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Abstract 

A Buckley and Leverett type analytical solution is derived for non-Darcy displacement of immiscible fluids in porous media, 

in which non-Darcy flow is described using the general model proposed by Barree and Conway. Recent laboratory studies 

and analyses have shown that the Barree and Conway model is able to describe the entire range of relationships between rate 

and potential gradient from low- to high-flow rates through porous media, including those in transitional zones. We also 

present a general mathematical and numerical model for incorporating the Barree and Conway model to simulate multiphase 

non-Darcy flow in porous and fractured media, while flow in fractured rock is handled using a general multi-continuum 

approach. The numerical solution of the proposed multiphase, non-Darcy flow model is based on a discretization scheme 

using an unstructured grid with regular or irregular meshes for multi-dimensional simulation. The final discretized nonlinear 

equations are handled fully implicitly with the Newton iteration. As an application example, we use the analytical solution to 

verify the numerical solution for and to obtain some insight into one-dimensional non-Darcy displacement of two immiscible 

fluids according to the Barree and Conway model. Overall, this work provides an improved platform for modeling 

multiphase non-Darcy flow in oil and gas reservoirs, including complex fractured systems such as shale gas reservoirs. 

 

1. Introduction 

Darcy’s Law has been used exclusively in studies of porous-medium flow in reservoirs, however, there is considerable 

evidence that high-velocity non-Darcy flow occurs in many subsurface systems, such as in the flow near wells of oil or gas 

production, groundwater pumping, and liquid waste injection. Darcy’s law, describing a linear relationship between 

volumetric flow rate (Darcy velocity) and pressure (or potential) gradient, has been the fundamental principle in analyzing 

flow processes in porous media. Any deviation from this linear relation may be defined as non-Darcy flow. In this paper, our 

concern is only with the non-Darcy flow behavior caused by high flow velocities. Effects of non-Darcy or high-velocity flow 

regimes in porous media have been observed and investigated for decades (e.g., Tek et al., 1962; Scheidegger, 1972; Katz 

and Lee, 1990; Wu, 2002). Most studies performed on non-Darcy flow in porous media in the early time have focused mostly 

on single-phase-flow conditions in peteroleum engineering (Tek et al., 1962; Swift and Kiel, 1962; Lee et al. 1987). Some 

investigations have been conducted for non-Darcy flow in fractured reservoirs (Skjetne et al., 1999) and for non-Darcy flow 

into highly permeable fractured wells (e.g., Guppy et al., 1981, 1982). Other studies have concentrated on finding and 

validating correlations of non-Darcy flow coefficients (e.g., Liu et al., 1995). 

In analyzing non-Darcy flow through porous median, the Forchheimer equation (1901) has been excpusively used to 

describe non-Darcy porous meda flow, and has been extended to multiphase flow conditions (Evans et al., 1987; Evans and 

Evans, 1988; Liu et al., 1995; Wu, 2001 and 2002). Recent laboratory studies and analyses have shown that the Barree and 

Conway model is able to describe the entire range of relationships between flow rate and potential gradient from low- to 

high-flow rates through porous media, including those in transitional zones (Barree and Conway, 2004 and 2007; Lopez, 

2007). In this paper, we derive a Buckley and Leverett type analytical solution for one-dimensional non-Darcy displacement 

of immiscible fluids in porous media using the Barree and Conwaywe model. We also present a general numerical model for 

incorporating the Barree and Conway model to simulate multiphase non-Darcy flow in porous and fractured media.  

This paper represents a continual study of our previous investigation of single-phase non-Darcy flow in reservoirs according 

to the Barree abd Conway model (Lai et al. 2009). The objective of this study is to develop a mathematical method for 

quantitative analysis of multiphase non-Darcy flow through heterogeneous porous and fractured rocks using the Barree and 

Conway’s model. The numerical solution of the proposed mathematical model is based on a discretization scheme using an 

unstructured grid with regular or irregular meshes for multi-dimensional simulation. The final discretized nonlinear equations 

are handled fully implicitly with the Newton iteration. The flow in fractured rock is handled using a general multi-continuum 

approach. As an application example, we use the analytical solution to verify the numerical solution for and to obtain some 

insight into one-dimensional non-Darcy displacement of two immiscible fluids according to the Barree and Conway model. 

