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Summary. This work presents a theoretical study of the flow and displacement of a Bingham fluid in porous media. An integral
method of analyzing the single-phase flow of this type of fluid is developed. The accuracy of a newly developed approximate analytical
solution for transient-flow problems is confirmed by comparison with numerical solutions. The flow behavior of a slightly compressible
Bingham fluid is discussed, and a new well-test-analysis method is developed by use of the integral solution. To obtain some understand-
ing of the physics of immiscible displacement with Bingham fluids, a Buckley-Leverett analytical solution with a practical graphic eval-
uation method was developed and applied to the problem of displacing a Bingham fluid with water. Results revealed that the saturation
profile and displacement efficiency are controlled not only by the relative permeabilities, as in the case of Newtonian fluids, but also
by the inherent complexities of Bingham non-Newtonian behavior. In particular, we found that in the displacement process with a Bing-
ham fluid, a limiting maximum saturation exists beyond which no further displacement can be achieved.

Introduction

Flow of non-Newtonian fluids through porous media is encountered
in many subsurface systems involving underground natural resource
recovery or storage projects. In the past 30 years, a tremendous
effort has been expended in developing quantitative analysis of flow
of non-Newtonian fluids through porous media. Considerable prog-
ress has been reported, and much information is available in the
chemical engineering, rheology, and petroleum engineering liter-
ature. 15 The theoretical investigations carried out in this field have
concentrated mainly on single-phase power-law non-Newtonian fluid
flow, while the experimental studies have intended to provide rheo-
logical models for non-Newtonian fluids and porous materials of
interest.

Considerable evidence from laboratory experiments and field tests
indicates that certain fluids exhibit a Bingham-type non-Newtonian
behavior in porous media. 57 In these cases, flow takes place only
after the applied pressure gradient exceeds a certain minimum value
called the threshold pressure gradient. The flow of oil in many
heavy-oil reservoirs does not follow Darcy’s law but may be ap-
proximated by a Bingham fluid.8

The flow of foam in porous media is a focus of current research
in many fields. Foam has been shown to be one of the most promis-
ing fluids for mobility control in underground energy recovery or
storage projects. On a macroscopic scale, flow behavior of foam
in porous media is non-Newtonian. The ‘‘power law’’ is generally
used to correlate the apparent viscosities of foam with other flow
properties for a given porous medium and surfactant..10 It also
has been observed experimentally that foam will start to flow in
a porous medium only after the applied pressure gradient exceeds
a certain threshold value. 11,12

At present, there is no standard reliable approach in the petrole-
um engineering or groundwater literature to analyze well-test data
for Bingham-fluid production or injection. Interpretation of transient-
pressure responses of Bingham flow in porous media will be very
important for heavy-oil development and for flow analysis of foam
in porous media. The immiscible displacement of non-Newtonian
and Newtonian fluids occurs in many EOR processes involving the
injection of non-Newtonian fluids, such as polymer and foam so-
lutions, or heavy-oil production by waterflooding. Very little re-
search has been published, however, on multiphase flow of
non-Newtonian and Newtonian fluids through porous media. Even
with numerical methods, very few studies have examined the physics
of displacement. !3 Therefore, the mechanisms of immiscible dis-
placement involving non-Newtonian fluids in porous media are still
not well-understood compared with those for Newtonian fluid dis-
placement.

This paper presents a new method to analyze the transient flow
of Bingham fluids through porous media, including an integral anal-
ysis method for single-phase flow and a Buckley-Leverett analytical
solution for two-phase immiscible displacement with Bingham non-
Newtonian fluids. To apply the theory to field problems, a new
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well-test-analysis method was developed, and its application dem-
onstrated by analyzing two simulated pressure-drawdown and
-buildup tests of a Bingham fluid. The displacement of a Bingham
fluid by a Newtonian fluid is shown to proceed with rather limited
efficiency owing to the presence of an ultimate (limited) displace-
ment saturation, which is a characteristic of two-phase Bingham
flow. Once the saturation in the two-phase flow system reaches the
ultimate saturation, no further improvement of displacement effi-
ciency can be obtained regardless of how long the displacement
operation continues under the same flow conditions.

