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Abstract

Low-salinity brine injection has emerged as a promising, cost-effective improved oil recovery (IOR) method for
waterflooding reservoirs. Laboratory tests and field applications show that low-salinity waterflooding could lead to
significant reduction of residual oil saturation. There has been a growing interest with an increasing number of low-salinity
waterflooding studies. However, there are few quantitative studies on flow and transport behavior of low-salinity IOR
processes. This paper presents a general mathematic model (1) to incorporate known IOR mechanisms and (2) to quantify
low-salinity waterflooding processes. In our mathematical conceptual model, salt is treated as an additional “component” to
the aqueous phase, based on the following physical considerations: salt is transported only within the aqueous phase by
advection and diffusion, and also subject to adsorption onto rock solids; relative permeability, capillary pressure, and residual
oil saturation depend on salinity. Interaction of salt between mobile and immobile water zones is handled rigorously using a
multi-domain approach. Fractured rock is handled using the multiple-continuum model or a discrete-fracture modeling
approach. The conceptual model is implemented into a general-purpose reservoir simulator for modeling low-salinity 10R
processes, using unstructured, regular, and irregular grids, applicable to 1-D, 2-D, and 3-D simulation of low-salinity water
injection into porous media and fractured reservoirs. As demonstrated, the model provides a general capability for
guantitative evaluation of low-salinity waterflooding in site-specific investigations.

Introduction

Waterflooding has been widely used as a secondary method to improve oil recovery for most oil reservoirs. Apart from
formation damage, water floods are traditionally designed without considering the composition of the injected brine.
However recent laboratory coreflood studies and field tests have showed that low-salinity waterflooding could result in a
substantial oil recovery increase (2-40%) over traditional water flooding in many cases, depending on the reservoir formation
minerals and brine composition (McGuire, et a, 2005, Lager, et a, 2008). The possible mechanisms for low-salinity
waterflooding to improve oil recovery could be attributed to: (1) the wettability change towards water wet as a result of clay
migration (Tang and Morrow, 1999); (2) the pH increase as a result of CaCO; dissolution, which increase oil recovery by
several mechanisms including wettability alteration, generation of surfactants, and reduction in IFT (McGuire, et a, 2005,);
and (3) multiple-component ion exchange (MIE) between clay mineral surfaces and the injected brine (Larger et a, 2006). In
general, the oil recovery improvement during low-salinity water flooding is recognized to depend on MIE, clay content,
formation water composition (Ca®*, Mg®"), and oil composition.

In the petroleum industry, there has been a growing interest with an increasing number in low-salinity waterflooding
studies. However, most of the work has focused on the extent of low-salinity water effect on improved oil recovery and the
mechanisms of wettability alteration. In comparison, there are few quantitative studies on flow and transport behavior of low-
salinity 1OR processes. Jerauld et al (2006) modeled low-salinity waterflooding as a secondary and tertiary recovery
processes in one dimensional model using salinity dependent oil/water relative permeability functions, resulting from
wettability. Tripathi et a (2008) studied the flow instability associated with wettability alteration using a Buckley-Leveret
type, analytical model in one dimension.

In this paper, we present a general numerical model for low-salinity water flooding in multidimensional, porous or
fractured reservoirs. The model formulation incorporates known 1OR mechanisms by low-salinity flooding for simulating
low-salinity waterflooding processes. Two models, one homogenous model and one fracture model, were run to demonstrate
the use of the proposed modeling approach in simulation of low-salinity water flooding.
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Governing Equations

L et us consider amultiphase, isothermal system, composed of three phases and four mass components: oil, gas, water,
and asalt (NaCl). Although each the three phases consist of several components, they are here treated as a single "pseudo-
component” with averaged properties of the fluid, and the salt is contained and transported only in the aqueous phase. The
two liquid components, water and oil, are assumed to be present only in their associated phases. The gas existsin the gas
phase and is aso dissolved in the oil phase. Each phase flows in response to pressure, gravitational and capillary forces
according to the multiphase extension of Darcy's law, including the effects of relative permeability and capillary pressures.
Transport of the salt component occurs by advection and diffusion processes, in addition to adsorption on rock solids.