Overall, this work provides an improved platform for modeling multiphase non-Darcy flow in oil and gas reservoirs, 



2  SPE 122612 

including complex fractured systems such as shale gas reservoirs. 

 

2. Mathematical Model  

A multiphase system in a porous or fractured reservoir is assumed to be similar to the black oil model, composed of three 

phases: oil, gas, and water. For simplicity, the three fluid components, water, oil, and gas are assumed to be present only in 

their associated phases. Each phase flows in response to pressure, gravitational, and capillary forces according to the 

multiphase extension of the Barree and Conway model (Barree and Conway, 2007) for non-Darcy flow. In an isothermal 

system containing three mass components, three mass-balance equations are needed to fully describe the system, as described 

in an arbitrary flow region of a porous or fractured domain for flow of phase β (β = w for water, β = o oil, and β = g for gas), 
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where   is the density of fluid β;  βv is the volumetric velocity vector of fluid β;  βS  is the saturation of fluid β;  is the 

effective porosity of formation; t is time; and  βq is the sink/source term of phase (component) β per unit volume of formation, 

representing mass exchange through injection/production wells or due to fracture and matrix interactions. 

Volumetric flow rate (namely Darcy velocity with Darcy flow) for non-Darcy flow of each fluid may be described using the 

multiphase extension of the Barree and Conway’s model, extended to a vector form for multidimensional flow (see Apendix 

A):  
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where   is the flow potential gradient, defined as: 

 DgP    (2.3) 

where P is the pressure of the fluid; g is gravitational acceleration; and D is the depth from a datum. In Equation (2.2), kd is 

constant Darcy or absolute permeability; kmr is the minimum permeability ratio at high rate, relative to Daryc permeability 

(fraction); krβ is the relative permeability to fluid β;  is viscosity of fluid β; and  is characteristic length. 

Equation (2.1), the governing of mass balance for three phases, needs to be supplemented with constitutive equations, 

which express all the secondary variables and parameters as functions of a set of primary thermodynamic variables of 

interest. The following relationships will be used to complete the description of multiphase flow through porous media:  

  1SSS gow          (2.4) 

The capillary pressures relate pressures between the phases.  The aqueous- and gas-phase pressures are related by 

   P P P Sw g cgw w  ,        (2.5) 

where Pcgw is the gas-water capillary pressure in a three-phase system and assumed to be a function of water saturation only.  

The NAPL pressure is related to the gas phase pressure by 

   
owcgogo S,SPPP          (2.6) 

where Pcgo is the gas-oil capillary pressure in a three-phase system, which is a function of both water and oil saturations.  For 

formations, the wettability order is (1) aqueous phase, (2) oil phase, and (3) gas phase. The gas-water capillary pressure is 

usually stronger than the gas-oil capillary pressure. In a three-phase system, the oil-water capillary pressure, Pcow, may be 

defined as 

  wocgocgwcow PPPPP         (2.7) 

The relative permeabilities are assumed to be functions of fluid saturations only, i.e., not affatced by non-Darcy flow behavior.  

The relative permeability to the water phase is taken to be described by 

   k k Sr w r w w         (2.8) 

to the oil phase by 

   gworor S,Skk          (2.9) 

and to the gas phase by 

   k k Sr g rg g          (2.10) 
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The densities of water, oil, and gas, as well as their viscosities can in general be treated as functions of pressure. 

 

3. Numerical Formulation and Solution  

Equations (2.1) and (2.2), as described by the Barree and Conway’s model, for multiphase non-Darcy flow of gas, oil and 

water in porous media, are highly nonlinear and in general needs to be solved numerically. In this work, the methodology for 

using a numerical approach to simulate the non-Darcy flow consists of the following three steps: (1) spatial discretization of 

the mass conservation equation; (2) time discretization; and (3) iterative approaches to solve the resulting nonlinear, discrete 

algebraic equations. A mass-conserving discretization scheme, based on finite or integral finite-difference or finite-element 

methods (Pruess et al. 1999) is used and discussed here. Specifically, non-Darcy flow equations, as discussed in Section 2, have 

been implemented into a general-purpose, three-phase reservoir simulator, the MSFLOW code (Wu, 1998)  As implemented in 

the code, Equation (2.1) can be discretized in space using an integral finite-difference or control-volume finite-element scheme for 

a porous and/or fractured medium. The time discretization is carried out with a backward, first-order, finite-difference scheme. 