We also developed a numerical model for single- and multiphase
Bingham-fluid flow through porous media by suitably modifying
a general-purpose multiphase reservoir simulator. The model was
used to test our analytical solutions and to generate well-testing data
for the proposed well-test analysis for Bingham fluids.

Bingham Fluid and Rheological Model

As a special kind of non-Newtonian fluid, Bingham fluids (or plas-
tics) exhibit a finite yield stress at zero shear rate. The physical
behavior of fluids with a yield stress usually is explained as an in-
ternal structure in three dimensions that is capable of preventing
movement for values of shear stress less than the yield value, Ty
For shear stress 7> 7, the internal structure collapses completely,
allowing shearing movement to occur. The characteristics of these
fluids are defined by two constants: the yield stress, 7,, which is
the stress that must be exceeded for flow to begin, and the Bing-
ham plastic coefficient, ug. The rheological equation for a Bing-
ham plastic is14

TETY=URYe ot )

The Bingham plastic concept has been found to approximate closely
many real fluids existing in porous media, such as tarry and paraffin
oils7-8 and drilling muds and fracturing fluids, 15> which are sus-
pensions of finely divided solids in liquids.

For a phenomenological description of flow in porous media,
some equivalent or apparent viscosities for non-Newtonian fluid
flow are needed in Darcy’s equation. Therefore, many experimental
and theoretical studies have investigated rheological models or corre-
lations of apparent viscosities and flow properties for a given non-
Newtonian fluid and porous material. For flow problems in porous
media involving non-Newtonian Bingham fluids, the formulation
of Darcy’s law has been modified6.7:16 to

k G
=1 — Vp o (2a)
BB |Vp]
for [Vp|>G and
=0 (2b)

for |Vp| < G. The physical meaning of the minimum pressure gra-
dient, G, can be elucidated by considering flow of a Bingham fluid
through a capillary with radius r. The Bingham flow equation was
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TABLE 1—PARAMETERS FOR SINGLE-PHASE
BINGHAM-FLUID FLOW

Initial pressure, p;, Pa 107
Initial porosity, ¢; 0.20
Initial fluid density, p;, kg/m3 975.9

Formation thickness, h, m 1
Fluid viscosity, ptye, Pa's 0.35132x 10 -3

Bingham coefficient, ug, Pa-s 5x10-3
Fluid compressibility, ¢;, Pa~! 4.557x10-1°
Rock compressibility, ¢,, Pa~! 5x10-°
Mass injection rate, q,,, kg/s 1
Permeability, &, darcies 1.0
Wellbore radius, r,, m 0.1

Minimum pressure

gradient, G, Pa/m 0, 102, 102, and 10¢

solved by Buckingham!7 to give the average flow velocity over
the cross section of the tube. By comparing this velocity with Dar-
cy’s law, we obtain

G=r,/Br®)=ryld. ............................. 3)

Therefore, physically, G is the pressure gradient corresponding to
the yield stress, 7, in a porous medium.

The two Bingham-fluid parameters, G and ug, should be deter-
mined by laboratory experiments or well tests for a porous medi-
um flow problem. The range of values for G is quite large for
different reservoirs. A reasonable value of G is on the order of 104
Pa/m for heavy oil,8 and it may exceed 3.0 x 105 Pa/m for ground-
water flow in certain clayey soils.®

Integral Analysis of Single-Phase Bingham Flow

The integral method has been widely used in the study of unsteady
heat-transfer problems. 18 It is applied here to obtain an approxi-
mate analytical solution for Bingham-fluid flow in porous media.
The integral approach to heat conduction uses a simple parametric
representation of the temperature profile (e.g., by means of a poly-
nomial) that is based on physical concepts, such as a time-dependent
thermal-penetration distance. An approximate solution of the heat-
transfer problem is then obtained from simple principles of heat-
flux continuity and energy conservation. This solution satisfies the
governing partial-differential equation only in an average, integral
sense, It is encouraging to note, however, that many integral solu-
tions to heat-transfer and fluid-mechanics problems have an accuracy
that is generally acceptable for engineering applications. 18 When
applied to fluid-flow problems in porous media, the integral method
consists of assuming a pressure profile in the pressure-disturbance
zone and determining the coefficients of the profile by use of the
integral mass-balance equation. 19

