
Copyright 2001, Society of Petroleum Engineers Inc.

This paper was prepared for presentation at the SPE Reservoir Simulation Symposium held in
Houston, Texas, 11–14 February 2001.

This paper was selected for presentation by an SPE Program Committee following review of
information contained in an abstract submitted by the author(s). Contents of the paper, as
presented, have not been reviewed by the Society of Petroleum Engineers and are subject to
correction by the author(s). The material, as presented, does not necessarily reflect any
position of the Society of Petroleum Engineers, its officers, or members. Papers presented at
SPE meetings are subject to publication review by Editorial Committees of the Society of
Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper
for commercial purposes without the written consent of the Society of Petroleum Engineers is
prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300
words; illustrations may not be copied. The abstract must contain conspicuous
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.
Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract
Massively parallel computing techniques can overcome
limitations of problem size and space resolution for reservoir
simulation on single-processor machine. This paper reports on
our work to parallelize a widely used numerical simulator,
known as TOUGH2, for nonisothermal flows of multi-
component, multiphase fluids in three-dimensional porous and
fractured media. We have implemented the TOUGH2 package
on a Cray T3E-900, a distributed-memory massively parallel
computer with 695 processors. For the simulation of large-
scale multicomponent, multiphase fluid flow, the requirements
for computer memory and computing time are extensive.
Because of the limitation of computer memory in each PE
(processing element), we distribute not only computing time
but also the memory requirement to different PEs. In this
study, the METIS software package for partitioning
unstructured graph and meshes is adopted for domain
partitioning, and the Aztec linear solver package is used for
solving linear equation systems. The efficiency of the code is
investigated through the modeling of a three-dimensional
variably saturated flow problem, which involves more than
one million gridblocks. The execution time and speedup are
evaluated through comparing the performance of different
numbers of processors. The results indicate that the parallel
code can significantly improve capacity and efficiency for
large-scale simulations.

Introduction
TOUGH21, 2 is a general-purpose numerical simulation
program for multi-dimensional, multiphase, multicomponent
heat and fluid flows in porous and fractured media. The code
is written in standard ANSI FORTRAN 77. Since its release in

1991, the program has been used worldwide in geothermal
reservoir engineering, nuclear waste isolation, environmental
assessment and remediation, and modeling flow and transport
in variably saturated media. The numerical scheme of the
TOUGH2 code is based on the integral finite difference (IFD)
method. The conservation equations involving mass of air,
water, chemical components and thermal energy are
discretized in space using the IFD method. Time is discretized
fully implicitly using a first-order backward finite difference
scheme. The discretized nonlinear system of finite difference
equations for mass and energy balances are solved
simultaneously using the Newton/Raphson iterative scheme.
For the basic version (i.e., single CPU), the code is equipped
with both direct and iterative solvers.3

The development of parallel computers has made it
possible to conduct large-scale reservoir simulations. In the
past decade, the total number of gridblocks used in a typical
reservoir simulation increased from thousands to millions.4

One of the most popular parallel computer architectures is the
distributed-memory machine, the massively parallel processor
(MPP) computer, which can be made up of hundreds to
thousands of processors. Elmroth et al.5 developed a parallel
prototype scheme for the TOUGH2 code and implemented the
computing time distribution on MPP computer. Their
investigation indicates that a parallel code can dramatically
enhance computational efficiency.

The present work presents the further progress in reducing
memory requirement and improving computation efficiency,
including the optimization for solving extremely large
reservoir simulation problems. The parallelization of the
TOUGH2 code was implemented on a Cray T3E-900, an MPP
computer. The parallel code was developed from the original
TOUGH2 code by introducing the message-passing interface
(MPI) library.6 MPI is a standard procedure for message
passing that allows data transfer from one processor to
another. The parallel implementation first partitions an
unstructured simulation domain using the METIS graph
partitioning programs.7 The spatially discretized nonlinear
equations describing the flow system are then set up for each
partitioned part at each time step. These equations are solved
with the Newton iteration method. In each Newton step, a
nonsymmetric linear equation system is formed for each part
of the domain and is then solved using a preconditioned

SPE 66343

Parallel Computing Techniques for Large-Scale Reservoir Simulation of Multi-
Component and Multiphase Fluid Flow
K. Zhang, Y. S. Wu, SPE, C. Ding, K. Pruess, SPE, and E. Elmroth, Lawrence Berkeley National Laboratory

2 K. ZHANG, Y. S. WU, SPE, C. DING, K. PRUESS, SPE, AND E. ELMROTH SPE 66343

iterative solver selected from the Aztec linear solver package.8

During each Newton iteration, the linearized equation systems
must be updated with the updating in primary variables.
Updating the left-hand side Jacobian matrix requires
communication between different processors for data
exchange across the partitioning borders. By distributing the
computation time and memory requirement to processors, the
parallel TOUGH2 code allows more accurate representation of
reservoirs because of its ability to include more detailed
information on a refined grid system.