The discrete nonlinear equations for water, oil, and gas flow at node i are written as follows:   
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where n denotes the previous time level; n+1 is the current time level; Vi is the volume of element i (i=1, 2, 3, …, N, N being 

the total number of elements of the grid); t is the time step size; i contains the set of neighboring elements (j), porous or 

fractured block, to which element i is directly connected; and “flowβ” is a mass flow term between elements i and j for fluid 

β, defined by Equation (2.2) implicitly. For flow between two grid blocks, the mass flow term, “flowβ”, can be evaluated 

directly (See Appendix A) as,  
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where Aij is the common interface area between connected elements i and j; all the parameters, such permeability, relative 

permeability, density, and viscosity needs a proper averaging or weighting of properties at the interface between the two 

elements i and j; Aij is the common interface area between the connected blocks or nodes i and j; and the disctete flow 

potential gradient is defined in an integral findinite difference as, 
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In (3.2), the mass sink/source term at element i, Qβi for phase β, is defined as 

  iii VqQ             (3.4) 

In the model formulation, Darcy permeability, relative permeability, and other non-Darcy flow parameters, such as 

minimum permeability ratio, kmr, and characteristic length, τ, are all considered as flow properties of the porous media and 

need to be averaged between connected elements in calculating the mass flow terms. In general, weighting approaches used 

are that absolute permeability is harmonically weighted along the connection between elements i and j, relative permeability 

is upstream weighted, and non-Darcy flow coefficients are arithmetically averaged. 

Newton/Raphson iterations are used to solve Equation (3.1). For a three-phase flow system, 3  N coupled nonlinear 

equations must be solved, including three equations at each element for the three mass-balance equations of water, oil, and 

gas, respectively. The three primary variables (x1, x2, x3) selected for each element are oil pressure, oil saturation, and gas 

saturation, respectively.  In terms of the three primary variables, the Newton/Raphson scheme gives rise to  
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where index m = 1, 2, and 3 indicates the primary variable 1, 2, or 3, respectively;  p is the iteration level; and i = 1, 2, 3, …, 

N, the nodal index.   The primary variables are updated after each iteration: 

  1p,mp,m1p,m xxx           (3.7) 

A numerical method is used to construct the Jacobian matrix for Equation (3.5), as outlined by Forsyth et al. (1995). 

Boundary Condition: Similarly to Darcy flow handling, first-type or Dirichlet boundary conditions denote constant or 

time-dependent phase pressure, and saturation conditions. These types of boundary conditions can be treated using the large-

volume or inactive-node method (Pruess, 1991), in which a constant pressure/saturation node may be specified with a huge 

volume while keeping all the other geometric properties of the mesh unchanged.  However, caution should be taken in (1) 

identifying phase conditions when specifying the “initial condition” for the large-volume boundary node and (2) 

distinguishing upstream/injection from downstream/production nodes. Once specified, primary variables will be fixed at the 

big-volume boundary nodes, and the code handles these boundary nodes exactly like any other computational nodes.  
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Flux-type or Neuman boundary conditions are treated as sink/source terms, depending on the pumping (production) or 

injection condition, which can be directly added to Equation (3.1).  This treatment of flux-type boundary conditions is 

especially useful for a situation where flux distribution along the boundary is known, such as dealing with a single-node well. 

More general treatment of multilayered well-boundary conditions is discussed in Wu et al. (1996) and Wu (2000b).  

 

4. Handling Non-Darcy Flow in Fractured Media 

The technique used in the current model for handling non-Darcy flow through fractured rock follows the dual-continuum 

methodology (Warren and Root, 1963; Kazemi,1969; Pruess, 1991; Pruess and Narasimhan, 1985; Wu, 2002). The method 

treats fracture and matrix flow and interactions using a multi-continuum numerical approach, including the double- or 

multiporosity method (Wu and Pruess, 1988), the dual-permeability method, and the more general “multiple interacting 

continua” (MINC) method (Pruess and Narasimhan, 1985). As shown in Wu and Qin (2009), the generalized dual-

continuum, MINC method, can handle any flow processes of fractured media with matrix size varying from as large as the 

model domain of interest to as small as a representative elementary volume (REV) of zero volume. In general, the fracture 

network can be continuous in a pattern, randomly distributed or discrete.     