In an isothermal system containing four mass components, four mass balance equations are needed to fully describe the
system. The mass balance equations for phase § (B = g for gas, =w for water, and = o for oil) and the salt are written in an
arbitrary flow region as follows:

For gas,

a - -
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For water,
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For the salt component,
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The Darcy’ s velocity of phase 3 is defined as,
] kg
VB = _—(VPB — pBng) (5)
"

In the equations above, p; is the density of phase 8 at reservoir conditions; p,, isthe density of oil, excluding dissolved gas,

(4)

at reservoir conditions; Edg isthe density of dissolved gas (dg) in oil phase at reservoir conditions; ¢ isthe effective porosity

of formation; p; isthe viscosity of phase B; S; is the saturation of phase B; P; is the pressure of phase B; X isthe mass
fraction of NaCl in water phase; X,, is the mass fraction of water component in water phase; pr is the density of rock grains;
Ky isthe distribution coefficient of the salt component between the water phase and rock solids; Dy, isthe molecular
diffusion coefficient of NaCl in the water phase in formation; t is the tortuosity of porous media of formation rock; q. is the
sink/source term of NaCl unit volume of formation; g is the sink/source term of component  per unit volume of formation;
. is the sink/source term of salt per unit volume of formation; g is gravitational acceleration; k is absolute/intrinsic
permeability of formation; ks is relative permeability to phase 3; and d is depth from a reference surface.

Consgtitutive Relations: The governing Equations (1)-(4) of mass conservation for three phases and NaCl component
need to be supplemented with constitutive equations, which express all the parameters as functions of a set of primary
thermodynamic variables of interest. The following relationships will be used to complete the statement of describing
multiple phase flow of gas, water and oil, and NaCl component transport through porous media. In addition to the four
governing equations of (1)-(4), there are two supplementary equations given by

S, +S,+S, =1 (6)
and
X, +X, =1 %

Capillary Pressure: The capillary pressures are needed to relate pressures between the phases. For many subsurface
rocksin reservoir conditions, the wettability is ordered as (1) aqueous (or oil) phase, (2) oil phase (or water), and (3) gas
phase. Then, the oil phase pressure isrelated to the gas phase pressure by
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Po = Pg - cho(sw’ So) (8)

where Py, is the gas-oil capillary pressure in a three-phase system, which is afunction of two saturations of water and oil
phases, respectively. The oil-water capillary pressure, P, in athree-phase system, is defined as,
PO_PW:R)OW(S\N’SO’XC) 9
Note that in Equation (9), the capillary pressure between oil and water phase includes the effect of salt mass fraction (or
concentration) in the aqueous phase, which is a main mechanism for low-salinity waterflooding to increase recovery

efficiency by lowing or altering the oil-water capillary force. In case that there is no such capillary curve between oil-water
phases under low-salinity waterflooding, we may use introduce the following form using the J-function:

ol X, )coso(X,)

P, = (X) P2 (S, S) (10)

(o cosb)

where o is the interface tension between oil-water phases; and subscript O denotes the in-situ condition of reservoir brine,
Relative Permeability: The relative permeabilities are assumed to be afunction of fluid saturations and salt concentration

when simulating low-salinity displacement processes. The relative permesbility to water phase is described,

K, =k.,(S,. X.) (11)
to ail phase,

Kio =K1o(Sus S;0 Xc) (12)
and to gas phase,

ke =K1o(S;0 X,) (13)

When there are no three-phase rel ative permeability data available, the oil relative permeability is determined using the Stone
method Il (Aziz and Settari, 1979),

wo| [ Ko Kt
7 A,

where K " isthe relative permeability value to oil at residual water saturation in the water-oil, two-phase system; K *°is

the relative permeability to oil in the water-oil, two-phase system; and k?c? isthe relative permeability to oil in the oil-gas,

two-phase system. With Equation (14) of the Stone Il function, we can evaluate three-phase relative permeability using two
sets of two-phase flow relative permeabilities determined from water-oil and oil-gas systems, respectively.

