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Abstract 
 

This paper presents Buckley-Leverett type analytical solutions for non-Darcy displacement of two 

immiscible fluids in linear and radial composite porous media. High velocity or non-Darcy flow commonly 

occurs in the vicinity of wellbore because of smaller flowing cross-sectional area, however, the effect of such 

non-Darcy has been traditionally ignored. To examine physical behavior of multiphase immiscible fluid non-

Darcy displacement, an extended Buckley-Leverett type of solution is discussed. 

  

There exists a Buckley-Leverett type solution for describing non-Darcy displacement in a linear 

homogeneous reservoir. This work extends the solution to flow in linear and radial composite flow systems. 

We present several new Buckley-Leverett type analytical solutions for non-Darcy flow in more complicated 

flow geometry of linear and radial composite reservoirs, based on non-Darcy flow models of Forchheimer 

and Barree-Conway. As application examples, we use the analytical solutions to verify numerical simulation 

results as well as to discuss non-Darcy displacement behavior. The results show how non-Darcy 

displacement in linear and radial composite systems are controlled not only by relative permeability, but also 

non-Darcy coefficients, characteristic length, injection rates, and as well as discontinuities in saturation 

profile across the interfaces between adjacent flow domains. 

 

Introduction 
 

Multiphase flow and displacement occurs in a large variety of subsurface systems ranging from gas, oil, and 

geothermal reservoirs, vadose zone hydrology, and soil sciences. In oil and gas industry, fluid displacement 

has long been used as an effective EOR process. Buckley and Leverett [1942] established the fundamental 

principle for flow and displacement of immiscible fluids through porous media in their classic study of 

fractional flow theory. Their solution involves the displacement process of two incompressible, immiscible 

fluids in a one-dimensional, homogeneous system without considering capillary effect. The solution, then, 

has been extended in many aspects e.g. including capillary effects [Yortsos and Fokas, 1983; Chen, 1988; 

Mc-Whorter and Sunada, 1990], heterogeneous reservoir, linear composite,Wu [1993]. 

 

The effects of non-Darcy or high-velocity flow regimes in porous media have long been noticed and 

investigated for porous media flow (e.g., Tek et al., 1962; Scheidegger, 1972; Katzand Lee, 1990;Wu, 2002). 
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Theoretical, field, and experimental studies performed on non-Darcy flow in porous media both on 

singlephase [Tek et al., 1962; Swift and Kiel, 1962; Lee et al., 1987] and multiphase flow [Lai et al 2009]. 

Clasical non-Darcy flow is described using Forchheimer equation for a singlephase system. Many studies 

[e.g., Evans and Evans, 1988; Liu et al., 1995; Wu et al., 2002] extended the equation to multiphase flow. 

Recent studies [Baree and Conway, 2004, 2007] have indicated that Forchheimer equation could not 

accurately predict fluid flow behavior in porous media at very high velocity. As such, an alternative 

correlation in both singlephase and multiphase flows was presented. Laboratory studies [Lai et al, 2009] 

confirmed this, Baree-Conway, model. However, as Forchheimer are still in use widely, in this work, both 

non-Darcy equations are used. 

 

This paper presents a Buckley-Leverett analytical solution for one-dimension non-Darcy displacement of 

two-phase immiscible fluids in linear and radial composite porous media. The classical Buckley-Leverett 

principle is used as well as non-Darcy flow in a heterogeneous porous media, in which the two-phase fluids 

conform to non-Darcy displacement and the formation is treated as consisting of two flow domains with 

different rock property. A practical procedure for calculate the wetting phase saturation profile for non-Darcy 

immiscible displacement in one-dimension linear and radial composite system is provided. The analytical 

solution and the resulting procedure can be regarded as an extension of the Buckley-Leverett theory. 