In analogy to the heat-conduction problem, 18:20 we first assumed
a pressure profile of the form

p(r.t)—p;=[p,(Mln(r), [r,<r=<r,+o@)],

where p,, (r) is an nth-degree polynomial in , and the time depend-
ence is implicitly included in the coefficients of the polynomial,
which is dependent on the pressure-penetration distance,
8(1)[ p,(8)=0]. We found, however, that solutions in terms of pro-
files given by Eq. 4 are not accurate when compared with the Theis
solution for the limiting case of a Newtonian fluid (G=0) and al-
ways introduce 5% to 10% errors. More accurate solutions were
obtained for radial flow in a porous medium with pressure profiles
of the form

prn)—p;=K Inip,r)],
where K is a constant.

Mathematical Formulation and Integral Solution. The problem
considered here involves production of a Bingham fluid from a fully
penetrating well in an infinite horizontal reservoir of constant thick-
ness; the formation is saturated only with the Bingham fluid. The
basic assumptions are (1) isothermal, isotropic, and homogeneous
formation; (2) single-phase horizontal flow without gravity effects;
(3) Darcy’s law (Eq. 2) applies; and (4) constant fluid properties
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and formation permeability. The governing flow equation can be
derived by combining the modified Darcy’s law with the continui-
ty equation and is expressed in a radial coordinate system as

ka[op) (p 9
__[ r<_._ >}=—[p(p)¢(p)]. .............. (6)
rarl pug \or ot

The density of the Bingham fluid, o(p), and the porosity of the for-
mation, ¢(p), are functions of pressure only.
The initial condition is

prt=0)=p;, r=r,. ... . ... (@)

At the wellbore inner boundary, r=r,,, the fluid is produced at a
given mass production rate, g,,(t); i.e.,

27r,kho(p,) [ dp
S e =g,
4] or r=r,

where p,, =p, (t)=p(r,,t), the wellbore pressure.

The integral solution for radial flow into a well under a specified
mass production rate, g,,(t), has been obtained with the pressure
profile of Eq. 5 and an added inhomogeneous term as!9

gnug 1 [ 1+26(t)/rw}
2zkh  p(p, )L 28(0)r,

2rir, riry, 2
XIn -\ ,
n 1

where n=1+6(t)/r,,. The unknowns, wellbore pressure, p,,, and
pressure-penetration distance, 6(¢), are determined by simultane-
ously solving Eq. 9 and the following integral equation:

p(r.ty=p;+r—r,nNG—

ry,+8(0 t
| 2mhropopiar=—| guoar
0

+mhp;{[r, +6()]12 —r2},

where p; =p(p;) and ¢;=¢(p;). Eq. 10 is simply a mass-balance
equation in the pressure-disturbance region.

For slightly compressible flow, we obtain the following explicit
expression of the integral mass-balance equation:

Tw

L. 1 1 i
§ qm(t)dt+pi¢i0rr»%£27fhrw0<“—n3 + —n——>
; 6 2 3

Gm()pp [ 1+28()/r,, }[ 3
+

1
— __172 +g+—
ko(p,,) 26y, 2 2

)]

Verification of Integral Solutions. The solution from the integral
method is approximate and needs to be checked by comparison with
an exact solution or with numerical results. For the special case
of minimum pressure gradient, G=0, a Bingham fluid becomes
Newtonian. Then, the Theis solution can be used to check the in-
tegral solution given by Eqgs. 9 and 11. Many comparisons have
been performed between the integral and Theis solutions with differ-
ent fluid and formation properties, and excellent agreement has been
obtained in all cases, with maximum errors in wellbore pressure
values <0.1%.

For the radial-flow problem of Bingham-fluid production with
G>0, the results from the integral solution have been examined
by comparison with numerical simulations (see the Appendix).
Agreement between the approximate integral and numerical resuits
was found to be excellent for the entire transient-flow period, with
maximum errors no more than 0.1%.

Comparison of the integral solutions with both the exact Theis
solution and the numerical simulation indicates that the pressure
profile (Eq. 5) can accurately represent radial flow of both Newto-
nian and Bingham fluids.

