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Abstract 
We present an analytical approach for pressure transient test 
analysis in naturally fractured vuggy reservoirs. This analysis 
approach relies on a triple-continuum concept, using observed 
geological data from carbonate oil formations in western 
China, to describe transient flow behavior in fracture-vug-
matrix reservoirs. In the conceptual mathematical model, 
fractured vuggy rock is considered as a triple-continuum 
medium, consisting of fractures, rock matrix, and vugs (or 
cavities). Similar to the classical double-porosity model, the 
fracture continuum is assumed to be responsible for the 
occurrence of global flow, while vuggy and matrix continua 
(providing primary storage space) interact locally with each 
other as well as with globally connected fractures. 
Furthermore, the triple continua of fractures, matrix, and vugs 
are assumed to have uniform and homogeneous properties 
throughout, and intercontinuum flows between them are at 
pseudosteady state. With these assumptions, we derive 
analytical solutions in Laplace space for transient flow toward 
a well in an infinite and finite reservoir with wellbore storage 
and skin effects.  The analytical solutions reveal typical 
pressure responses in a fracture-vug-matrix reservoir and can 
be used for estimating vug properties, in addition to fracture 
and matrix parameters, through properly designed and 
conducted well tests. As application examples, actual well test 
data from a fractured-vuggy reservoir in Western China are 
analyzed using the triple continuum model. 
 

                                                           
1 Funded by National Basic Research Program of China (973 
Program), “Studying the Fundamentals of the Carbonate Karst 
Reservoir Development 2006CB202400.” 
 

Introduction  
Since the 1960s, significant progress has been made 

towards understanding and modeling of flow processes in 
fractured rock [Barenblatt et al., 1960; Warren and Root, 
1963; Kazemi, 1969; Pruess and Narasimhan, 1985]. 
However, most of these studies have focused primarily on 
naturally fractured reservoirs without taking into consideration 
large cavities. Recently, characterizing vuggy fractured rock 
has received attention, because a number of fractured vuggy 
reservoirs have been found worldwide that can significantly 
contribute to oil and gas reserves and production [Kossack and 
Curpine, 2001; Rivas-Gomez et al., 2001; Lui et al. 2003; 
Hidajat et al., 2004; Camacho-Velazquez et al., 2005; Kang et 
al. 2006; Wu et al. 2006].  

Among the commonly used mathematical methods for 
modeling flow through fractured rock, dual-continuum models 
(i.e., double- and multi-porosity, and dual-permeability) are 
perhaps the most popular approaches used in reservoir 
modeling studies. In addition to the traditional double-porosity 
concept, a number of triple-porosity or triple-continuum 
models have been proposed [Closemann, 1975; Wu and Ge, 
1983; Abdassah, and Ershaghis, 1986; Bai et al. 1993; Wu et 
al., 2004; Kang et al. 2006; Wu et al. 2006] to describe flow 
through fractured rock. In particular, Liu et al. [2003] and 
Camacho-Velazquez et al. [2005] present several new triple-
continuum models for single-phase flow in a fracture-matrix 
system that includes cavities within the rock matrix (as an 
additional porous portion of the matrix). In general, these 
models have focused on handling the heterogeneity of the rock 
matrix or fractures, e.g., subdividing the rock matrix or 
fractures into two or more subdomains with different 
properties.  

This study develops an analytical model for analyzing 
transient pressure behavior in naturally fractured vuggy 
reservoirs and presents our continuing effort in investigating 
flow processes in naturally fractured vuggy reservoirs [Kang 
et al. 2006; Wu et al. 2006]. In this study, we focus on single-
phase transient flow and fractured vuggy rock, conceptualized 
also as a triple-or multiple-continuum medium, consisting of 
(1) highly permeable fractures, (2) low-permeability rock 
matrix, and (3) vugs. Similar to the conventional double-
porosity model, the fracture continuum is responsible for 
global flow, while vuggy and matrix continua, providing 
storage space, are locally connected to each other and 
interacting with globally connecting fractures. With these 
assumptions, we derive a mathematical model and analytical 
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solutions in the Laplace space for transient flow toward a well 
in an infinite and finite reservoir. In addition, wellbore storage 
and skin effects are included. As application examples, actual 
well test data from a fractured-vuggy reservoir in Western 
China are analyzed using the triple-continuum model. 