The non-Darcy flow formulation, Equations (2.1) and (2.2), and (3.1) and (3.2), as discussed above, is applicable to both 

single-continuum and multi-continua media. Using the dual-continuum concept, Equations (2.1) and (3.1) can be used to 

describe multiphase flow, respectively, both in fractures and inside matrix blocks when dealing with fractured reservoirs. A 

special attention needs to be paid to treating fracture/matrix flow terms with Equations (3.1) and (3.2) for estimation of mass 

exchange at fracture/matrix interfaces using a double-porosity approach. In particular, special attention should be paid to 

selecting characteristic length of non-Darcy flow distance between fractures and matrix crossing the interface for the double-

porosity or the nested discretizations may be approximated using the results for Darcy flow (Warren and Root, 1965; Pruess, 

1983; Wu, 2002). The flow between fractures and matrix may be still evaluated using Equation (3.2) and the characteristic 

distance for flow crossing fracture/matrix interfaces for 1-D, 2-D and 3-D dimensions of rectangular matrix blocks, 

characteristic distances, based on quasi-steady flow assumption(Wu, 2002). 

When handling flow through a fractured rock using the numerical formulation using the generalized multicontonuum 

approach, the problem essentially becomes how to generate a mesh that represents both the fracture and matrix systems. 

Several fracture-matrix subgridding schemes exist for designing different meshes for different fracture-matrix conceptual 

models (Pruess, 1983). Once a proper mesh of a fracture-matrix system is generated, fracture and matrix blocks are specified 

to represent fracture or matrix domains, separately. Formally, they are treated in exactly the same way in the solution of the 

discretized model. However, physically consistent fracture and matrix properties and modeling conditions must be 

appropriately specified for fracture and matrix systems, respectively.    

 

4. Buckley-Leverett Analytical Solution for Two-Phase Non-Darcy Displacement  

Buckley and Leverett (1942) established the fundamental principle for Darcy flow and displacement of immiscible fluids 

through porous media in their classical study of fractional flow theory. Their solution involves the noncapillary displacement 

process of two incompressible, immiscible fluids in a one-dimensional, homogeneous system. The Buckley-Leverett 

fractional flow theory has been applied and generalized to study enhanced oil recovery (EOR) problems (e.g., Patton et al. 

1971; Hirasaki and Pope, 1974; Pope, 1980; Larson and Hirasaki, 1978; Hirasaki, 1981). An extension to more than two 

immiscible phases dubbed "coherence theory" was described by Helfferich (1981).  The more recent example in the 

development of the Buckley-Leverett theory is the extension to non-Newtonian fluid flow and displacement (Wu et al., 1991 

and 1992), and non-Darcy displacement according to the Forchheimer model (Wu, 2001).  

This paper presents a Buchley-Leverett type analytical solution describing the displacement mechanism of non-Darcy 

multiphase flow in porous media according to the Barree and Conway model.  The analysis approach follows upon the work for 

multiphase non-Newtonian fluid flow and displacement in porous media (Wu et al., 1991 and 1992; Wu, 2001) and results in an 

analytical solution that includes effects of non-Darcy multiphase displacement. The details on deriving the two-phase 

displacement solution is given in Appendix B, and also discussed in Appendix B is a practical procedure for evaluating the 

behavior of the analytical solution, which is similar to the graphic method by Welge (1952) for solving the Buckley-Leverett 

problem. The analytical solution and the resulting procedure can be regarded as an extension of the Buckley-Leverett theory to 

analyzing the Barree and Conway non-Darcy flow problem of two-phase immiscible fluids in porous media.   

The analytical solution results of Appendix B reveal that the saturation profile and displacement efficiency are controlled not 

only by relative permeabilities, as in the Buckley-Leverett solution, but also by the and parameters of non-Darcy flow equations as 

well as injection rates. 

 

4. Application and Verification  

In this section, the Buckley-Leverett analytical solution is used to give us some insight to non-Darcy flow and displacement 

phenomena. The physical flow model is a one-dimensional linear porous medium, which is at first saturated uniformly with a 

nonwetting fluid (So = 0.8) and a wetting fluid (Sw = Swr = 0.2). A constant volumetric injection rate of the wetting fluid is imposed 

at the inlet (x = 0), starting from t = 0.  The relative permeability curves used for all the calculations in this paper are shown in 

Figure 1. The properties of the rock and fluids used are listed in Table 1.   