The significant enhancement on computational efficiency
in the parallel TOUGH2 code is demonstrated through
modeling of a field flow problem. The code has been used to
develop a three-dimensional (3-D) model of multiphase fluid
flow in variably saturated fractured rocks. The 3-D model uses
more than 106 gridblocks and 4×106 connections (interfaces)
to represent the unsaturated zone of the highly heterogeneous,
fractured tuffs of Yucca Mountain, Nevada, a potential
underground repository for high-level radioactive wastes.
Numerical simulation of the unsaturated zone flow system at
Yucca Mountain has become a standard tool in site-
characterization investigation.9 However, the 3-D, site-scale
unsaturated flow models, developed since the early 1990s,10 in
general use very coarse numerical grids primarily because of
limitation in computational capacity.

In this paper, we discuss the main issues addressed in the
implementing TOUGH2 on the massively parallel T3E-900
machine. We then present an example problem for unsaturated
flow at the Yucca Mountain site, Nevada, which has more
than 1 million grid blocks. This problem is used to evaluate
speedup from code parallelization, and to confirm the solution
accuracy of the massively parallel code by comparison with
results from a single-processor machine.

Parallel Implementation
As discussed above, the TOUGH2 code using an IFD
method11, 12 solves mass and energy balance equations of fluid
and heat flow in a multiphase, multicomponent system. The
IFD approach avoids any reference to a global system of
coordinates and thus offers the advantages of being applicable
to regular or irregular discretization in multiple dimensions.
However, the flexibility in IFD formation gridding makes a
model grid that intrinsically unstructured, which must be taken
into account by a parallelization scheme.

In the basic version of the TOUGH2 code, the
discretization in space and time using the IFD leads to a set of
strongly coupled nonlinear algebraic equations, which is
linearized by the Newton method. Within each Newton
iteration, the Jacobian matrix is first calculated by numerical
differentiation, the resulting system of linear equations then
solved using an iterative linear solver with preconditioning.
Time steps can be automatically adjusted (increased or
decreased) during a simulation run, depending on the
convergence rate of the iteration process. For a TOUGH2
simulation, the most time-consuming steps of the execution

consist of two parts: (1) solving the linear system of equations
and (2) assembling the Jacobian matrix. Consequently, one of
the most important aims of the parallel TOUGH2 code is to
distribute computing time for these two parts. The main
schemes implemented in the parallel code include grid
partitioning, grid reordering, optimizing data input, assembly
of the Jacobian matrix, and solving the linear system. The first
stage of the work was summarized by Elmroth et al.5 The
following sections give an overview of the most important
parallel implementation procedures.

Grid Partitioning and Gridblock Reordering. Efficient and
effective methods for partitioning unstructured grid domains
are critical for successful parallel computing schemes. Large-
scale numerical simulations on parallel computers require the
distribution of gridblocks to different processing elements.
This distribution must be carried out such that the number of
gridblocks assigned to each PE is the same and the number of
adjacent blocks duplicated and copied to each PEs is
minimized. The goal of the first condition is to balance the
computation efforts among the PEs; the goal of the second
condition is to minimize the time-consuming communication
resulting from the placement of adjacent blocks to different
processors.

In a TOUGH2 simulation, a model domain is represented
by a set of gridblocks (elements), and the interfaces between
every two gridblocks are represented by connections. The
entire connection system of gridblocks is defined through
input data. From the connection information, an adjacency
matrix can be constructed. The adjacency structure of the
model meshes is stored using a compressed storage format
(CSR). In this format, the adjacency structure of a domain
with n gridblocks and m connections is represented using two
arrays, xadj and adj. The xadj array has a size of n+1 whereas
the adj array has a size of 2m.