 
Conceptual and Mathematical Models 

As observed in the carbonate formation of the Tahe 
Oilfield in western China, fractured vuggy reservoirs consist 
typically of large-scale, well-connected fractures, low-
permeable rock matrix, and a large number of cavities or vugs. 
Those vugs and cavities are irregular in shape and size. 
Several conceptual models for fractured-vuggy reservoirs are 
proposed to study flow behavior through such formations in 
Kang et al. (2006) and Wu et al. (2006). Figure 1 presents a 
conceptualization for this study, showing that vugs are 
indirectly connected to fractures through small fractures or 
microfractures. Similar to the conventional double-porosity 
concept (Warren and Root, 1963), large fractures are 
conceptualized to be main pathways for global flow, while 
vug and matrix continua, locally connected to each other as 
well as directly or indirectly interacting with globally 
connecting fractures, generally provide storage space, acting 
as sinks or sources. Note that vugs and cavities directly 
connected with fractures are considered part of the fracture 
continuum. More specifically, we conceptualize the fracture-
vug-matrix system as consisting of (1) “large” fractures (or 
fractures), globally connected on the model scale, (2) various-
sized vugs, locally connected to fractures either through 
“small” fractures (Figure 1) or through rock matrix, and (3) 
rock matrix, which may contain a number of cavities, locally 
connected to large fractures and/or vugs.  

With these conceptualizations, the Warren-Root model is 
extended to include one more medium—vugs—in developing 
the governing equations with the following basic assumptions 
for obtaining analytical solutions: 

1. The reservoir is of uniform thickness with 
impermeable lower and upper boundaries. 

2. The fluid flow from the system into the wellbore is 
radial, and only the fractures feed the well. 

3. All rock properties, such as permeability, initial 
porosity and compressibility, are constants in each 
continuum. 

4. Fluid flow is isothermal, single-phase, and slightly 
compressible with constant fluid viscosity. 

Furthermore, the quasi-steady-state flow assumption is used 
for flow between the fracture continuum and the matrix (F-M), 
and between the vug (V) continuum and the matrix (V-M). 
Given these assumptions, the flow in a triple-continuum 
system can be described as a triple-porosity model (Liu et al. 
2003; Wu et al. 2004): 

For flow through large fractures: 
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For interacting with vugs (or cavities): 

 ( ) ( )VPMPMkVM
VPFPVkFV

t

VP
VCV −

μ

α
+−

μ

α
=

∂

∂
φ  (2) 

For interacting with the matrix: 
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In Equations (1)–(3), subscripts F, M, and V are indexes for 
fracture, matrix, and vuggy systems, respectively; P, φ , C, and 
k denote pressure, initial porosity, total effective 
compressibility, and the permeability of each continuum, 
respectively; μ  is fluid viscosity, and FVα , FMα  and VMα  
are the interporosity flow shape factors. The shape factor for F-
M or V-M is defined by Warren and Root (1963): 
 α=α=α VMFM  (4) 
 
For F-V interaction, the shape factor for vugs is defined as 

 
FVl
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where AFV is the total fracture and vug connection area per 
unit volume of rock (m2/m3) and lFV is characteristic length, 
defined as: 
 lFV= lf /2 (6) 
where lf is the average length of small fractures that connect 
vugs with fractures. 
 
Initial and Boundary Conditions: The initial pressure iP  is 
assumed uniform for the three media throughout the reservoir 
 iP)0,r(MP)0,r(VP)0,r(FP ===  (7) 
On outer boundaries, the same constant pressure for a radially 
infinite system remains: 
 iP)t,r(FP =∞=  (8) 
For a radially finite system, the outer boundary (with a radius 
= re) is subject to the following two conditions: 
 iP)t,err(FP ==  (9) 
for constant boundary condition; and 
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for closed outer boundary condition. 
The boundary conditions at the wellbore (r = rw) are 

decided by a constant volumetric flow rate, q, imposed  to the 
well at surface conditions, subject to wellbore storage effects 
and the effect of an infinitesimal skin region around the 
wellbore. They can be related by: 
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where S is a skin factor, dimensionless constant, C is wellbore 
storage constant, Pwf is flowing borehole pressure, wr  is 

wellbore radius, and h  the thickness of the uniform, horizontal 
formation. The wellbore storage constant is defined as: 

 LcwVC =  (13) 
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where Vw is wellbore volume and cL is compressibility of 
liquid or fluid in wellbore. 