PVT Data: The densities of oil, gas and water under reservoir conditions can be treated as functions of formation volume
factorsin general as. For ail,

1
Po = B_o[(po )STC + Rs(pg )STC] (15)
= 60 + Bdg
For water [ ( )]
_ pw Xc STC
Pw = BW (9
and for gas
_lpg)re
py =00 (17)

g
where BB is formation volume factor for phase B; (pB )STC is density of phase B at standard condition (or storage tank

condition); R is solution gas-oil ratio. Note that

= (po )SIC
= ~oJSTC 18
Po 5 (18)

and

(19)
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In general, formation volume factors and solution gas-ail ratios are functions of reservoir pressures and the bubble point asin
athree-phase black oil reservoir. Thefollowing functiona correlations are used,

Bo = Bo(Po’ Pb) (20)
B, =B,(P,) (21)
Bo
B, = R 22
" 1+c,(P,-P) 22
and
Rs = Rs(Po’ Pb) (23)

where P, isthe bubble point (pressure) of the reservoir; st is the formation volume factor of water at initial bubble point

pressure, P,f ; and C,, is compressibility of water phase.
Gas and oil viscosities are treated functions of phase pressure only,

iy =1p(R) (@)
Water or agqueous phase viscosity is handled as afunction of salt concentration as,
My = Ha(X) (25)

Numerical Formulation

The methodology to simulate multiphase flow and salt transport follows common reservoir simulation approaches, consisting
of the three steps: (1) spatial discretization of mass conservation equations, (2) time discretization; and (3) iterative
approaches to solve the resulting nonlinear, discrete algebraic equations. A mass- conserving discretization scheme, based on
afinite or integral finite-difference method, is used and is discussed here.

Discretized Equations: The numerical discretization technique used in the paper is the "integra finite difference”
method (Narasimhan and Witherspoon, 1976; Pruess, 1991; Pruess et al. 1999). The mass balance equations for ail, gas,
water, and salt are expressed in terms of a set of discrete integral finite difference equations. These discrete equations are then
solved fully implicitly to provide stability and large time step size. In the numerical approach, thermodynamic properties of
fluids and rock are represented by averages over explicitly defined finite subdomains or grid blocks, while fluxes of mass
across surface segments between connected grid blocks are evaluated by finite difference approximations (Figure 1). The
discretized, non-linear, finite difference mass-balance eguations are then solved simultaneously, using the Newton/Raphson
iteration procedure.

The mass balance Equations (1)-(4) are discretized in space using the integral finite difference scheme. The time
discretization is carried out with a backward, first-order finite difference method. Then the discrete non-linear equations of
gridblock (or element) i (i =1, 2, 3, ..., N; N being the total number of elementsin the grid) are writtenin residua forms as
follows:

For gas,

R = (05,5 + 05,07 05,5 + 050,71

= 2 Begto) il = v X loghg ity bwit - vt Qg 0
For water " o

N e (R )

(R e s e @
for ail, -

R = 95,5, [0S,p, 17 o = 3 (o)l - @ (28)

At

jen;

for salt
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RC i {[¢SNX (1_¢)pRprch]iml_[¢S\Nch (1 (I))pRpWX K ] }V

At (29)
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jem; jen;
where n denotes the previoustime level; n+1 isfor the current time level to be solved; V; is the volume of element i;
At istime step size; n; contains the set of neighbor elements (j) or nodes of element i to which element i is directly connected;
subscript ij+1/2 denotes a proper averaging at the interface between two elementsi and j, with the mobility of phase 8, the
mobility,

k
hop =— (30)
Hp
and the transmissivity of flow termsis defined as
v Ak (31)
' D, +D,
and the transmissivity of diffusion termsis defined as
D _Aij((I)TDm)ijﬂ/z
Yij = (32)
D, +D,
and the potential term,
v =R - ppii2 94 (33)

In Equations (31)-(33), A;; is the common interface area between connected elementsi and j (Figure 1); D; is the distance
from the center of element i to the interface between elementsi and j; D; is the distance from the center of element j to the
interface between elementsi and j; kij+12is the averaged absol ute permeability aong the connection between elementsi and j;
and d, isthe depth to the center of element i. The sink/source term for element i in the residual equations, Q,; is defined as

Qi =gV, (34)

ol

for ® = g, w, oor cfor gas, water, oil or salt, respectively.