The adjacency structure of the model grids is stored in a
compressed format which can be described as follows.
Assuming that element numbering starts from 1, then the
adjacency list of element i is stored in an array adj, starting at
index xadj(i) and ending at index xadj(i+1)-1. That is, for
each element i, its adjacency list is stored in consecutive
locations in the array adj, and the array xadj is used to point to
where it begins and where it ends. Figure 1a shows the
connection of a 12-elements domain and Figure 1b illustrates
its corresponding CSR format arrays.

We use three partitioning algorithms implemented in the
METIS package version 4.07. The three algorithms are here
denoted the K-way, the VK-way, and the Recursive
partitioning algorithm. K-way is used for partitioning a graph
into a large number of partitions (greater than 8). The
objective of this algorithm is to minimize the number of edges
that straddle different partitions. If a small number of
partitions are desired, the Recursive partitioning method, a
recursive bisection algorithm, should be used. VK-way is a
modification of K-way and its objective is to minimize the

 PARALLEL COMPUTING TECHNIQUES FOR LARGE-SCALE RESERVOIR SIMULATION
SPE 66343 OF MULTI-COMPONENT AND MULTIPHASE FLUID FLOW 3

total communication volume. Both K-way and VK-way are
multilevel partitioning algorithms.

Figure 1a shows a scheme of partitioning a sample domain
into three parts. Gridblocks are assigned to particular
processors through partitioning methods and reordered by
each processor to a local ordering. Elements corresponding to
these blocks are explicitly stored on the processor and are
defined by a set of indices referred to as the processor’s
update set. The update set is further divided into two subsets:
internal and border. Vector elements of the internal set are
updated using only information on the current processor. The
border set consists of blocks with at least one edge to a block
assigned to another processor. The border set includes blocks
that would require values from other processors to be updated.
The set of blocks that are not in the current processor, but
needed to update components in the border set, is referred to
as an external set. Table 1 shows the partitioning results and
one of the local numbering schemes for the sample problem
presented in Figure 1a.

The local numbering of gridblocks is done to facilitate the
communication between processors. The numbering sequence
is internal blocks followed by border blocks and finally by the
external set. In addition, all external blocks from the same
processor are in consecutive order.

Similar to vectors, a subset of matrix with non-zero entries
is stored on each processor, In particular, each processor stores
only those rows, that correspond to its update set. These rows
form a submatrix whose entries correspond to variables of
both the update set and the external set defined on this
processor.

Input Data Organization. The input data for reservoir
simulations include hydrogeologic parameters and constitutive
relations of porous media, such as absolute and relative
permeability, porosity, capillary pressure, thermophysical
properties of fluid and rock, as well as initial and boundary
conditions of the system. In addition, a numerical code
requires specification of space-discretized geometric
information (grid) and various program options such as
computational parameters and time-stepping information. For
a typical, large-scale, three-dimensional model, computer
memory of several gigabytes is generally required. Therefore,
the need arises to distribute the memory requirement to all
processors.

Each processor has a limited space of memory available.
To make efficient use of the memory of each processor, the
input data files of the TOUGH2 code are organized in
sequential format. There are two groups of large data blocks
within a TOUGH2 mesh file: one with dimensions equal to the
number of grid blocks, the other with dimensions equal to the
number of connections (interfaces). Large data blocks are read
one by one through a temporary full-size array and then
distributed to PEs one by one. This method avoids storing all
input data in a single processor and greatly enhances the I/O
efficiency. The I/O efficiency is further improved by storing

the input data in binary files. The data input procedures can be
schematically outlined as follows:

 In PE0:
 Open a data file
 Read first parameter for all blocks (total NEL blocks)

into array Temp(NEL)
 Do i=1,TotalPEs
 Call MPI_SEND(…) to send the appropriate part of

Temp(NEL) to PEi.
 End do
 Read second parameter for all blocks into array

Temp(NEL)
 Do i=1,TotalPEs
 Call MPI_SEND(…) to send the appropriate part of

Temp(NEL) to PEi.
End do
 …….
 Repeat for all parameters that need to be read from data

file for all gridblocks.
 Read first parameter for all connections (NCON) into

array Temp(NCON)
 Do i=1,TotalPEs
 Call MPI_SEND(…) to send the appropriate part of

Temp(NCON) to PEi.
 End do
Read second parameter all connections into Temp(NCON)
 Do i=1,TotalPEs
 Call MPI_SEND(…) to send the appropriate part of

Temp(NCON) to PEi.
 End do.
…….
Repeat for all parameters that need to be read from data

file for all connections.
Close data file.

