pressure-transient tests in 

single-porosity reservoirs using conventional analyses. However, they can be estimated by a matching process based 

on non-linear optimization algorithm incorporated into the developed numerical model, provided that the mechanical 

skin is known in prior from analysis of multi-rate pressure-transient test (minimum of two flow rate tests). 

3. Type curves generated by the BCM are provided to demonstrate a methodology for modeling single-phase pressure-

transient behavior of non-Darcy flow in single-porosity reservoirs, hydraulically fractured wells, and naturally 

fractured reservoirs.  

4. The BCM parameter of characteristic length, , is more sensitive than the minimum permeability, kmin, parameter for 

all flow rates considered in this study. The minimum permeability parameter is only sensitive at low values of the 

characteristic length or at extremely high flow rates.  

5. Barree and Conway related their model parameter  to the particle size of the porous or fractured system which 

should corresponds to high values. However, in numerical simulation of pressure-transient tests, we found that the 

meaning of this parameter is related to small effective radius (in terms of 10
-4

 to 10
-1

 ft depending on flow conditions 

of non-Darcy flow and the type of the reservoir and the well) and it must has a small value for significant non-Darcy 

flow to occur.  

6. In simulating multi-rate tests in single- and double-porosity reservoirs, increase in the value of the mechanical skin 

due to formation damage does not significantly affect the estimated value of the skin factor due to non-Darcy flow at 

a given constant production rate. In most cases, increase in the skin damage slightly decreases the skin factor due to 

non-Darcy flow at a given constant production rate. 

7. In numerical simulation of finite-conductivity hydraulic fractures using the BCM, the change in pressure transient 

responses because of decrease in the value of the minimum permeability and/or the characteristic length parameters in 

the fracture for high non-Darcy flow effects is similar to the pressure change due to decrease in the fracture 

conductivity in Darcy flow case. The non-Darcy flow behavior affects the characteristics and duration of flow 

patterns in hydraulically fractured wells and hence the analysis of pressure transient data. The analysis of pressure-

transient responses of non-Darcy flow using conventional methods results in lower estimate of the fracture 

conductivity and incorrect fracture properties. 

8. The combined effect of non-Darcy flow and skin damage changes the characteristics of early time pressure-transient 

responses of naturally fractured reservoirs. The skin damage effect alone does not change the characteristics of early 

time pressure-transient responses with Darcy or non-Darcy flow.  

9. In naturally fractured reservoirs, it is possible to match using type curves the late-time pressure-transient responses of 

high non-Darcy flow effects. However, under the same conditions, it is difficult to match the early-time pressure-

transient responses of high non-Darcy flow effects.  

 
Table ‎1 - Input data used for comparison of BCM and 

Forchheimer numerical models 

 

Parameter Value Unit 
Darcy Permeability kd = 100 md 

Minimum Permeability kmin = 1 md 

Characteristic Length  = 100 1/ft 

Equivalent  (Forchheimer)  = 9.064E+09 1/ft 

Viscosity  = 1.2 cp 

Porosity = 0.2  

Density  = 60 lb/ft3 

Total Compressibility Ct = 10x10-6 psi-1 

Production Rate q = 10,000  STB/d 

Formation Thickness h = 100 ft 

Initial Pressure pi = 5,000 psi 

Reservoir Drainage Radius `re = 10,000 ft 

Wellbore Radius rw = 0.33 ft 

 

 

Table ‎2 - Input used in numerical models for pressure-

transient responses in a naturally fractured reservoir 

 

Parameter Value Unit 
Matrix Permeability km = 1 md 

Fracture Permeability kf = 1,000 md 

Matrix Porosity m= 0.15  

Fracture Porosity f= 0.001  

Viscosity  = 1.2 cp 

Density  = 60 lb/ft3 

Total Compressibility in 

Fracture 

Ctf = 1x10-6 psi-1 

Total Compressibility in 

Matrix 

Ctm = 1x10-6 psi-1 

Production Rate q = 6,000 STB/d 

Formation Thickness h = 50 Ft 

Initial Pressure pi = 5,000 psi 
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Reservoir drainage radius re = 10,000 Ft 

Wellbore Radius rw = 0.33 ft 

 

 

Table ‎3 - Input data used for generating pressure-transient 

type-curves of non-Darcy flow in single-porosity reservoir 

using BCM 

 
Parameter Value Unit 
kmin relative to kd kmr = 1, 0.5, 0.2  

Dimensionless 
Characteristic Length 

wD = 0.1, 10,       
        100 

 