The upstream weighting scheme is used for averaging relative permeability of the mobility term (30) and the harmonic
weighting is used for absolute permeability in (31).

Numerical Solution Technique: The Newton/Raphson iteration is used to solve Equations (26) to (29) of aflow system,
representing 4xN coupled non-linear equations, which include four equations at each element for four mass balance
equations of gas, water, oil and salt, respectively. Four primary variables (X, X2, X3, X4) are selected for each element, which
areoil pressure, oil saturation, saturation pressure (or gas saturation), and mass fraction of salt, as shown in Table 1. The
selection of primary variables are similar to that of a black-oil reservoir simulator. An automatic variable switching scheme is
used to handle the transition of free gas appearing and disappearing during simulation studies of oil production with ail, gas
and water three-phase flow conditions.

Asindicated by Table 1, three of the four primary variables are fixed, and the third variable depends on the phase
condition at anode. If thereis no free gas, anode is said to be undersaturated or above the bubble point and saturation
pressure, P, isused as the third primary variable. When free gasis present, anodeis said to be saturated or below the bubble
point, then gas saturation, Sy, is the third primary variable. This variable switching schemeis very rigorous and efficient in
handling variable bubble-point problems, which are often encountered in reservoir simulations (Thomas and Lumpkin, 1976).
Numerical experiment shows that choice of different primary variables makes a difference in numerical performance during
nonlinear iterations of solving athree-phase flow problem, and the best combination is to select the mixed formulation, as
shown in Table 1, for handling phase transitions under different capillary/phase conditions.

In terms of the four primary variables, the Newton/Raphson scheme givesrise to,

aR@,n+l
Rimynu(xk,pﬁ-l): Rimynu(xkyp)—i_ Z%Wb(k@ﬂ B Xk'p]: 0 (39)
k k

for ® = g, w, o or c for gas, water, oil or salt, respectively; whereindex k = 1, 2, 3, and 4 for primary variable 1, 2, 3, and 4,
respectively; pisiteration level. Equation (35) can be written as,

o,n+1
Z OR; (xk'p)
K OX,
fori=1,2,3,...,N and with an increment of primary variables over theiteration,

(SXK]M): —Ri‘”’n“(xk]p) for k=1, 2, 3and 4 (37)
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8Xk,erl = Xk,p+1 - Xk,p (38)

The Newton iteration process continues until the residuals R E’”” or changesin the primary variables 6 X, .., over an

iteration are reduced below preset convergence tolerances. Numerical methods are used to construct the Jacobian matrix for
Equation (37), as outlined in Forsyth et al. (1995). At each Newton iteration, Equation (37) represents a set of 4xN linear
equations for 4xN unknowns of 8Xy p+1, With sparse unsymmetrical matrices, and are solved by alinear iterative equation
solver.

Handling I nitial and Boundary Conditions: A set of initial conditions isrequired to start atransient simulation, i.e., a
complete set of primary variables need to be specified for every gridblock or node. A commonly used procedure for
specifying initial conditionsis based on gravity-capillary equilibrium calculation initially or the restart option for the
following simulations, in which a complete set of initial conditions or primary unknowns is generated in a previous
simulation, with proper boundary conditions described.

Using a block-centered grid, first-type or Dirichlet boundary conditions are treated with the “inactive cell” or “big-
volume” method, as normally used in the TOUGH2 code (Pruess, 1991). In this method, a constant
pressure/saturation/concentration node is specified as an inactive cell or with a huge volume, while keeping al the other
geometric properties of the mesh unchanged. For flux-type boundary conditions, or more general types of flux or mixed
boundaries, such as multilayered wells, general procedures for handling such boundary conditions are implemented, as
discussed in Wu et al. (1996; 2000).