1
+27 ln(n)—;[l —47]2]111( ........... (11)
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Fig. 1—Transient wellbore pressure during Bingham-fiuid pro-
duction calculated from the integral solution for different
values of the minimum pressure gradient (p, = 1000 kg/m?3,
¢,;=6.56x10-1° Pa-!, and q, =0.5 kg/s).

Fig. 2—Pressure distributions during Bingham-fiuid produc-
tion for different values of the minimum pressure gradient
(p,=1000 kg/m3, ¢,=6.56x10-'° Pa-', and g, =0.5
kg/s).

Effects of Minimum Pressure Gradient. We used the integral so-
lution for the problem with the parameters specified in Table 1 to
examine flow behavior for a range of rheological parameters. Fig.
1 shows pressure drawdown at the wellbore for a constant mass
production rate. The flow resistance increases with an increase in
G in a reservoir. Therefore, to maintain the same production rate,
the wellbore pressure decreases more rapidly with increasing G,
as indicated in Fig. 1. Fig. 2 shows the pressure profiles after con-
tinuous production for 10 hours at different values of G. As the
minimum pressure gradient increases, the pressure drops penetrate
less deeply into the formation because of greater flow resistance.

Well-Testing Analysis of Bingham-Fluid Flow. An analysis
method for transient-pressure tests during Bingham-fluid produc-
tion or injection into a well can be developed on the basis of the
integral and numerical solutions of this work. The most important
parameters for Bingham-fluid flow through porous media are the
two characteristic rheological parameters, the minimum pressure
gradient, G; and the coefficient, ug. It is always possible to ob-
tain these parameters by trial and error, using the integral and nu-
merical solutions to match the observed pressure data. The following
approach is more accurate and convenient to use, however, and
is recommended for field applications.

Let us consider the pressure-buildup behavior in an infinite
horizontal formation with a production well. After some period of
production, the well is shut in. The pressure in the system will build
up until a new equilibrium is achieved at a long enough shut-in peri-
od that theoretically is at infinite time. The pressure gradient every-
where in the pressure-penetration zone is expected to be equal to
the minimum pressure gradient. This is confirmed by a numerical
study of the pressure buildup after 7, =1,000 seconds of Bingham-
fluid production from a well, as shown in Fig. 3. If the cumulative
mass production rate, g, before the well is shut in is known, the
minimum pressure gradient of the system can be calculated from
the observed stabilized wellbore pressure, p,,, 1% with

G=1/2q(whr,,p$;c,(Ap)? +{[xhr, p,6;c, (Ap)?]?
+dnhpb,c,(Ap)3/3} %),
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where Ap=p;—p,,. Note that the minimum pressure gradient
determined by the pressure-buildup method given in Eq. 12 per-
tains to equilibrium in the system and is independent of flow prop-
erties, such as permeability k, and the coefficient ug.

To illustrate the procedure of calculating the value of G, a test
example was created by numerical simulation. A Bingham fluid
is produced at g,,=0.1 kg/s until 7, =1,000 seconds when the well
is shut in. The stable wellbore pressure is found to be
P,,=0.97474x107 Pa at a long shut-in time. Thus, the minimum
pressure gradient can be calculated with Eq. 12:

1
G=—X[1.1737423 X103
200
+(1.377671x 108 +3.953165 x 1012) %]

=10,000.14 Pa/m. ... ...t (13)

This is very accurate compared with the input value, G=10,000
Pa/m, in the numerical calculation. The pressure-penetration dis-
tance at equilibrium is

2.526 %103

Fig. 3 shows the pressure distribution after a long shut-in time cal-
culated from the mass balance. The analytical and numerical re-
sults are essentially identical.

The apparent mobility, k/ug, is a flow property of the system
and may be determined by transient-flow tests when G is not very
large. Fig. 4 shows that semilog straight lines occur in the pressure-
drawdown curves during the early transient period; they are almost
parallel to the straight line from the Theis solution (G=0). There-
fore, if the semilog straight line is developed during the early flow
time in the transient pressure drawdown, the conventional analysis
technique21,22 can be used to estimate the value of k/pg for a Bin-
gham fluid. For example, the slope m of the semilog straight-line

mn
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part of the curve G=100 Pa/m in Fig. 1 is measured as
9.23574 X104 Pallog,, cycle. Then, k/pg can be estimated as

k 2.303x0.5/1000.0

UB - 4x3.1415926 X 1.0x9.23574 x 104

=9.92X10"10 m2/Pass. ..........ciiiiiiiinn. (15)

In the simulated test, the actual input is

k  0.9869x10-12

=9.87x10~10 m2/Pa-s,
4B 1.0x10-3
so the relative error is only 0.5%.