Dimensionless Wellbore 
Storage 

CD = 500  

Skin Factor S = 1  

Viscosity  = 1.2 cp 

Porosity = 0.2  

Density  = 60 lb/ft
3
 

Total Compressibility Ct = 10x10
-6 

psi
-1 

Production Rate q = 5,000  STB/d 

Formation Thickness h = 100 ft 

Initial Pressure pi = 5,000 psi 

Reservoir drainage radius re = 10,000 ft 

Wellbore Radius rw = 0.3 ft 

 

 

 
Table ‎4 - Input data used for simulating pressure-transient 

responses of a hydraulically fractured well using BCM for 

the verification examples 

 

 

 

 
Table ‎5 - Input data used in numerical model for generating 

pressure-transient type curve of non-Darcy flow in a 

naturally fractured reservoir using BCM 

 
Parameter Value Unit 
Matrix Permeability km = 1 md 

Fracture Permeability kf = 6,600 md 

Matrix Porosity m = 0.10  

Fracture Porosity f = 0.001  

Viscosity  = 1.2 cp 

Total Compressibility in Fracture Ctf = 1x10
-6 

psi
-1 

Total Compressibility in Matrix Ctm = 1x10
-6 

psi
-1 

Production Rate q = 10,000 STB/d 

Formation Thickness h = 50 ft 

Initial Pressure pi = 5,000 psi 

Reservoir drainage radius re = 10,000 ft 

Wellbore Radius rw = 0.33 ft 

 

 

 
 

Fig. 1 Experimental results of Forchheimer and BCM models for 

single-phase non-Darcy experiments by Lai et al., Colorado School of 

Mines (2009) 

 

 

 
 

Fig. 2 Space discretization and flow-term evaluation in the IFD 

method (Pruess et al., 1999) used in the numerical simulator 

 

 

 

 

 
 

Fig. 3 Comparison of pressure-transient responses of non-Darcy flow 

of BCM and Forchheimer models for a fully penetrating well in a 

single-porosity reservoir 

 

 

 

Parameter Value Unit 

Reservoir and Fluid Data  
Darcy Permeability kd = 9.02 md 

Minimum to Darcy Permeability 
Ratio 

kmr = 1    (Darcy Flow)  

Porosity = 0.2  

Formation Thickness h = 100 ft 

Total Compressibility Ct = 10x10
-6 

psi
-1 

Wellbore Radius rw = 0.35 ft 

Initial Pressure pi = 5,000 psi 

Production Rate q = 5,032  STB/d 

Fluid Viscosity  = 1.2 cp 

Fluid Density  = 60 lb/ft
3
 

Hydraulic Fracture Data 
Fracture Half-Length xf = 400, 40, 1000 ft 

Fracture Width wf = 0.02 ft 

Fracture Conductivity  CfD = 10, 100, infinite  
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Fig. 4 Log-Log plot of pressure-transient responses of Forchheimer 

and BCM models assuming Darcy flow in a naturally fractured 

reservoir 

 

 
 

Fig. 5 Log-Log plot of pressure-transient responses of non-Darcy 

flow in a naturally fractured reservoir using Forchheimer and BCM 

models 

 

 
 

Fig. 6 Effect of non-Darcy flow parameter kmr of BCM on pressure 

transient responses (type curves) in a single-porosity reservoir 

 

 
 

Fig. 7 Effect of non-Darcy flow parameter D of BCM on pressure 

transient responses (type curves) in a single-porosity reservoir 

 

 

 

 
 

Fig. 8 Reservoir grid system for numerical simulation of an infinite-

conductivity hydraulically fractured well (2-D View) 

 

 

 

 

 
Fig. 9 Reservoir grid system for numerical simulation of a finite-

conductivity hydraulically fractured well (2-D View) 
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Fig. 10 Pressure-transient responses of a hydraulically fractured well 

for comparison case 1 (CfD = 10) 
 

 

 
 

Fig. 11 Pressure-transient responses of a hydraulically fractured well 

for comparison case 2 (CfD = 100) 
 

 
 

Fig. 12 Pressure-transient responses of a hydraulically fractured well 

for comparison case 3 (Infinite-Conductivity) 

 

 

 
 

Fig. 13 Effect of kfmr on pressure-transient responses of a 

hydraulically fractured well for Case 1, CfD = 1 
 

 
 

Fig. 14 Effect of kfmr on pressure-transient responses of a 

hydraulically fractured well for Case 2, CfD = 100 

 

 

 

 
 