Treatment of Fracture-Matrix Interaction: The mathematical and numerical formulations discussed above are
applicable to both single-continuum and multicontinuum media using the generalized multicontinuum concept.

The technique used in this paper for handling multiphase flow through fractured rock follows the dual -continuum
methodology (warren and Root, 1963; Pruess and Narasimhan, 1985; Wu and Pruess, 1988). This method treats fracture and
matrix flow and interactions using a multicontinuum numerical approach, including the double- or multiporosity method, the
dual-permeability method, and the more general MINC method. Using the dual-continuum concept, Equations (1) to (4) or
(26) to (29) can be used to describe multiphase flow both in fractures and inside matrix blocks, as well as fracture-matrix
interaction, or flow in discrete fractures. However, specia attention needs to be paid to treating fracture-matrix flow or
transport.

When handling flow and transport through a fractured rock using the generalized numerical formation of this paper,
fractured media (including explicit fracture, dual, or multiple continuum models) can be considered as special cases of
unstructured grids (Pruess, 1991). Then, alarge portion of the work of modeling flow in fractured rock consists of generating
amesh that represents both the fracture system and the matrix system under consideration. Several fracture and matrix
subgridding schemes exist for designing different meshes for different fracture-matrix conceptual models (Pruess and
Narasimhan, 1985; Pruess, 1983). Once a proper grid of afracture-matrix system is generated, fracture and matrix blocks are
identified to represent fracture and matrix domains, separately. Formally they are treated identically for the solution in the
model simulation. However, physically consistent fracture and matrix properties, parameter weighting schemes, and
modeling conditions must be appropriately specified for both fracture and matrix systems.

Handling immobile water zones: As an application example of the generalized multicontinuum concept, discussed
above, immobile or residual water zones of in-situ brine within porous pores can be handled as a separate domain containing
immobile water only, such as“dead” pores, as one additional continuum with zero permesability. The salt within the immobile
zones will interact with mobile water zones by diffusion only. This diffusion process is described by the same governing
equations or numerical formulation, discussed above, as a special case of no flow and diffusion processes only.

Application

To demonstrate the usefulness of the proposed modeling approach in simulation of low-salinity water flooding, we present
three application examples. Note that the proposed model formulation has been implemented and tested in the general-
purpose reservoir simulator MSFLOW (Wu, 2000), which is used in the following application examples. In the first example,
we attempt to match published analytical solution for single-phase water and solute transport in a one-dimensional flow
domain. In the second example, we simulate oil-water two-phase displacement with waterflooding at different salinity to
examine the displacement efficiency in a porous medium. The third example isto look at displacement through a fractured
rock.

One-dimensional transport problem: This problem is designed to examine the accuracy of the model formation and
numerical implementation in simulating salt transport in the agueous phase with effective molecular diffusion and is similar
to the one used by Wu et a. (1996). The problem considers one-dimensional transport of a chemical component in a
homogeneous water-saturated porous medium 10 meters long. The flow field is steady-state with 0.1 m/day velocity. A
chemical component isintroduced at the inlet (x=0) with a constant concentration, and transport starts at t=0 by advection
and diffusion. An analytical solution for this problem is provided by Javandel et a. (1984), and it is used here to verify the
numerical solution.

The numerical solution of this problem is accomplished by specifying both inlet and outlet boundary elements with
constant pressures, which give rise to a steady state flow field of 0.1 m/day pore velocity. In the numerical simulation, a one-
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dimensional, uniform linear grid of 1,000 elements was generated for the 10-meter domain. In order to eliminate effects of
three-phase flow, only single-phase water is specified. The properties used in the comparison are: porosity ¢ = 1, tortuosity t
= 1, and effective molecular diffusion coefficient D,, = 1.157 x 107 m#s. Theinitial and boundary conditions are: initialy
there is no salt existing in the system; X = 1.0x10at the inlet boundary (x = 0); and X« = Oat the outlet boundary at all
times.