In PE1, PE2, ……, PEn:
 Allocate required memory space for current PE .
 Call MPI_RECV(…) to receive the part of data that

belongs to current PE from PE0.

Certain parts of the parallel code require full-connection
information, such as for domain partitioning and local-
connection index searching. These parts can be the bottleneck
of memory requirement for solving a large problem. Since the
full-connection information is used only once at the beginning
of a simulation, it may be better handled in a preprocessing
procedure.

Assembly and Solution of Linear Equation Systems. The
discrete mass and energy balance equations solved by the
TOUGH2 code can be written in residual form:1,2

4 K. ZHANG, Y. S. WU, SPE, C. DING, K. PRUESS, SPE, AND E. ELMROTH SPE 66343

})({

)()()(

1,1

11

++

++

+∆
−−=

∑ t
nn

t
nm

m
nm

n

t
n

t
n

t
n

qVxFA
V

t

xMxMxR

κκ

κκκ

………….….…….(1)

where the vector xt consists of primary variables at time t, κ
nR

is the residual of component κ for block n, M denotes mass
per unit volume for a component, Vn is the volume of the
block n, q denotes sinks and sources, t∆ denotes current time
step size, t+1 denotes the current time, Anm is the interface
area between blocks n and m, and Fnm is the flow between
them. Equation (1) is solved using Newton-Raphson iteration
method, leading to

)()(,
1,

,1,

1,

pi
t

npipi

pi i

t
n xRxx
x

R +
+

+

=−
∂

∂
− ∑ κ

κ

 ……(2)

where xi,p represents the value of ith primary variable at pth
iteration step. The Jacobian matrix as well as the right-hand
side of (2) needs to be recalculated at each Newton iteration.
The computational efforts are extensive for a large simulation
problem. In the parallel code, the assembly of linear equation
system (2) is shared by all the processors. Each processor is
responsible for computing the rows of the Jacobian matrix that
correspond to blocks in the processor’s update set.
Computation of the elements in the Jacobian matrix is
performed in two parts. The first part consists of computations
relating to individual blocks. Such calculations are carried out
using the information stored on current processor and
communications to other processors are not necessary. The
second part includes all computations relating to the
connections. The elements in the border set need information
from the external set, which requires communication between
neighbor processors. Before performing these computations,
an exchange of relevant variables is required. For the elements
corresponding to border set blocks, one processor sends these
elements to different but related processors, which receive
these elements as external blocks.

The Jacobian matrix for local gridblocks in each processor
is stored in the distributed variable block row (DVBR)
format,8 a generalization of the VBR format. All matrix blocks
are stored row-wise, with the diagonal blocks stored first in
each block row. Scalar elements of each matrix block are
stored in column major order. The data structure consists of a
real vector and five integer vectors, forming the Jacobian
matrix. The detail explanation for the DVBR data format can
be found from reference8.

The final, local linear equation systems are solved by using
the Aztec linear solver package8. We can select different
solvers and preconditioners from the package. The available
solvers include conjugate gradient, restarted generalized

minimal residual, conjugate gradient squared, transposed-free
quasi-minimal residual, and bi-conjugate gradient with
stabilization methods. The results presented in this paper have
been obtained using the stabilized bi–conjugate gradient
method with block Jacobian scaling and a domain
decomposition preconditioner (additive Schwarz). In block
Jacobian scaling, the block size corresponds to the VBR
blocks, which are determined by the equation number of each
gridblock. Detailed discussions on preconditioning and scaling
scheme were presented by Elmroth et al.5

During a simulation, the time steps are automatically
adjusted (increased or reduced), depending on the
convergence rate of the iteration process in the current step. In
the parallel version code, the time-step size found in the first
processor (master processor, named PE0) is applied to all
processors. The convergence rates may be different in
different processors. Only when all processors reach stopping
criteria will the time march to the next step.

Final solutions are derived from all processors and
transferred to master processor for output. Results for the
connections that cross the boundary of two different
processors are obtained by averaging the solutions from the
two processors.