 

Mathematical Model 
 

Consider the flow of two immiscible fluids (one wetting and one nonwetting phase) in a homogeneous, 

isothermal, and isotropic porous medium. Assume that no interphase mass transfer occurs between the two 

fluids and ignore dispersion and adsorption effects. The governing equation for fluid f is given by the mass 

conservation equation,  

   f f f f fv q S
t

  


  


      (1) 

where, f is fluid (f=w for the wetting phase and f=n for the nonwetting phase), ρ is the density of fluid, v is 

the volume matrix (or Darcy flow) velocity, q is sink/source term, S is the saturation, t is time, and ϕ is the 

effective porosity of formation 
 

To incorporate non-Darcy flow behavior, volume matrix velocity (vf) is treated using non-Darcy flow 

equations. In this study, two equations are of interest. First, the Forchheimer non-Darcy flow equation.  

f

f f f f f f

rf

v v v
kk


          (2) 

 

where, vf is volume matrix (Darcy) velocity, Φ
 
is flow potential, k is the absolute permeability of the porous 

media, g is the gravitational constant, krf is the relative permeability to fluid f, µf is the dynamic viscosity of 

fluid f, and βf is the effective non-Darcy flow coefficient (per meter) for fluid f under multiphase flow 

conditions described as follows [Evans and Evans, 1988].   
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       (3) 

 

where Cβ is a non-Darcy flow constant with a unit of meters
3/2

 if converted to SI units. A recent study [Liu et 
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al., 1995] indicates that the β coefficient may be also correlated to tortuosity or the representative length of 

tortuous flow paths in pore structure of a porous media. According to Wu [2002], volume matrix velocity can 

be computed in a simplified form for a constant cross-sectional area as follows:     

 
1/2

2

2
Φ1

4
2

f f f

f f f

f f rf rf

μ μ
v k ρ β

kρ β k k x
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     (4) 

 

Recent studies [Baree and Conway, 2004, 2007] indicated that Forchheimer equation could not accurately 

predict fluid flow behavior in porous media at very high velocity and presented an alternative equation in 

both singlephase and multiphase flows.  
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       (5) 

where  kd is absolute (Darcy) permeability, kmr is the minimum permeability ratio at high rate, relative to 

absolute (Darcy) permeability, τ is the characteristic length. 

 

Wu [2009] proposed the method to include Baree-Conway model into numerical simulation and Buckley-

Leverett analytical typw of solutions.the simplified from of volume matrix velocity of Baree and Conway 

non-Darcy flow for a constant cross-sectional area as follows [Lai, 2009]:     

 

2

1 1

Φ
2

2

f

f f d rf rm β β
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f f

a a μ ρ k k k μ S τ
x
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¶
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where  
2

1

Φ f

β β d rf rm fa μ S τ k k k ρ
x

¶
= +

¶
 , 

 

Equation (4) and (6) implicitly defines the volume matrix velocity as a function of pressure gradient as well 

as saturation, relative permeability, effective non-Darcy flow coefficient, minimum permeability ratio, and 

characteristic length. A more general relation for the Darcy velocity in multiphase non-Darcy flow may be 

proposed as follows: 

( )Φ ,f f f fv v S= Ñ       (7) 

 

Analytical Solution for One-Dimension Linear and Radial Systems 
 

The classical Buckley-Leverett solution was derived assuming the following flow conditions. (1) Both fluids 

and the porous medium are incompressible. (2) Capillary pressure gradient is negligible. (3) Gravity 

segregation effect is negligible (i.e., stable displacement exists near the displacement front).  

 

For a one-dimension flow and displacement in a linear system, a semi-infinite linear flow system with a 
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constant cross-sectional area (A), Equation (1) can be rewritten as follows: 

 

fs i

f s

fx q

t A S

 
  

   

                                                                       (8) 

where, xs is the location of tracking saturation along x-direction, qi is injection rate, A is cross-sectional area, 

ff is fractional flow of fluid f, Sf is saturation of fluid f    

 

Using the same assumptions, the mass conservation of a one-dimension flow and displacement in a radial 

system can be rewritten as follows: 
2

fs i

f s

fr q

t h S

 
  

   

                                                                     (9) 

where,  rs is the location of tracking saturation away from the injecting point, h is reservoir thickness  
 

To complete the mathematical description of the physical problem, the initial and boundary conditions must 

be specified. The system is initially assumed to be uniformly saturated with both wetting and nonwetting 

fluids. The wetting phase is at its residual saturation, and a nonwetting fluid, such as oil or gas, is at its 

maximum saturation in the system as follows: 

 