For a large G, semilog straight lines hardly exist in the pressure
drawdowns. The pressure-buildup curves, however, result in a long
straight line even for G=10,000 Pa/m (see Fig. 4). This pressure-
buildup test is conducted by the numerical code. The top curve in
Fig. 4 is the prediction from the integral solution based on the su-
perposition principle. As expected, the superposition technique can-
not be used for this nonlinear problem. The slope of the semilog

TABLE 2—PARAMETERS FOR LINEAR
BINGHAM-FLUID DISPLACEMENT
Porosity, ¢ 0.20
Permeability, k, darcies 1
Cross-sectional area, A, m? 1
Injection rate, i, m3/s 1.0%x10-8
Injection time, t, hours 10
Displacing Newtonian viscosity, tty,, mPa-s 1
Irreducible saturation, Sy, 0.20
Bingham plastic coefficient, ug, mPa-s 4.0
Minimum pressure gradient, G, Pa/m 10 000
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straight line of Fig. 4 is measured as m=9.169043 x 104 log
cycle, so we have

k 2.303x0.1/975.9

pg  4%3.1415926 X 1.0 x9.169043 x 104

=2.05x10"10 m2/Pa*s. ..............iiiiiin.n. an

This value differs by only 3.8% from the input value, k/pug=
1.97x10~10 m2/Pa-s.

If no straight lines are developed in either pressure-drawdown
or -buildup curves, then the apparent mobility can be obtained by
matching the observed transient-pressure data with the integral so-
lution. G should always be calculated first from the mass balance
(Eq. 12), which is always applicable. The only remaining unknown
is the apparent mobility, k/ug, which can be determined easily by
trial and error with the integral solution.

Immiscible Displacement of a Bingham
Non-Newtonlan Fluld by a Newtonian Fluid

In an effort to obtain some insight into the physics behind two-phase
immiscible displacement with non-Newtonian fluids, we developed
a Buckley-Leverett analytical solution for 1D flow in porous me-
dia.23 Here, this analytical solution is used to study the displace-
ment of a Bingham non-Newtonian fluid by a Newtonian fluid. One
possible application of this study is the production-of heavy oil by
waterflooding. Note that because of the 1D approximation in our
analysis, we cannot address issues of viscous or gravitational in-
stabilities.

Analytical Solution for Bingham-Fluid Displacement. The ana-
lytical solution obtained for immiscible non-Newtonian fluid
displacement23 is in the same form as the Buckley-Leverett?4
frontal-advance equation. The crucial difference is in the fractional-
flow function, which now depends, not only on relative permea-
bility data, but also, through apparent or effective viscosities, on
the rheological properties of the non-Newtonian fluid. This fea-
ture introduces a strong rate dependence into the displacement proc-
ess, as will be seen below. The fractional-flow function of the
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displacing Newtonian fluid is defined as the ratio of the flow rate
of the Newtonian fluid and the total rate, and is given by25

1
1 +[ krnn(Sne) J<_‘f§e_>
krNe(Sne) 4 \enn
AkkrnN(SNe)
Bang(®)

+ [ Ky an(SNe) :I( HNe >
krNe(Sne) 1\ pnn
where p,y is a function of saturation and flow potential gradient:

I"nN=I"nN(V¢’SNe)- ............................. (19)

Introducing coordinates such that flow takes place in the x direc-
tion, the potential gradient component in the x direction is

3P/0x=0p/dx)+pngSiD . .o (20)