Data Exchange Between Processors. Data communication
between processors is an essential component of the parallel
TOUGH2 code. Although each processor solves the linearized
equations of the local blocks independently, communication
between neighboring processors is necessary to update and
solve the entire equation system. The data exchange between
processors is implemented through the EXCHEXTERNAL
subroutine. When this subroutine is called by all processors,
an exchange of vector elements corresponding to the external
set of the gridblocks will be performed. During time stepping
or a Newton iteration, an exchange of external variables is also
required for the vectors containing the secondary variables and
the primary variables. Detailed discussion of the
implementation of data exchange can be found in Elmroth et
al.5

Program Structure. The parallel version of TOUGH2 has
almost the same program structure as the original version of
the software, but solves a problem using multiple processors.
We introduce dynamic memory management, modules, array
operations, matrix manipulation, and other FORTRAN 90
features to the parallel code. MPI is used for message passing.
Another important modification to the original serial code is in
the subroutine of time-step looping. This subroutine provides
the general control of problem initialization, grid partitioning,
data distribution, memory-requirement balancing among all
processors, time stepping, and output. All data input and
output are carried out through the master processor . The most
time-consuming efforts, such as assembling the Jacobian
matrix, updating thermophysical parameters, and solving the
linear equation systems, are distributed to all processors. The
memory requirements are also distributed to all processors.

 PARALLEL COMPUTING TECHNIQUES FOR LARGE-SCALE RESERVOIR SIMULATION
SPE 66343 OF MULTI-COMPONENT AND MULTIPHASE FLUID FLOW 5

Distribution of computing time and memory requirements is
essential for achieving a capacity for solving large-scale field
problems. Figure 2 gives an abbreviated overview of the
program flow chart.

Application On Yucca Mountain Problem
Performance of the parallel code was evaluated and
demonstrated through a three-dimensional flow simulation of
the unsaturated zone at Yucca Mountain, Nevada. The
problem is based on the site-scale model developed for
investigations of the unsaturated zone at Yucca Mountain,
Nevada.9,10 It concerns unsaturated flow through fractured
rock using a 3-D, unstructured grid and a dual permeability
conceptualization for handling fracture-matrix interactions.
The unsaturated zone of Yucca Mountain is being investigated
as a potential subsurface repository for storage of high-level
radioactive wastes. The model domain of the unsaturated zone
encompasses approximately 40 km2 of the Yucca Mountain
area, is between 500 and 700 m thick, and overlies a relatively
flat water table.

The 3-D model domain as well as a 3-D irregular
numerical grid used for this example is shown for a plan view
in Figure 3. The model grid uses relatively refined gridding in
the middle, repository area, and includes several nearly
vertical faults. The grid has about 9,800 blocks per layer for
fracture and matrix continua, respectively, and about 60
computational grid layers in the vertical direction, resulting in
a total of 1,075,522 gridblocks and 4,047,209 connections. A
distributed-memory Cray T3E-900 computer equipped with
695 processors has been used for the simulation. Each
processor has about 244 MB available memory and is capable
of performing 900 million floating operations per second
(MFLOPS).

The ground surface is taken as the top model boundary,
and the water table is regarded as the bottom boundary. Both
top and bottom boundaries of the model are assumed
Dirichlet-type conditions. In addition, on the top boundary, a
spatially varying infiltration is applied to describe the net
water recharge, with an average infiltration rate of 4.6 mm/yr
over the model domain.10 The properties used for rock matrix
and fractures for the dual permeability model, including two-
phase flow parameters of fractures and matrix, were estimated
based on field tests and model calibration efforts, as
summarized in Wu et al. 9

The linear equation system arising from the Newton
iteration of the Yucca Mountain problem is solved by the
stabilized bi-conjugate gradient method. A domain
decomposition-based preconditioner with ILUT incomplete
LU factorization has been selected for preconditioning, and
the K-way partitioning algorithm has been selected for
partitioning the problem domain. The stopping criteria used
for the iterative linear solver is

 4

2

2 10−≤
b

r
…………………………………(3)

where ∑ =
= n

i irn
1

2

2
)/1(. , n is the total number of

unknowns, and r and b are the residual and right-hand side,
respectively.

Two types of tests were run (1) to examine the accuracy of
the parallel code, and (2) to evaluate the code performance and
parallelization gains for different numbers of processors. The
first test simulates the flow system to steady state. The
simulation results for steady state flux through the repository
and bottom layer are compared to results previously obtained
from simulations on a single-processor machine. The second
test used different numbers of processors to simulate the
unsaturated flow system for 200 time steps.

Steady State Test. The test problem was designed to test the
accuracy of solutions. We have verified the modeling results
from the parallel code by comparing the solutions for a
smaller grid model using a one-dimensional vertical column.
The solutions for the smaller problem were obtained using the
original, single-CPU version and the parallel version of the
TOUGH2 code. The test presented here provides a further
verification of the code for large-scale simulations.