( )/ , 0 1n wrS x r t S= = -                                                                 (10) 

where Swr is the initial, residual wetting phase saturation. Wetting fluid, such as water, is continuously being 

injected at a known rate qi(t), generally a function of injection time (t). Therefore the boundary conditions at 

the inlet are 

 

for a linear system 

( )
( )

0,
i

w

q t
v x t

A
= =                                                              (11) 

( )0, 0nv x t= =                                                                    (12) 

for a radial system 

( )
( )

,
2

i

w w

w

q t
v r r t

πr h
= =                                                              (13) 

( ), 0n wv r r t= =                                                                    (14) 

The fractional flow of a fluid phase is defined as a volume fraction of the phase flowing at a given location 

and time to the total volume of the flowing phases [Willhite, 1986]. The fractional flow can be written as 

 

  
( )

f f

f

w n t

v v
f

v v v t
= =

+
                                                              (15) 

 

From volume balance due to incompressibility of the system we have 

 

1w nf f+ =                                                                    (16) 
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Solution Procedure 
 
The general solution procedure is shown in Fig. 1. This procedure applies for both linear and radial 

composite systems as well as for Forchheimer and Baree-Conway non-Darcy models.  

 

1. In order to calculate saturation profile in such complex systems, we have to discretize flow domain 

into series of homogeneous with a constant total volume matrix velocity (vt).  

 

2. Calculate total volume matrix velocity (vt) from the following equations:   

( )i

t

q t
v

A
=

                                                             (17) 

 

where A is a constant cross-sectional area for a linear composite and 2A rh  for a radial composite 

 

3. Calculate potential gradient profile: from Equation (3), (4), and (5), fluid velocity is a function of 

potential gradient (
f ) and phase saturation (

fS ).As no capillary pressure is assumed for a water-

oil system, oil potential and water potential are the same. Using the fact that a total velocity is 

constant for a particular segment, we can setup Equation (16) and use Newton’s Iteration method to 

solve for a potential gradient for a given saturation  

 

( , ) ( ,1 ) 0t w w w n n wv v S v S                                   (18) 

 

4. Calculate fractional flow: for each segment, a fractional flow curve can be computed from Equation 

(15) 

 

5. Select any tracked saturation: this apparent saturation in the first segment is used to track its location 

and the apparent saturation in other segments after injection for a given time. Using the continuity 

condition for interface of each segment , an apparent saturation can be determined as follows 

 

1 1( ) ( )w w wm wmf S f S        (19) 

where, m is any segment number 
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2. Using Newton’s iteration, 
solve for a potential gradient 

profile

4. Calculate fractional flow 
profile 

5. Select a particular saturation 
(Sw) in the first segment

3. Calculate a total fluid velocity 
(vt) for a given rock properties

1. Discretize flow domain into 
segments

6. Calculate travel time in each 
segment until reaching the 

given time

7. Calculate its location and 
apparent saturation 

Repeat for all 
saturation profile

Repeat for all 
segments

8. Check the shock front 
location

 
 

     Fig. 1 Solution Procedure Diagram 

 

 

6. Compute the travel time in each segment as follows, see Appendix A for example of calculation:  

1

j

j w
j j

i w S

A f
t x

q s




 
   
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  for a linear composite  200. 

  
  1

2

j

j

j w
j

i w S

h f
t r

q s




 
   

 
    for a radial composite    (20) 

where, Sj is an apparent saturation in segment j 
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Then check segment number that the selected saturation locates for a given time 
1

1 1

m m

j j

j j

t t t


 

            (21 

 where, m is the segment number that the selected  saturation  locate  

 

7.  Calculate the location of the saturation:  

 
1 1

1 1
m

m m
i w

s j j

j jm w S

q f
x x t t
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 

 
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    for a linear composite  200. 
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1 1
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m m
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q f
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 

 
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   
    for a radial composite  (22)  

 

where. xs and rs are location of the saturation, Sm is an apparent saturation  in segment m 

 

8. Check the shock front location: we can use total amount of injection volume to check saturation of 

the shock front as follows 

 

 
0

0
sx

i w wrq t A S S dx      for a linear composite  200. 