For a given displacement system with constant injection rate, the solution (B.13) shows that non-Darcy fluid displacement in 
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a porous medium is characterized not only by relative permeability data, as in Buckley-Leverett displacement, but also by non-

Darcy flow parameters of the two fluids, as introduced in (2.2), (B.9), and (B.10). Using the results from the analytical solution, 

some fundamental aspects of non-Darcy fluid displacement will be established. Figure 2, determined using Equation (B.10) for 

the flow system, shows that pressure gradients change significantly as a function of saturation for the non-Darcy flow system.  At 

both high and low values for the wetting phase saturation, the pressure gradients become relatively smaller because the total flow 

resistance decreases as the flow is close to single-phase flow condition.  

The resulting fractional flow and its derivative curves are shown in Figure 3. Note that fractional flow curves change also 

with the non-Darcy model parameters due to the change in pressure gradient and flow rate for different non-Darcy flow 

parameters under the same saturation. Saturation profiles of non-Darcy displacement after a 10-hour injection period are plotted in 

Figure 4, showing a typical behavior of non-Darcy displacement according to the Barree and Conway model. 

As an application example, the analytical solution is used to examine the validity of the numerical method, as discussed in 

Section 3, which is implemented in a general-purpose, three-phase reservoir simulator, the MSFLOW code (Wu, 1998) for 

modeling multiphase non-Darcy flow and displacement processes according to the Barree and Conway model. To reduce the 

effects of discretization on numerical simulation results, very fine, uniform mesh spacing (x = 0.01 m) is chosen. A one-

dimensional 5 m linear domain is discretized into 500 one-dimensional uniform gridblocks. The flow description and the 

parameters for this problem are identical to those, in Table 1, for the case of evaluation of analytical solution. The comparison 

between the analytical and numerical solutions is shown in Figure 5.  The figure indicates that the numerical results are in 

excellent agreement with the analytical prediction of the non-Darcy displacement for the entire wetting-phase sweeping zone. 

Except at the shock, advancing saturation front, the numerical solution deviates only slightly from the analytical solution, resulting 

from a typical “smearing front” phenomenon of numerical dispersion effects when matching the Buckley-Leverett solution using 

numerical results (Aziz and Settari, 1979). The comparison between the analytical and numerical solutions is shown in Figure 5.   

 

6. Summary and Conclusions 
This paper presents a general mathematical model and numerical approach for incorporating the Barree and Conway model to 

simulate multiphase, multidimensional non-Darcy flow in porous and fractured media. Both analytical and numerical 

approaches are discussed in this study. In particular, we derive a Buckley and Leverett type analytical solution for one-

dimensional non-Darcy displacement of immiscible fluids in porous media with the Barree and Conway non-Darcy flow 

model. In numerical solution, the multiphase non-Darcy flow formulation is implemented into a general purpose reservoir 

simulator using an unstructured grid with regular or irregular meshes for multi-dimensional simulation, while flow in 

fractured rock is handled using a general multi-continuum approach.  

The analytical solution for non-Darcy displacement is based on the assumptions, similar to those used for the classical 

Buckley-Leverett solution. The analytical solution provides some insight into the physics of displacement involving non-Darcy 

flow, a more complicated process than the Darcy displacement, as described by the Buckley-Leverett solution. Multiphase non-

Darcy flow and displacement are controlled not only by relative permeability curves, such as in Darcy displacement, but also by 

non-Darcy flow relations and model parameters as well as injection or flow rates. As an example of application, the analytical 

solution is applied to verify the numerical formulation of a numerical simulator for modeling multiphase non-Darcy flow. 
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Nomenclature 

A = Cross section area of flow, m
2
 

Aij = Common interface area between the connected blocks or nodes i and j 

D =  Depth from a datum 

di  =  Distance from the center of block i to the common interface of blocks i and j 

flowβ= mass flux of fluid f (kg/s) 

g = Gravitational acceleration constant 

kmin =  Minimum permeability at high rate, darcies 

kmr =  Minimum permeability relative to Darcy permeability, fraction 

krβ =  Relative permeability to fluid β 

N =  Total number of nodes/elements/gridblocks of the grid 

Pβ  =  Pressure of fluid β, Pa 

Pcgo = Gas-oil capillary pressure (Pa) 

Pcgw = Gas-water capillary pressure (Pa) 

Pcow = Oil-water capillary pressure (Pa) 

∂P/∂L=  Potential gradient, Pa/m 

Q =  Fluid volumetric flow rate, m
3
/sec 

Qi =  Mass sink/source term at element i, for the fluid 
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Sβ  = Saturation of fluid β  

t  =  Time step size 

v  =  Volumatric velocity, m/sec 

β = phase index (β = w for wetting and β = n for non-wetting phase)  

ρ  =  Fluid density, kg/m
3 

μβ =  Viscosity of fluid β, Pa.s 

τ  = Characteristic length, m/10000 

    =   Effective porosity of the medium 

  =  Flow potential gradient for fluid β, Pa/m 
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Table 1 Parameters for the non-Darcy Displacement Example. 