Eqgs. 18 and 19 indicate that the fractional flow of the displacing
Newtonian phase, fy., is generally a function of both saturation
and potential gradient. Under the usual simplifications made in the
Buckley-Leverett problem (incompressible 1D linear flow and uni-
form fluid and formation properties), however, the potential gra-
dient is related uniquely to saturation as follows23:

krNe(SnN) + krnN(SnN) Jig_
u,,N(a@/ax,SnN) ax

FNe=

(PaN—PNe)g sin

it) +Ak,:
HNe

+k[ PNekrNe(SuN) + PaNKraN(SuN)
HUNe unN(aé/ax,SnN)

Therefore, the fractional-flow function in Eq. 18 ends up being a
function of saturation only, and the Welge26 graphic method can
be applied for evaluation of non-Newtonian fluid displacement.23
The rheological model for the apparent viscosity of a Bingham plas-
tic fluid can be obtained from Eq. 2:

pon =pp/[1—(G/|8®/3x])]
for |0%®/dx|> G, and

}g sin@=0. ..... 1)

HpN=
for |3%/3x| < G. For a particular saturation of the Newtonian phase,
SNe» the corresponding flow potential gradient for the non-
Newtonian phase can be derived by introducing Eq. 22a into Eq.
21 as follows: :

-(3<IJ/6x)sNe =-p.N & sin a+

. krnN(sNe) krNe(SNe) . krnN(SNe) .
—+ G+ PNe& Sl @ +————p g sina
Ak BB BNe bp

krnNe(SNe) , krnN(SNe)
ENe “B

The apparent viscosity for the Bingham fluid is determined by use
of Eq. 23 in Eq. 22, and then the fractional-flow curve is calculated

from Eq. 18.

Displacement of a Bingham Non-Newtonian Fluid by a Newto-
nian Fluid. Initially, the system is assumed to be saturated with

only a Bingham fluid, and a Newtonian fluid is injected at a con-

stant volumetric rate at the inlet, x=0, starting from #=0. The rela-
tive permeabilities are given as functions of saturation of the
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Fig. 5—Fractional-flow curves for a Bingham fluid displaced
by a Newtonian fluid for different minimum pressure gra-
dients.

displacing Newtonian fluid according to the analytical correlation
by Willhite25;

k,_,=0.75(1—Sp)?2
and k,,=0.75(Sp)?,

“with Sp =S /(1—Spn;,). Table 2 summarizes the fluid and rock

properties.

Effects of Non-Newtonian Rheological Properties. A basic fea-
ture of the displacement process of a Bingham fluid in porous media
is the existence of an ultimate or maximum displacement satura-
tion, 8., for the displacing Newtonian phase (see Figs. 5 and
6). The maximum displacement saturation occurs at the point of
the fractional-flow curve where fy, =1.0. For this particular dis-
placement system, initially saturated with only the Bingham fluid,
the displacing saturation cannot exceed the maximum value Sp,, .
The resulting saturation distributions are given in Fig. 6 for different
G. It is obvious that the sweep efficiency (defined as the ratio of
displacing Newtonian fluid volume and in-situ Bingham fluid
volume) decreases rapidly as G increases. In contrast, for Newto-
nian displacement, the ultimate saturation of the displacing fluid
is equal to the total mobile saturation of the displacing fluid, as
shown by the curve for G=0 in Fig. 6.

Physically, the phenomenon of ultimate displacement saturation
occurs as the flow potential gradient approaches the minimum
threshold pressure gradient, G, at which the apparent viscosity is
infinite. Then the only flowing phase is the displacing Newtonian

fluid. Consequently, once the maximum saturation is reached for
a flow system, no improvement of sweep efficiency can be obtained
no matter how long the displacement process continues, as shown
in Fig. 6. The flow condition in reservoirs is more complicated
than in this linear semi-infinite system. Because oil wells usually
are drilled according to certain patterns, some regions always ex-
ist with low potential gradients between production and injection
wells. The presence of the ultimate displacement saturation for a
Bingham fluid indicates that no oil can be driven out of these regions.
Therefore, the ultimate displacement saturation phenomenon will
contribute to the low oil recovery abserved in heavy-oil reservoirs
developed by waterflooding, in addition to effects from the high
oil viscosity.
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Fig. 6—Newtonian phase saturation distributions, for differ-
ent values of the minimum pressure gradient of a Bingham
fluid.
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Fig. 7--Newtonian phase saturation distributions for differ-
ent values of the Bingham coefficient, ug.