A comparison of the salt concentrations along the rock column from the numerical and analytical solution is shown in
Figure 2 for t=10 and 20 days, respectively. The figure indicates that the simulated concentration profiles are in excellent
agreement with the analytical solution, and also shown are comparisons with results from another numerical code (T2R3D)
(Wu et a., 1996). Good agreement between the numerical and analytical solutions provides some verification of the
numerical formation and its implementation.

Displacement problem in a porous medium: This example problem considers a one-dimensional immiscible
displacement problem, in which ail in a one-dimensional linear rock column is displaced by water injected with the same
salinity (or called high salinity) aswell as low salinity. The flow domain is aong a one-dimensional, horizontal,
homogeneous, and isotropic porous medium of 10-meter long with a unit cross-sectional area. The system isinitialy
saturated with oil and water with water at its residual saturation. Water with two different salinitiesisinjected asadisplacing
fluid at the inlet to drive ail out of the porous medium domain. Then, we compare the recovery rates by two different salinity
waterflooding. The one dimensional domain is represented by 100 uniform grid blocks of one dimension in the numerical
model, with uniform mesh spacing (Ax = 0.1 m).

To account for effects of low salinity in the agueous phase on relative permeability and capillary pressures, specia
functional forms of relative permeability and capillary pressure functions are used, as discussed below. For relative
permeability curvesin the oil-water two-phase system, the Brooks-Corey type of function (Honarpour et al., 1986) is used
with dight modifications of (1) no change relative permeability to water phase and (2) increase in relative permeability to oil
phase as salinity decreases as,

Kew =(Sw (39)

ko4& f|1-6.) | (40)

where the two normalized fluid saturations are defined below, and ¢ is an exponential index.

)2+q)

P Sw — Swr

Si= e (D)

éo :So _Sor(xc) (42)
1_31\"

with S, being residua oil saturation, a function of salinity in the aqueous phase.
The capillary pressure function from van Genuchten (1980) and Parker et al. (1987) is used for the oil-water system with
modification of adding the cosine of contact angles of oil and water phases on rock surface to include effect of lower salinity

in water,
0
2] NG /
" :[(:sssefj@f] [(Sw)lly—l]lﬁ (43)

where a,c, y and B are parameters of the van Genuchten functions (van Genuchten, 1980) with y =1 —1/f.

Furthermore, for this example problem, we assume that there exist alinear relationship between salt mass fraction and
residual oil saturation (S,) or contact angle (0) as,
X.—X
Sor (Xc) = Sorl +XC—Cl (Sorl - Sorz) (44)
cl c2
where S,; isthe residual oil saturation (minimum residual oil saturation) at low salt mass fraction, X1, and S, is the residual
oil saturation (maximum residual oil saturation) at high salt mass fraction, X,

X.—X
e(xc) = e0r1 +xc—xcl (eorl - eor2) (45)
cl c2
where 0, isthe contact angle at low salt mass fraction, X1, and 04, is the contact angle at high salt mass fraction, X,.

The properties of rock and fluids, as well as the parameters with the modified relative permeability and capillary pressure
functions of Equations (39)-(44), are given in Table 2. Note that for this horizontal displacement problem, effect of salinity
on agueous density and viscosity isignored. The simulation results, in terms of injected pore volume and oil recovery rates
are shown in Figures 3 and 4. Figure 3 presents a comparison for low-salinity waterflooding under zero capillary pressure
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condition, showing a significant improvement in oil recovery rate by the low-salinity waterflooding. In this case, there are no
capillary or wettability effects, and the improvement is due only to the improvement in lower residual oil saturation and in ail
relative permeability curves. The simulation time was set to 270 day, and it took 500 time steps and 1,271 Newton iterations,
and 3 seconds of CPU times to complete on a laptop PC.