Parameter Value Unit 

Effective Porosity  = 0.30  
Darcy permeability kd = 10 Darcy 

Minimum permeability kmin = 0.1, 1.0 Darcy 

Characteristic length τ=10,000 1/m 

Wetting Phase Density w = 1,000 kg/m
3
 

Wetting Phase Viscosity w = 1.0  10
-3

 Pas 

Nonwetting Phase Density n = 800 kg/m
3
 

Nonwetting Phase Viscosity n = 5.0  10
-3

 Pas 

non-Darcy Flow Constant C = 3.2  10
--6

 m
3/2

 

Injection Rate q = 1.0  10
-5

 m
3
/s 

 

Appendix A. Relationship of One-Dimensional flow rate versus pressure gradient  
Th Barree and Conway equation (Barree and Conway, 2007) presents a one-dimensional model for pressure gradient versus 

multiphase flow rate. In the two-phase non-Darcy flow model, the pressure drop of each phase (e.g., gas phase) is written as: 

   g

eff_g

g )
k

()
L

P
(







       (A.1) 

where the effective permeability of gas, eff_gk , can be written as: 
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Substituting (A.2) into (A.1), we have the one dimensional form of the Barree and Conway non-Dracy floiw equation, 

pressure gradient as a function of flow velocity as,  
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If we replace pressure gradient by potential gradient and extend one-dimensional velocity in (A.3) to a multidimensional 

vector, we have a general form of Equation (2.2) for correlating potential gradient and flow rate with the Barree and Conway 

model. 

For incorporation of the Barree and Conway model into the continuity or mass conservation equation (2.1), it is more 

convenient to use a relationship of expressing flow rate in terms of pressure or potential gradient. Under one-dimensional 

flow condition along x-directon, solving the flow velocity from (2.2) in terms of potentional gradient leads to, 
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            (A.4) 

Note that Equation (A.4) is used in this paper to replace Darcy’s law for correlating flow rate and potential gradient according 

to the Barree and Conway non-Darcy flow model. 

 

Appendix B. Derivation of Buckley-Levereet Analytical Solution 
For the derivation of the analytical solution, we assume the following Buckley-Leverett flow conditions for one-dimensional 

non-Darcy flow of two immiscible fluids: 

 Both fluids and the porous medium are incompressible. 

 Capillary pressure gradient is negligible. 

 Gravity segregation effect is negligible (i.e., stable displacement exists near the displacement front). 

 One-dimensional flow and displacement is along the x-coordinate of a semi-infinite linear flow 

system with a constant cross-sectional area (A). 

Among these assumptions, incompressibility of fluids and formation is critical to deriving the Buckley-Leverett solution. This 

assumption provides a good approximation to displacement processes of two liquids (e.g., oil and water) in porous media, because 

of the small compressibilities of the two fluids. For gas and liquid displacement, however, this assumption may pose certain 

limitation to the resulting solution, when large pressure gradients buildup in a flow system 

Under the Buckley-Leverett flow condition, Equation (2.1) can then be changed for two-phase displacement of the wetting 

(β=w) and nonwetting phase (β=n) as follows: 
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For the one-dimensional flow, v can be determined from Equation (2.2) or (A.4) as,  
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where 












x

P
 is a component of the pressure gradient along the x-coordinate - the same for the wetting or nonwetting phase ; g 
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is the gravitational acceleration constant, and  is the angle between the horizontal plane and the flow direction (the x-coordinate).  