Introducing dimensionless pressure, )t,r(P DDD , 

dimensionless radial distance Dr , and dimensionless time Dt , 
defined as 
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Governing equations (1)–(3), initial conditions (7), and 
boundary conditions (8)–(12) become 
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where ω’s and λ’s are defined in Table 1.  
Initial condition: 
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Outer boundary conditions: 
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and inner boundary conditions: 
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where  
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and dimensionless wellbore storage coefficient, 
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Laplace Space Solutions: Applying the Laplace 
transformation to Equations (17) through (25) yields:  
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where DFP , DVP , DMP , and DwfP  are Laplace transformed 
functions of DFP , DVP , DMP , and DwfP  in the Laplace 
domain, and s  is the Laplace transformation variable. 

Substituting the matrix and cavity equations of (29) and 
(30) into the fracture equation (28), we have: 
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The general solution to Equation (36) is  

 ( ) ( )Dr)s(sf0I0DDr)s(sf0K0CDFP +=  (38) 

where 0K  and 0I  are the modified Bessel functions of the 
second and first kinds of zero order, respectively. 
 
Infinite Reservoir: The solution subject to boundary 
conditions Equations (31), (34) and (35) of an infinite 
reservoir is: 
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Finite Reservoir with Closed Outer Boundary: The solution 
subject to boundary conditions Equations (32), (34) and (35) 
of an infinite reservoir is: 
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where, 
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Finite Reservoir with Constant-Pressure Outer Boundary: 
The solution subject to constant-pressure outer boundary 
conditions without wellbore storage and skin effects rr is 
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According to Warren and Root (1963), flow through a double-

porosity medium can be sufficiently characterized by two 
parameters, storage parameter ω and interporosity parameter λ. 
The solution in Equation (40) indicates that the flow in the triple-
continuum reservoir is characterized by five dimensionless 
parameters: 2 ω’s and 3 λ’s (Table 1). Note that only two of the 
three ω’s are independent.  
 
Model Behavior 

The analytic solution of Equation (40) can be used to 
investigate transient flow behavior in fractured vuggy 
reservoirs. Figure 2 shows basic behavior as well as how 
wellbore storage affects pressure responses. As discussed in 
Wu et al. (2004), flow behavior in a triple-continuum reservoir 

may exhibit three straight, parallel lines in semi-log space 
(Figure 2). However, depending on the magnitude of the 
wellbore storage effect, one or both of the semi-log lines may 
be masked or distorted.  

The characteristic behavior is also observed in the log-log 
presentation of the logarithmic pressure derivative, with the 
presence of 2 interporosity flow “valleys”. Interporosity flow 
from the vuggy continuum through the fracture system into the 
wellbore is observed first, because of its higher interporosity 
transmissivity parameter λ’s, and is identified by the initial 
valley in the early time region. Then, if the contrast in the 
interporosity flow parameter is large enough, the second 
valley, corresponding to fluid transfer from the matrix 
continuum to the fracture system, is observed later. It can be 
observed from Figure 3 that it is possible, in some cases, for 
the wellbore storage to completely mask the presence of the 
first valley produced by flow from the vuggy continuum. In 
such cases, the pressure transient test may be wrongfully 
interpreted as a double-porosity reservoir, thereby effectively 
ignoring the contribution of the vugs. It is even possible for 
wellbore storage to mask both valleys, giving the false 
impression of a homogeneous reservoir.  

The fraction of oil reserves in a vuggy fractured reservoir 
contributed by vuggy porosity may be small when compared 
with the matrix contribution. However, the computation of the 
additional porosity due to the vug continuum will cause a 
noticeable increase in the estimated reserves. In the example 
used in Figure 3 (parameters given in Table 2), the addition of 
the vuggy continuum contribution masked by the wellbore 
storage increases the effective porosity of the reservoir by 
13% and would consequently increase the reserves estimate by 
as much as 10% or more, depending on the method of reserves 
estimation. 
 
Field Examples 

Pressure transient data from two oil-production wells 
(T313 and TK609) in the Tahe Reservoir, a carbonate, 
naturally fractured reservoir in western China, exhibit 
apparent triple-porosity behavior. For these two wells, drilling 
records, core samples, and geophysical data all indicated that 
the associated geologic formations are typical of fractured, 
vuggy rock. The two wells were completed in 2000 and 2001, 
respectively, with completion depths more than 5,000 m. 
Buildup tests were performed for both wells and are used here 
to demonstrate the application of the proposed pressure-
transient-analysis approach. 