Figure 4 shows the results and comparison when including all effects on residual oil saturation, oil relative permeability,
and capillary pressure curves. In this case, in addition to the effects of decrease in residual oil saturation and increasein oil
relative permeability values, the wettability changes to zero capillary pressure condition at the low salinity flooding, i.e., (6
=0to 6 =7/2). Asshown in Figure 4, there is also significant improvement in oil recovery in this case. The oil recovery rate
at 5 PV for the low-salinity flooding is similar to the previous scenario at zero capillary pressure, because 6 = n/2 in this
simulation.

Displacement problem in a double-por osity fractured medium: This problem is designed to look at the effect of low-
sdinity waterflooding in a fractured medium. This problem considers a low-salinity displacement process in a one-
dimensional, horizontal, and uniform, fractured reservoir. The formation domain is a 10-m long fractured rock column with a
unit cross-sectional area, which is similar to that in the previous porous medium example. The fractured rock is
conceptualized as a parallel-fracture model, consisting of one horizontal fracture plate (fracture spacing A = 1.0 and fracture
porosity =0.1%), which is overlain and underlain by uniform layered matrix blocks of 0.5-meter thick. In numerical
discretization, the one-dimensional grid, used in the previous example for the porous medium column, is used as the primary
mesh to generate the double-porosity grid, by separating each grid block in the primary mesh into two blocks, one for fracture
and the other for matrix, in the double-porosity grid. The only globally connecting meshes are fracture ones.

Fractures and matrix parameters used for the example are given in Table 3. Note that for this demonstration example, we
keep capillary pressure curves for fractures and the matrix not to change with salinity, i.e., not including effects of salinity on
capillary pressures in fractures and matrix systems. This is because of the lack in laboratory measured capillary pressure data
for fractures and matrix systems under different salinities. Also, the capillary curves are among the most sensitive properties
for matrix imbibition, a main mechanism for oil recovery from fractured reservoirs by waterflooding.

Figure 5 displays the model results for this case of low-salinity waterflooding through a fractured rock. A comparison of
the oil recovery rates with high- and low-salinity indicates (1) much slower and lower recovery rate and (2) much smaller
difference in improvement, when compared with the case for the displacement in porous media of the previous problem. This
is primarily due to much larger contract in fracture and matrix permeabilities (1 Darcy vs. 1 milli-Darcy), which makes the
improvement in effective fracture permeabilities relatively insignificant with lowering salinity. This small improvement by
low-salinity waterflooding in fractured reservoirs, as shown in Figure 5, may or may not reflect the performance of low-
salinity waterflooding in actual reservoir applications, which indicates the low-salinity water flooding could not lead to
satisfied improved oil recovery for fractured reservoirsif the effect of the low salinity water effect on capillary pressureis not
considered.

Summary

In this paper, we present a mathematical model for modeling low-salinity waterflooding in porous or fractured reservoirs. In
the model, salt is treated as an additiona “component” to the aqueous phase in a gas, oil, and water three-phase flow system,
and is transported only within the aqueous phase by advection and diffusion. In addition, salt is subject to adsorption onto
rock solids. The main mechanisms of IOR by low-salinity water injection are described by incorporating salinity-dependent
changes in relative permeability, capillary pressure, and residual oil saturation in the model formulation. Furthermore, the
interaction of salt between mobile and immobile water zones and flow in fractured rock are handled using a general multiple-
continuum approach modeling approach. The proposed mathematical model is implemented into and tested with a general-
purpose reservoir simulator. The low-salinity waterflooding simulator uses unstructured, regular, and irregular grids, and is
applicable to 1-D, 2-D, and 3-D smulation of low-salinity water injection into porous media and fractured reservoirs. As
demonstrated, the model provides a general capability for quantitative evaluation of low-salinity waterflooding in site-
specific investigations.
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Table 1. Choice of the primary variables and associated equations.

Equations Primary variable Physical variable
Gas (26) X1= Py Qil pressure
Water (27) Xo= S Qil saturation
Oil (28) X3= Psor Saturation pressure or
X3= gas saturation
Salt (29) Xa= X Mass fraction of salt

Table2 Parameters for displacement in one-dimensional porous medium column.