To complete the mathematical description of the physical problem, the initial and boundary conditions must be specified. For 

simplicity in derivation, the system is initially assumed to be uniformly saturated with both wetting and nonwetting fluids. The 

wetting phase is at its residual saturation, and a nonwetting fluid, such as oil or gas, is at its maximum saturation in the system, as 

follows: 

 wrn S1)0t,x(S           (B.3) 

where Swr is the initial, residual wetting-phase saturation. Wetting fluid, such as water, is continuously being injected at a known 

rate q. Therefore, the boundary conditions at the inlet (x = 0) are:  

 
A

q
)t,0x(vw           (B.4) 

where vww is flow rate or flux of water across a unit area of the one-dimentional system; and A is cross-sectional area of the one-

dimensional flow system and 

 0)t,0x(vn           (B.5) 

The derivation of the analytical solution follows the work by Wu et al. (1991), in which the fractional flow concept is used to 

simplify the governing Equations (3.1) in terms of saturation only. The fractional flow of a fluid phase is defined as a volume 

fraction of the phase flowing at a location x and time t to the total volume of the flowing phases (Willhite, 1986). The fractional 

flow can be written as 
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where the total flow flux is 

  v = vw + vn            (B.7) 

From volume balance due to incompressibility of the system, we have  

 1ff nw            (B.8) 

The fractional flow function for the wetting phase may be written in the following form: 
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when the flux vww  and vnn for wetting and non-wetting phases are defined in Equation (B.2).  

Equation (B.9) as well as (B.2) indicates that the fractional flow fw of the wetting phase is a function of both saturation and 

pressure gradient. However, for a given injection rate at a time, and for given fluid and rock properties of a porous material, the 

pressure gradient at a given time can be shown by the following to be a function of saturation only under the Buckley-Leverett 

flow condition: 
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Equation (B.10) shows that the pressure gradient and the saturation are inter-dependent on each other for this particular 

displacement system of Buckley-Leverett flow. Therefore, Equation (3.10) implicitly defines the pressure gradient in the system 

as a function of saturation.  

The governing equation, Equation (B.1), subject to the boundary and initial conditions described in Equations (B.3) - (B.5) 

can be solved for the frontal advance equation (e,g., Wu et al., 1991; Wu 2001): 
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Note that (B.11) has the same form as the Buckley-Leverett equation. However, the dependence of the fractional flow fw for the 

non-Darcy displacement on saturation is different. The fractional flow, fw, is related to saturation not only through the relative 

permeability functions, as in the case of Buckley and Leverett solution, but also through the pressure gradient, as described by 

Equation (B.10).   

Equation (B.11) shows that, for a given time and a given injection rate, a particular wetting fluid saturation profile propagates 

through the porous medium at a constant velocity. As in the Buckley-Leverett theory, the saturation for a vanishing capillary 

pressure gradient will in general become a triple-valued function of distance near the displacement front (Cardwell, 1959).  

Equation (B.11) will then fail to describe the velocity of the shock saturation front, since (fw/Sw) does not exist on the front 

because of the discontinuity in Sw at that point. The location 
wS

x of any saturation Sw traveling from the inlet at time t can be 

determined by integrating Equation (B.11) with respect to time, yielding 
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Direct use of Equation (B.13), given x and t, will result in a multiple-valued saturation distribution, which can be handled by 

a mass balance calculation, as in the Buckley-Leverett solution. An alternative graphic method of Welge (1952) can be shown 

(Wu et al., 1991) to apply to calculating the above solution in this case. The only additional step in applying this method is to take 

into account the contribution of the pressure-gradient dependence to the non-Darcy displacement, using a fractional flow curve. 

Therefore, the wetting-phase saturation at the displacement saturation front may be determined by 
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The average saturation in the displaced zone is given by 
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where wS  is the average saturation of the wetting phase in the swept zone behind the sharp displacement front. Then, the 

complete saturation profile can be determined using Equation (B.13) for a given non-Darcy displacement problem with constant 

injection rate according to the Barree and Conway model. 
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Figure 1. Relative-permeability curves used in analytical and numerical solutions 

for Barree and Conway non-Darcy displacement. 
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Figure 2. Pressure gradients versus displacing wetting phase saturation 
in the non-Darcy displacement system 
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Figure 3. Fractional flow and its derivative curves with respect to wetting phase saturation 

 in the non-Darcy displacement system 
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Figure 4. Displacement saturation distribution of the non-Darcy displacement system 

 after 10 hours of injection 
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Figure 5. Comparison between displacement saturation profiles calculated 
from analytical and numerical solutions after 10 hours of injection 

 

 

 