Figures 4 and 5 present matches for the buildup data from 
the two wells using the triple continuum model. As shown in 
Figures 4 and 5, model results reasonably match both 
measured pressure and its derivative data from the wells. In 
both of these examples, the buildup duration was not 
sufficiently long to observe all of the second characteristic 
valley, representing interporosity flow from the matrix to 
natural fractures. As a result, both of these tests can also be 
matched with a dual-porosity model by matching the falling 
derivative in late time as a constant-pressure boundary. Figure 
6 illustrates that the data for Well T313 can be matched in this 
way. In fact, the dual-porosity model provides a better match 
for these data.  
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The matches for T313 and TK609 testing data provide the 
parameters listed in Table 3. An increase in effective porosity 
from vugs is also indicated in the table, and the increase in 
reserves after accounting for vugs is quite substantial for 
T313. The matrix porosity used for the analysis of TK 609 is 
very small and seems inconsistent with the permeability value 
determined from the match. All three matches for the two 
wells show very negative skins that cannot be explained by 
usual mechanisms. More work is needed to explain the skin 
results. The dual-porosity match for T313 is achieved with a 
constant-pressure boundary 6,070 ft from the well. The triple-
porosity model does not show any reservoir limit up to the end 
of the buildup.  
 
Summary and Concluding Remarks 

A physically based conceptual and mathematical model is 
presented for analyzing flow through fractured vuggy rock 
using a multiple-continuum-medium concept. The proposed 
multiple-continuum model is a natural extension of the classic 
double-porosity model, with the fracture continuum 
responsible for conducting global flow, while vuggy and 
matrix continua, locally connected and interacting with 
globally connecting fractures, provide storage space for fluids. 
In particular, analytical solutions including wellbore storage 
and skin effects are obtained in Laplace space for pressure-
transient analyses in such reservoirs. 

As an application example, the proposed well testing 
approach is demonstrated on actual buildup data for two wells 
from a naturally fractured vuggy oil reservoir, with reasonable 
results obtained.   
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Table 1. Dimensionless parameters and variables used in the analytical solutions of flow through a triple-continuum reservoir 
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Table 2: Triple continuum model parameters used to generate the WBS example 
Well  Example 1   
C varying bbl/psi 
Pi 9000 psia 
k.h 296 md.ft 
k 9.86 md 
Skin 2 -- 
F-M interporosity  parameter 

5.0E-09   
F-V interporosity  parameter 3.0E-07   
F Storativity  1.00E-02   
V Storativity  0.1188   
M Storativity  0.8712  
   

 
 
 
 

Table 3: Triple-continuum and double-continuum model parameters used to match field-case examples 

Well  T313 Double-
Porosity Match T313 TK609   

C 0.0186 0.0251 0.0973 bbl/psi 

Pi 8246.32 8225.55 7627.85 psia 

k.h 14200 14200 22100 md.ft 

k 193 193 337 md 

Skin -6.31 -7.36018 -10 -- 

F-M interporosity  parameter 1.44E-06 1.5E-09 4.7E-12   

F-V interporosity  parameter -- 2.0E-07 1.0E-09   

F Storativity  8.84E-04 4.31E-05 1.69E-10   

V Storativity  -- 0.1437 0.0033   

M Storativity  0.999 0.8563 0.9967   

Matrix porosity 0.15 0.15 0.02  

Vuggy Porosity 0 0.025172 
 

6.65E-05 
  

% increase in effective porosity 0% 16.8% 0.33%  

Effective Porosity 0.15 0.175 0.02  
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Figure 1. Conceptualization of vuggy fractured rock as a triple-continuum system, with vugs indirectly connected to fractures 
through small fractures 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Pressure-transient behavior of flow through a fractured vuggy media, showing triple-continuum flow behavior and 

the effects of wellbore storage 
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Figure 3. Effects of wellbore storage on pressure-transient behavior in fractured vuggy media (the lower three curves for 

pressure derivatives) 
 
 

Figure 4. Comparison between measured pressure drawdown and its derivative data, and model predictions for Well T313 
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Figure 5. Comparison between measured pressure drawdown and its derivative data and modeled predictions for Well TK609 
 
 
 
 
 
 

 
Figure 6. Alternate double-porosity pressure-transient analysis for field example  
 

100

101 

102 

103

10-3 10-2 10-1 100 101 102 103 104 

Time (hr)

Pr
es

su
re

 (p
si

)

Pressure field data 
Derivative field data 
Pressure model 
Derivative model

10-1

100 

101 

102 

103 

10-3 10-2 10-1 100 101 102 103 
Time (hr)

Pr
es

su
re

 (p
si

)

Pressure field data 
Derivative field data 
Pressure model
derivative-model 