The 3-D test problem was run on 64 processors for 3,684
time steps to reach steady state, recognized when the fluxes
going into and leaving the flow system are equal (within a
narrow difference). Because of the time limitation of the
computer batch system, the whole simulation is divided into
five stages. Each stage runs about 700 time steps in less than
four hours. The length of a total simulation time is about 1011

years when steady state is obtained.
The percolation flux through the repository horizon and

below is one of the most important factors considered in
evaluation of repository performance. Figures 4 and 5 show
the flux distributions along the repository horizon and at the
bottom of the simulation domain (the water table). The dark
color indicates higher values of percolation fluxes. The flux is
defined in the figures as total mass flux through both fractures
and matrix. Comparison of the simulation results (Figures 4
and 5) against those using coarse-grid models10 indicates that
the refined-grid model produces results with much higher
resolution and more accurate flow distributions at the
repository level as well as the water table. In particular, the
current, refined model predicts more significant lateral flow in
the upper part of the unsaturated zone, above the repository
horizon, due to using finer vertical grid spacings in these
layers. These modeling results will have direct impact on
assessing repository performance. Further simulation results
will be reported elsewhere.

Performance Test. In the second test, the problem was solved
using 32, 64, 128, 256, and 512 processors, respectively.

6 K. ZHANG, Y. S. WU, SPE, C. DING, K. PRUESS, SPE, AND E. ELMROTH SPE 66343

Because of the automatic time-step adjustment, based even on
the same convergence rate of the iteration process, the length
of simulation times over 200 time steps using different
numbers of processors may be different. However, the
computational targets are similar, and comparing the
performance of different numbers of processors with the same
number of time steps is reasonable for evaluating the parallel
code.

Table 2 shows the reduction in the total execution time
with an increase numbers of processors. The simulation was
run on from 32 processors up to 512 processors by
consecutively doubling the number of processors. The results
clearly indicate that the execution time is significantly
reduced, as the number of processors increases. Table 2 also
shows the time required for different computational tasks
using different numbers of processors. When less than 128
processors are used, doubling the processor number will
reduce the total execution time by more than half. From the
table, we can find that the best parallel performance is in
solving-linear equation systems. Data input and output of the
program are carried out through a single processor, which will
limit the performance of the parallel code for those parts.

Figure 6 illustrates the speedup of the parallel code. The
speedup is defined based on the performance of 32 processors
as 32T32/Tp, where Tp denotes the total execution time using p
processors. The speedups from 32 to 64, 128, 256, and 512
processors increase by factors of 2.63, 2.16, 1.87 and 1.54,
respectively. Super-linear speedup appears during the
processor number doubling from 32 to 64, and to 128 with a
speedup of 2.63 and 2.16. The overall speedup for 512
processors is 523. The super-linear speedup is mostly due to
the preconditioner in solving linear equation system where the
time requirement is proportional to n2, with n being the
number of gridblocks in each processor.

In contrast, the time requirement for the startup phase
(input, partition, distribution, and initialization) in Table 2
increases when the processor number is doubled from 256 to
512 (instead of decreasing). It indicates that a saturation point
has reached. This results from the increase of communication
overhead when increasing the number of processors, which
cancels the time saving by requiring more processors in this
range.

The partitioning algorithm can also significantly impact
parallel code performance. The ideal case is that the
gridblocks can be evenly distributed among the processors
with not only approximately the same number of internal
gridblocks, but also roughly the same number of external
blocks per processor. For unstructured grids, this ideal
situation may be difficult to achieve in practice. However, in
our problem gridblocks are almost evenly divided among
processors. For example, on 128 processors, the average
number of internal blocks is 8,402 at each processor, the
maximum number is 8,657 and minimum number is 8,156. It
is only about 6% different between the maximum and
minimum number. A considerable imbalance arises for the
external blocks. In this problem, the average number of

external blocks is 2,447, while the maximum number is as
large as 3,650 and the minimum as small as 918. This large
range indicates that the communication volume can be four
times higher for one processor than another. The imbalance in
communication volume results in a considerable amount of
time wasted on waiting for certain processors to complete their
jobs during the solving of equation systems.