  2 0
s

w

r

i w wr

r

q t h S S dr     for a radial composite  (23)  

 If the condition hold, the calculated saturation is belong to the shock front 
 

Discussions 
 

The extension Buckley-Leverett solution described above is used to demonstrate influences of input 

parameters, e.g. injection rate, non-Darcy coefficient in Forchheimer correlation, characteristic length and 

minimum permeability ratio in Barree-Conway correlation, on water saturation profile as well as 

displacement efficiency. One-dimension linear-composite, where porosity, permeability of rocks are the 

same for both rocks, only relative permeability are different, see Table 1, models are setup with the same 

initial condition. Water saturation distributes uniformly at the irreducible water saturation (Swr=0.2) and 

water is injected with a constant volumetric rate at inlet (x=0).  
 

Fig.2-4 illustrate base case scenario where the operating condition and time are given in Table 1. Water 

saturation discontinuity appears at the rock interface due to change in rock properties. Fig 5-8 show the 

sensitivity of input parameters for both Forchheimer and Baree-Conway correlations. These input parameters 

control fractional flow curve and, as the results, control water saturation profile and displacement efficiency. 
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One important thing is that non-Darcy phenomena improves displacement efficiency because any saturation 

moving with high velocity is held back by non-Darcy effect. Consequently, saturation profile moves in a 

more-uniform manner, see the injection rate sensitivity Fig 7.  

 

For sensitivity cases of Baree-Conway non-Darcyequation, Equation (5), if the characteristic length (τ) goes 

to infinity, the equation can be reduced to the standard Darcy’s equation as such the higher the characteristic 

length, the less the non-Darcy effect is. This effect can be seen in Fig 5. High characteristic length or high 

non-Darcy effect reduces the shock front speed and uniform saturation front. In the minimum permeability 

ratio case, the ratio value ranges from zero to one. According to Equation (5) if the ratio approaches one, the 

equation is in the same form as Darcy described. A small minimum permeability ratio physically means that 

it is the smallest equivalent Darcy permeability possible of non-Darcy system can be. As such the smaller the 

ratio, the more the non-Darcy effects is, this effect is observed here in Fig 6.  

 

Application Example 
 

One application of this extended Buckley-Leverett solution is to use as a verification tools for numerical 

simulation development. In this case, MSFLOW code [Wu, 1998], a general purpose, three-phase reservoir 

simulator, is verified with the solution. Two one-dimensional reservoir systems are modeled for linear and 

radial composite. To reduce the effects of discretization on numerical simulation results, very fine, uniform 

mesh spacing (∆x = 0.01 m and ∆r = 0.01 m) are chosen. The flow description and the parameters for this 

problem are identical to those in Table 1 for the case of characteristic length is 1000 and Minimum 

Permeability ratio is 0.01.  

 

The comparisons between the analytical and numerical solutions for linear and radial composite are shown in 

Fig 10 and 12, respectively. Both indicate that the numerical results are in excellent agreement with the 

analytical prediction of the non-Darcy displacement for the entire wetting phase sweeping zone. Except at 

the shock, advancing saturation front, the numerical solution deviates only slightly from the analytical 

solution, resulting from a typical “smearing front” phenomenon of numerical dispersion effects when 

matching the Buckley-Leverett solution using numerical results [Aziz and Settari, 1979]. 
 

Conclusions  
 

This paper presents a Buckley-Leverett analytical solution and a theoretical study for non-Darcy 

displacement of two immiscible fluids through linear and radial composite porous media. A general 

procedure is developed to solve such a complex reservoir system analytically. This procedure can be used for 

any non-Darcy equation.  