Fig. 7 shows the effects of the other rheological parameter, the
Bingham plastic coefficient up. Note that the ultimate displacement
saturations change little with ug. The average saturations in the
swept zones, however, are quite different for different values of
up. The ultimate displacement saturation is essentially determined
by G. Changes in ug have little effect on the ultimate displacement
saturation because the flow potential gradient in Eq. 23 hardly varies
with pp as dp/ax—G.

Effects of Injection Rate. In this problem, a Bingham fluid in
a horizontal porous medium is displaced by water. If the water in-
jection rate at the inlet is increased, the pressure gradient in the
system will increase and the apparent viscosity for the displaced
Bingham fluid will be reduced. Therefore, a better sweep efficiency
will result. Fig. 8 presents the saturation profiles after 10 hours
of injection at the different rates. Note that both the sweep effi-
ciency and the ultimate displacement saturation can be increased
greatly by increasing the injection rate.

Effects of Gravity. The effects of gravity on Bingham-fluid dis-
placement by a Newtonian fluid can be examined by considering
the following example. A heavier Newtonian fluid with py, =
1,000 kg/m is used to displace a Bingham fluid with p,n =850
kg/m. The flow directions are upward (a=/2), horizontal (¢ =0),
and downward (o= —/2). Even though displacement flow direc-
tions in oil reservoirs are mostly horizontal, upward or downward
flow may occur because of the inhomogeneity of layered forma-
tions or may occur in laboratory displacement tests. Fig. 9 shows
the saturation distributions after 10 hours of displacement. The
difference in density of the two fluids is small, so the influence
of gravity on displacement efficiency near the front is not very sig-
nificant. However, gravity does change the ultimate displacement
saturation. The best displacement performance is obtained by up-
ward flow. Because gravity resists the upward flow of the heavier
displacing phase, the flow potential gradient must be larger to main-
tain the same flow rate. Consequently, the apparent viscosity of
the Bingham fluid is decreased for upward flow, resulting in better
sweep efficiency.

Conclusions

An approximate integral solution was obtained for the problem of
Bingham flow through porous media. Its accuracy was confirmed
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by comparison with exact and numerical solutions. Our analytical
and numerical studies show that the transient-flow behavior of slight-
ly compressible Bingham fluids is essentially controlled by the non-
Newtonian properties: the minimum pressure gradient, G, and the
Bingham plastic coefficient, ug. Therefore, transient pressure data
can provide important information related to non-Newtonian fluid
and formation properties. A well-test-analysis technique developed
in this study uses flow-test data to estimate non-Newtonian flow
properties.

The integral method with a new pressure profile developed in
this work is applicable to more general radial-flow problems in
porous media. It is especially useful when the flow equation is non-
linear and other analytical approaches cannot apply.

The fundamental feature of immiscible displacement involving
a Bingham plastic fluid is that an ultimate displacement saturation
exists that is essentially determined by the minimum pressure gra-
dient, G. This saturation can be considerably larger than residual
saturations from relative permeability effects. Once the saturation
approaches the ultimate saturation in the formation, no further dis-
placement can be obtained regardless of how long the displacement
lasts for a given operating condition. A simple way to gain a better
sweep efficiency is to increase injection rates, thereby reducing the
apparent viscosity of the displaced Bingham fluid. A better displace--
ment also can be obtained by using gravity to increase the flow
potential gradient in the flow direction for a given flow rate.

Nomenclature
A = cross-sectional area, m?2
¢ = fluid compressibility, Pa~!
¢, = formation compressibility, Pa~1
¢, = total compressibility, Pa—!
d = characteristic pore size of porous medium, 3r,/8, m
Jfne = fractional flow of Newtonian phase
Jfan = fractional flow of non-Newtonian phase
g = magnitude of gravitational acceleration, m/s2
G = minimum pressure gradient, Pa/m
h = formation thickness, m
i(#) = volumetric injection rate, m3/s
k = absolute permeability, m2
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Fig. 8—Newtonian phase saturation distributions for different
injection rates of a Newtonian fiuid displacing a Bingham fluid.