Fig. 15 Effect of non-Darcy flow and reduced fracture conductivity 

on pressure-transient responses of a hydraulically fractured well 
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Fig. 16 Effect of D, on pressure-transient responses of a 

hydraulically fractured well for CfD = 100 
 

 
 

Fig. 17 Effect of non-Darcy flow parameter (kfmr) and reduced 

fracture conductivity on pressure-transient responses of a 

hydraulically fractured well (infinite-conductivity) 
 

 

 
 

Fig. 18 Effect of non-Darcy flow parameter (D) and reduced 

fracture conductivity on pressure-transient responses of a 

hydraulically fractured well (infinite-conductivity) 
 

 
 

Fig. 19 Log-Log plot of pressure-transient responses showing effect 

of non-Darcy flow in a naturally fractured reservoir using BCM 
 

 
 

Fig. 20 Type curves studying effect of combining non-Darcy flow 

parameters of the BCM in a naturally fractured reservoir 

 

 
 

Fig. 21 Type curves studying effect of non-Darcy flow and 

production rate on pressure-transient behavior of a naturally 

fractured reservoir using BCM 
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Fig. 22 Type curves showing effect of non-Darcy flow and 

interporosity flow coefficient on pressure-transient behavior of a 

naturally fractured reservoir using BCM 
 

 
 

Fig. 23 Type curves showing effect of non-Darcy flow and storativity 

ratio on pressure-transient behavior of a naturally fractured 

reservoir using BCM 

 
 

Fig. 24 Type curves studying effect of non-Darcy flow and wellbore-

storage on pressure-transient behavior of a naturally fractured 

reservoir using BCM 

 
Fig. 25 Type curves studying effect of non-Darcy flow and skin 

damage on pressure-transient behavior of a naturally fractured 

reservoir using BCM 
 

 
 

Fig. 26 A multi-rate test in a naturally fractured reservoir 
 

 
 

Fig. 27 Estimated total skin versus production rate for the multi-rate 

well test in a naturally fractured reservoir 
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Fig. 28 Type curve matching of a pressure buildup test data from 

single-porosity reservoir using the BCM 
 

 
 

Fig. 29 Type curve matching of a pressure buildup test for a 

hydraulically fractured well using the BCM 

 

 
 

Fig. 30 Type curve matching of a pressure buildup test for a vertical 

well in naturally fractured reservoir using BCM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nomenclature 

p = pressure, psi 

k  = formation permeability, Darcy or md 

v  = superficial velocity, ft/s 

t  =  time, hour 

q  =  volumetric flow rate, bbl/day 

V  =  volume, bbl 

F  = mass flow term, lbm/day 

Q  =  mass sink/source term 

A  =  area of interface, ft
2 

D  =  depth, ft 

R  =  residual, dimensionless 

h =  formation thickness, ft 

r =  radius or distance in radial direction, ft 

L =  characteristic dimension of a matrix block 

n =  number of normal sets of planes limiting the less-permeable medium (n =1, 2 or 3) 

c  =  compressibility, psi
-1

 

C =  wellbore storage coefficient, bbl/psi 

S =  skin factor, dimensionless 

St =  total skin factor, dimensionless 
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SND =  skin factor due to non-Darcy flow, dimensionless 

xf  =  fracture-half length, ft 

 

Greek Symbols 

  =  fluid viscosity, cp 

  =  fluid density, lbm/ft
3
 

  =  non-Darcy flow coefficient, ft
-1

 

  =  characteristic length, ft
-1 

  =  formation porosity, fraction 

   =  mobility of flowing fluid phase, md/cp; or interporosity flow coefficient, dimensionless 

 =  transmissivity of flow
 

   =  flow potential, psi 

  =  storativity ratio, dimensionless 

 

Superscript 

n  =  current time level 

n+1 =  next time level to be solved 

 

Subscript 

D =  Darcy 

mr =  minimum relative 

  =  fluid phase (could be oil or gas) 

i, j =  arbitrary element or node 

ij+1/2 =  proper averaging of properties at the interface between the two elements i, j 

N  =  total number of nodes, elements or grid blocks 

i    =  set of neighboring elements (j) (non-fractured or fractured) to which element i is directly connected 

app = apparent 

min  =  minimum 

p   =  perforated 

w =  wellbore 

m =  matrix 

f =  fracture 

i =  initial conditions, i.e. at time equal zero 

wf =  wellbore flowing  

D  = dimensionless 

s =  skin zone 

1hr =  at time equal one hour 

max =  maximum 

e =  outer boundary 
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