 

In this work, non-Darcy effect is treated using Forchheimer and Baree-Conway equations. Effects of 

variation of physical parameters for each non-Darcy equation are run to investigate how these parameters 

influence water saturation profile as well as displacement efficiency. The results show that non-Darcy 

displacement in linear and radial composite systems are controlled not only by relative permeability, but also 

non-Darcy coefficients, characteristic length, injection rates, and as well as discontinuities in saturation 

profile across the interfaces between adjacent flow domains. One important thing to emphasize here is that 

non-Darcy effect help improve displacement efficiency because any saturation moving with high velocity is 

held back by non-Darcy effect. Consequently, saturation profile moves in a more-uniform manner. As an 

example of application, the analytical solution is applied to verify  a numerical simulator modeling 

multiphase non-Darcy flow. 
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                Fig. 11 Reservoir Schematic for       Fig. 12 Comparison of Saturation Profiles between 

                a Radial Composite System           Analytical and Numerical for a Radial Composite System 

 

 

Nomenclature 
 

A  = Crossectional area, m
2
 

Cβ  = Non-Darcy flow constant, m
3/2

 

ff  = Fractional flow of fluid f, fraction 

h  = Reservoir thickness, m 

kd  = Darcy permeability, m
2
 

kr  = Relative permeability ,fraction 

kmr  = Minimum permeability relative toDarcy permeability ,fraction 

qi  = Injection rate, m
3
/s 

rw  = Well bore radius, m 

rs  = Distance away from wellbore in radial system of saturation S, m 

Sf  = Saturation of fluid f, fraction 

t  = Given travel time after start injection, sec  

t
*
  = Travel time from start to interface of the saturation front in Rock 1, sec 

xs  = Distance from inlet in the x-direction of saturation S, m  

vt  = Volume metrix velocity of phase f, m/s 

vt  = Total volume metrix velocity, m/s 

β  =  Non-Darcyflow coefficient 

Φ  = Potential, Pa 

τ  = Characteristic length, m/10000 

ρf  = Density of fluid f,kg/m
3
 

Rock 1 

Rock 2 

Injection Well 
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µ  = Viscosity, Pa.s 
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Appendix A Example Calculation for a Linear Composite System 

 
This example is selected to demonstrate the calculation method for a linear composite system.  The approach 

is also applied to a radial composite, only minimum modification is required. It is assumed that fractional 

flow curve is known using rock property is given in Table 1.    

 

From the fractional flow curves, we can calculate the shock front saturation of Rock 1 and Rock 2 using 

Welge’s graphical method, see Fig. A-1. In this example, it is indicated that . Note that there is 

another case ( . Here, the case ( ) is the most interested. Saturation of Rock 1 at interface 

(S
-
) is calculated by  

1 1w

w iS

f AL

S q t





 
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 
       (A-1) 

where, L1 is length of Rock 1 or interface location 

 

From continuity condition between interface, Equation (19), we can calculated the water saturation at the 

interface of Rock 2 (S
+
) . For this example, water saturation profile in Rock 2 has a discontinuity because 

when the shock front in Rock 1 reaches interface, the front saturation (Sf1) has the corresponding apparent 

saturation in domain 2 (S*) higher than the shock front saturation (Sf2). Consequently, only the shock front 

saturation travels with the fastest speed whereas saturation higher than that (Sf2<S<S*) travels with gradually 

lower speed. When time goes by, water saturation which higher than S* reaches interface and starts travel 

with even lower speed. As this subsequent saturation reach the interface after S*, thus, travel time in Rock 2 

is less than that of saturation of S*. As the results discontinuity appears. Water saturation profile can be 

calculated as follows     

 

(1) The water saturation profile in Rock 1(1-Sor<Sw<S
-
) is calculated by the following equation: 
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(2) The water saturation profile in Rock 2 is divided in to three parts a) the shock front (S<Sf2), b) 

(Sf2<S<S*), and C) (S*<S<S
-
) each region is calculated as follows 

 

a) The shock front location (S<Sf2),  
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Where t* is the time of shock front saturation  arriving at the interface and can be computed 

by the following equation: 
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b) (Sf2<S<S*), as these saturation reaches Rock 2 as the same time as the shock front, we can use 

the same travel time as the shock front  

2

2

*

1

1

( )i w
s

w S

q t t f
x L

A S

  
   

 
( )*

2 2fS S S< <     (A-5) 

 

c) and (S*<S<S-), these saturation reaches Rock 2 later than that of previous saturations, as such 

the travel is in Rock 2 is shorter 
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Where t2 is the time of the apparent saturation in Rock 1 of the selected S2 arriving at the 

interface and can be computed by the following equation: 
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       Fig. A-1 Fractional Flow and Its Derivative                   Fig. A-2 Saturation Profile 

            
 