Fig. 9—Newtonian phase saturation distributions for Bingham-
fluid displacement by a Newtonian fluid with gravity effects.

k.ne = relative permeability to Newtonian phase
k,.N = relative permeability to non-Newtonian phase
K = constant
m = slope of semilog curves, Pa/log-cycle
n, = number of fluid components
np = number of fluid phases
p = pressure, Pa
p; = initial formation pressure, Pa
pn(r) = nth-degree polynomial in r
p,, = wellbore flowing pressure, Pa
Vp = pressure gradient, Pa/m
q = volumetric production rate, m3/s
g, = cumulative mass production, kg
q,,(t) = mass production rate, kg/s
r = radial distance coordinate, m
r, = tube radius, m
r,, = wellbore radius, m
S = saturation
= ultimate displacement saturation
Ne = Newtonian phase saturation
Ne = average Newtonian phase saturation
S,n = non-Newtonian phase saturation
= irreducible non-Newtonian phase saturation

nNir
t = time, seconds
ty = production time, seconds
u = Darcy velocity, m/s
# = Darcy velocity vector, m/s
x = distance from inlet coordinate, m
« = angle between flow direction and horizontal plane
¥ = shear rate, seconds ~!
&(t) = pressure-penetration distance, m
n = 1+8(0)/r,

up = Bingham plastic coefficient, Pa‘s

UNe = Newtonian viscosity, Pa‘s

#nn = non-Newtonian apparent viscosity, Pa-s
o = fluid density, kg/m?3

pNe = density of Newtonian fluid, kg/m3

ppN = density of non-Newtonian fluid, kg/m3
7 = shear stress, Pa
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T, = yield stress, Pa

¢ = porosity

¢; = initial formation porosity

$ = flow potential, Pa
V& = flow potential gradient, Pa/m
V®, = effective flow potential gradient, Pa/m

Subscripts

B = Bingham fluid

D = dimensionless

e = equivalent

i = initial

m = mass

n = nth degree

Ne = Newtonian fluid

nN = non-Newtonian fluid

rNe = relative to Newtonian fluid
mN = relative to non-Newtonian fluid

t = total

w = wellbore

y = yield
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Appendix—Numerical Model

The numerical simulations reported in this paper were performed
with a modified and enhanced version of the general-purpose mul-
tiphase simulator MULKOM. 2728 MULKOM uses an integral finite-
difference method?? to solve discretized mass-balance equations
for n,. fluid components distributed among np phases. Time is dis-
cretized as a first-order finite difference, and all flow terms are
formulated fully implicitly for numerical robustness and stability.
Discretization results in a set of nonlinear algebraic equations that
are solved by means of Newton-Raphson iteration. The linear al-
gebra is performed with a sparse version of Gaussian elimina-
tion.30 A more detailed description of the code is available in
laboratory reports, 28,31

The apparent viscosity functions for non-Newtonian fluids in
porous media depend on the pore velocity, or the potential gradient,
in a complex way. The rheological correlations for various non-
Newtonian fluids are quite different. Therefore, it is impossible to
develop a general numerical scheme that is universally applicable
to all non-Newtonian fluids. Instead, a special treatment for a par-
ticular fluid of interest has to be worked out.

The flow of Bingham fluids is treated in the code by introducing
an effective potential gradient, V$,, whose scalar component in
the flow direction, assumed to be the x direction, is defined as

(Ve), -G (Vd), >G
(V<I>e)x={(VfI>)x+G (V®), < -G } ............ (A-D)
0 —-G=(V®), =G
Darcy’s law for a Bingham fluid is used in the code in the form
==/ ug)V®,. (A-2)

This treatment is much more efficient for simulation of Bingham-
fluid flow in porous media than the direct use of a highly nonlinear
apparent viscosity, as in Eq. 22a.

Sl Metric Conversion Factors

bar X 1.0* E+05 = Pa
cp X 1.0% E-03 = Pa's
ft x 3.048% E-01 = m
ft2 x 9.290 304* E-02 = m?
Ibm X 4.535 924 E-01 = kg
lbm/gal x 1.198 264  E+02 = kg/m3
md X 9.869 233 E-04 = um?
psi X 6.894 757 E+00 = kPa
psi—1 x 1.450 377 E—01 = kPa~!
*Conversion factor is exact. SPERE
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