Parameter Value Unit
Porosity ¢=0.30
Reference water density pw = 1,000 kg/m®
oil density po = 864 kg/m®
Water phase viscosity Ly = 1.139%10°3 Paes
Oil viscosity 1o = 4x10° Paes
Permeability k=1 Darcy
Salt diffusion coefficient Dy = 1x10'% m/s
Injection rate q=0.1 m°/d
Initial oil saturation S,=0.8
Residual water saturation Sw=0.2
Low salinity mass fraction X=0.001
High or initial salinity mass fraction X=0.01
Residual oil saturation at X.=0.001 Sy1=0.1
Residual oil saturation at X.=0.01 So2=0.3
Contact angle at X.=0.01 0=0.0
Contact angle at X.=0.001 0=n/2
Relative permeability exponential =1
van Genuchten a,,g o= 2x107 Pa
van Genuchten 3 =0.5

Table3 Parametersfor displacement in one-dimensional fractured rock column.

Parameter Value Unit
Porosity ¢ =0.30
Reference water density Pw = 1,000 ka/m®
oil density P = 864 ka/m®
Water phase viscosity iy, = 1.139x10° Pass
QOil viscosity 1o = 4x107 Paes
Permeability k=1 Darcy
Salt diffusion coefficient Dy, = 1x10™° m/s
Injection rate q=0.1 m/d
Initial oil saturation S,=0.8
Residua water saturation Sy=0.2
Low salinity mass fraction X=0.001
High or initial salinity mass fraction X=0.01
Matrix residual oil saturation at X=0.001 Som=0.1
Matrix residual oil saturation at X.=0.01 Soom=0.3
Fracture residual oil saturation at X.=0.001 Sor.e=0.05
Fracture residua oil saturation at X.=0.01 Sorz, = 0.1
Matrix relative permeability exponential =3
Fracture relative permeability exponential o=1
Matrix van Genuchten ou,g Oy, M= 2x1072 Pa”
Matrix van Genuchten 3 Bm =0.5
Fracture van Genuchten o, ayg = 1x107 Pa’
Fracture van Genuchten 3 Bg =0.5
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Table3 Parameters for the displacement problem in afractured rock column.

Parameter Value Unit
Matrix porosity ¢m = 0.30
fracture porosity ¢ = 0.001
Reference water density pw = 1,000 kg/m®
oil density po = 864 kg/m®
Water phase viscosity 1y, = 1.139x10° Pass
Oil viscosity Lo = 4x1073 Paes
Matrix permeability km=1 mD
Fracture permeability Ke=1 D
Salt diffusion coefficient Dp=1x10" m/s
Injection rate q=0.01 m/d
Matrix initial oil saturation $=0.8
Fractureinitia oil saturation S$=0.99
Matrix residual water saturation Surm=0.2
Fracture residual water saturation Swrp=0.01
Low salinity mass fraction X=0.001
High or initial salinity mass fraction X=0.01
Matrix residual oil saturation at X .=0.001 Soim=0.1
Matrix residual oil saturation at X.=0.01 Soo m=0.3
Fracture residual oil saturation at X=0.001 Sorz. = 0.05
Fracture residual oil saturation at X =0.01 Sz, r=0.1
Matrix relative permeability exponential ©=3
Fracture relative permeability exponential o=1
Matrix van Genuchten oy, dyg, w= 2x1072 Pa”
Matrix van Genuchten 3 Bm =0.5
Fracture van Genuchten o, ayg = 1x10t Pa’
Fracture van Genuchten B B =0.5
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Figure 1. Space discretization and flow-term evaluation in the integral finite difference method.
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Figure 2. Comparison of model results with the analytical and other numerical code solutions.
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Figure 3. Comparison of simulated recovery rates for low- and high-salinity waterflooding through one-dimensional rock column at
zero capillary pressure condition.
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Figure 4. Comparison of simulated recovery rates for low- and high-salinity waterflooding through one-dimensional rock column at
salinity-dependent capillary pressure condition.
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Figure 5. Comparison of simulated recovery rates for low- and high-salinity waterflooding through one-dimensional double-porosity
fractured rock column at the same capillary pressure condition.