In general, the memory capacity of a single processor may
be too small to solve a problem with more than one million
gridblocks. The distribution of memory requirement among all
the processors will solve the storage problem of input data.
For the Yucca Mountain one-million block problem, the
parallel-computing performance is satisfactory for both
computation time and memory requirement.

Conclusions
Massive parallel computing technology has been implemented
into the TOUGH2 code for application to large-scale reservoir
simulations. In the parallel code, both computing efforts and
memory requirements are distributed among and shared by all
processors of a multi-CPU computer. This parallel computing
scheme makes it possible to solve large simulation problems
using a parallel processor computer. The METIS graph
partitioning program was adopted for the grid partitioning, and
the Aztec package was used for solving the linear equation
systems.

The parallel TOUGH2 code has been tested on a Cray T3E
system with 512 processors. Its performances are evaluated
through modeling flow in the unsaturated zone at Yucca
Mountain using different numbers of processors with more
than a million gridblocks. The total execution time is reduced
from 10,101 seconds on 32 processors to 618 seconds on 512
processors for the field-scale variably saturated flow problem.
A super-linear speedup of 523 for 512 processors has been
reached. Test results indicate that the overall performance of
the parallel code shows significant improvement in both
efficiency and ability for large-scale reservoir simulations.
The major benefits of the code are that it (1) allows accurate
representation of reservoirs with sufficient resolution in space,
(2) allows adequate description of reservoir heterogeneities,
and (3) enhances the speed of simulation.

Acknowledgment
The authors would like to thank Jianchun Liu and Dan
Hawkes for their review of this paper. The authors are grateful
to Lehua Pan for his help in designing the 3-D grid used for
the test problem. This work was supported by the Laboratory
Directed Research and Development (LDRD) program of
Lawrence Berkeley National Laboratory. The support is
provided to Berkeley Lab through the U. S. Department of
Energy Contract No. DE-AC03-76SF00098.

References
1. Pruess, K.: “TOUGH2 – A general-purpose numerical simulator

for multiphase fluid and heart flow,” Lawrence Berkeley
Laboratory Report LBL-29400, Berkeley, CA, 1991.

 PARALLEL COMPUTING TECHNIQUES FOR LARGE-SCALE RESERVOIR SIMULATION
SPE 66343 OF MULTI-COMPONENT AND MULTIPHASE FLUID FLOW 7

2. Pruess, K. Oldenburg, C., and Moridis, G.: “TOUGH2 User’s
Guide, V2.0,” Lawrence Berkeley National Laboratory, Berkeley,
CA, 1999.

3. Moridis, G. and Pruess, K.: “An enhanced package of solvers for
the TOUGH2 family of reservoir simulation codes,” Geothermics
(1998) 27, No.4, 415-444.

4. Dogru, A. H.: “Megacell reservoir simulation,” JPT (MAY 2000),
54-60.

5. Elmroth, E., Ding, C., and Wu, Y.: “High performance
computations for large scale simulations of subsurface multiphase
fluid and heat flow,” accepted by The Journal of Supercomputing,
1999.

6. Message Passing Formum: “A message-passing interface
standard,” International Journal of Supercomputing Applications
and High performance Computing, 8(3-4), 1994.

7. Karypsis, G. and Kumar, V.: “A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-
reducing orderings of sparse matrices, V4.0,” Technical Report,
Department of Computer Science, University of Minnesota, 1998.

8. Tuminaro, R. S., Heroux, M., Hutchinson, S. A., and Shadid J. N.:
“Official Aztec user’s guide, Ver 2.1,” Massively Parallel

Computing Research Laboratory, Sandia National Laboratories,
Albuquerque, NM, 1999.

9. Wu, Y. S., Liu, J., Xu, T., Haukwa, C., Zhang, W., Liu, H. H., and
Ahlers, C. F.: “UZ Flow Models and Submodels,” Report MDL-
NBS-HS-000006, Berkeley, California: Lawrence Berkeley
National Laboratory, Las Vegas, Nevada, CRWMS M&O, 2000

10. Wu, Y.S., Haukwa, C., and Bodvarsson, G. S.: “A Site-Scale
Model for Fluid and Heat Flow in the Unsaturated Zone of Yucca
Mountain, Nevada,” Journal of Contaminant Hydrology (1999),
38 (1-3), pp.185-217.

11. Edwards, A. L.: “TRUMP: a computer program for transient and
steady state temperature distributions in multidimensional
systems,” National Technical Information Service, National
Bureau of Standards, Spingfield, VA 1972.

12. Narasimhan, T. N. and Witherspoon P. A.: “An integrated finite
difference method for analyzing fluid flow in porous media,”
Water Resour. Res. (1976), 12, 1, 57-64.

Table 1: Example of Domain Partitioning and Local Numbering

Update External
Internal Border

Gridblocks 1 2 3 4 5 7 10Processor 0
Local numbering 1 2 3 4 5 6 7
Gridblocks 8 9 7 10 2 3 11Processor 1
Local Numbering 1 2 3 4 5 6 7
Gridblocks 6 12 5 11 4 10Processor 2
Local numbering 1 2 3 4 5 6

Table 2. Breakup of Execution Times (Seconds) for the Yucca Mountain Problem Running 200 Time Steps.

PE number 32 64 128 256 512
Input, partition, distribution, and
initialization

592.3 248.1 116.5 84.3 134.3

Update thermophysical
parameters, setup Jacobian matrix
and save results

2659.2 1420.8 764.6 399.5 260.0

Solve linear equations 6756.7 2078.7 806.6 373.4 188.0
Total execution time 10100.5 3844.3 1780.8 950.6 618.0

8 K. ZHANG, Y. S. WU, SPE, C. DING, K. PRUESS, SPE, AND E. ELMROTH SPE 66343

1

2 3

4 5

6

7

8
9

10 11

12

(a) A 12-elements domain partitioning on 3 processors

(b) CSR format

Processor 0

Processor 2

Processor 1

Figure 1. An example of domain partitioning and CSR format for storing connections

Elements 1 2 3 4 5 6 7 8 9 10 11 12
xadj 1 2 5 8 10 12 14 16 18 20 23 26 27
adj 2 1,3,7 2,4,10 3,5 4,6 5,11 2,8 7,9 8,10 3,9,11 6,10,12 11

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

Nu m b e r o f p r o c e s s o r s

S
pe

e
d

u
p

F ig u re 6 . S p e ed u p fo r th e ap p lica tio n ex am p le o n th e C ray T 3 E -9 0 0

 PARALLEL COMPUTING TECHNIQUES FOR LARGE-SCALE RESERVOIR SIMULATION
SPE 66343 OF MULTI-COMPONENT AND MULTIPHASE FLUID FLOW 9

All PEs: Declare variables and arrays, but not allocate array space

Start

PE0: Read input data, not include property
 data for each block and connection

PE0: Read mesh connection data

PE0: Broadcast parameters to all PEs PE1-PEn: Receive parameters from PE0

PE0: Grid partitioning
PE0: Set up globe DVBR format matrix
PE0: Distribute DVBR matrix to all PEs

All PEs: Allocate memory spaces for all arrays for storing the properties of
 blocks and connections in each PE

PE1-PEn: Receive local part DVBR format
 matrix from PE0

PE0: Read data of block and connection
 properties and distribute the data

PE1-PEn: Receive the part of data which
 belongs to current PE

All PEs: Exchange external set of data

All PEs: set up local equation system at each PE

All PEs: Solve the equations use Newton method

All PEs: Update thermophysical parameters

Converge?

Next time step?

All PEs: Reduce solutions to PE0
PE0: Output results

End

yes

no

no

yes

Figure 2. Simplified flow chart of parallel version TOUGH2

10 K. ZHANG, Y. S. WU, SPE, C. DING, K. PRUESS, SPE, AND E. ELMROTH SPE 66343

Figure 3 Plan view of the 3D simulation domain, gird and incorporated major faults

170000 172000 174000

230000

232000

234000

236000

238000

Sever W
ash

Fault

Pagany
W

ash
FaultD

rillhole
W

ash
Fault

S
o

lit
ar

io
C

an
yo

n
F

au
lt

G
ho

st
D

an
ce

F
au

lt

Im
b

ric
at

e
F

au
lt

D
un

e
W

as
h

F
au

lt

 PARALLEL COMPUTING TECHNIQUES FOR LARGE-SCALE RESERVOIR SIMULATION
SPE 66343 OF MULTI-COMPONENT AND MULTIPHASE FLUID FLOW 11

Figure 4 Simulated percolation fluxes at repository horizon

12 K. ZHANG, Y. S. WU, SPE, C. DING, K. PRUESS, SPE, AND E. ELMROTH SPE 66343

Figure 5 Simulated percolation fluxes at bottom of the domain

