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Abstract. Matrix acidization is an important technique used to enhance oil production at the tertiary recovery
stage, but its numerical simulation has never been verified. From one of the earliest models, i.e., the two-scale
model (Darcy framework), the Darcy—Brinkman—Forchheimer (DBF) framework is developed by adding the
Brinkman term and Forchheimer term to the momentum conservation equation. However, in the momentum
conservation equation of the DBF framework, porosity is placed outside of the time derivation term, which pre-
vents a good description of the change in porosity. Thus, this work changes the expression so that the modified
momentum conservation equation can satisfy Newton’s second law. This modified framework is called the
improved DBF framework. Furthermore, based on the improved DBF framework, a thermal DBF framework
is given by introducing an energy balance equation to the improved DBF framework. Both of these frameworks
are verified by former works through numerical experiments and chemical experiments in labs. Parallelization
to the complicated framework codes is also realized, and good scalability can be achieved.

1 Introduction

Acidization is a useful technique for promoting or restoring
oil production in reservoirs and can be classified as either
fracture acidization or matrix acidization. In fracture
acidization, a highly pressurized acid flow is injected into
a well to physically enlarge the fractures and chemically dis-
solve the deposits that inhibit permeability. However, in
matrix acidization, the pressure of the acid flow is not high
enough to destroy the fractures, and thus, the acid flow can
only enlarge the natural pores of the matrix. Both kinds of
acidization attempt to enlarge the voids in reservoirs and
ease the outflow of hydrocarbons from the subsurface
matrix. Many previously published papers [1-3| have stud-
ied fracture acidization, but this work pays more attention
to matrix acidization.

Theoretically, matrix acidization is a chemical dissolu-
tion—front instability problem. Many studies have focused

* This work is supported by the Peacock Plan Foundation of
Shenzhen (No. 000255), the National Natural Science Foundation
of China (No. 11601345) and the Natural Science Foundation of
SZU (No. 2017059).

* Corresponding author: shuyu.sun@kaust.edu.sa

on the factors that influence matrix acidization, such as
the mineral reactive surface area [4], mineral dissolution
ratio [5], and solute dispersion [6]. Numerically, four major
models have been proposed to investigate matrix acidiza-
tion, including the capillary tube model [7], the network
model [8-10], the dimensionless model [11, 12] and the
two-scale model [13-15]. Since the two-scale model can bet-
ter predict dissolution patterns and more accurately cap-
ture the formation of wormholes, this work focuses on the
two-scale model. The two scales indicate the Darcy scale
and pore scale. In each scale, there are a series of equations
used to describe the progress of matrix acidization. In ear-
lier literature, the momentum conservation equation in
the Darcy scale was described by Darcy’s law, so the two-
scaled model was also named the Darcy framework in these
works [15-18]. Later, due to the nature of matrix acidiza-
tion, Wu et al. [19-22] concluded that the Darcy framework
was insufficiently accurate to describe matrix acidization
and provided the Darcy—Brinkman—Forchheimer (DBF)
framework by adding the Brinkman term and Forchheimer
term to the momentum conservation equation. Li et al.
[23-25] further analyzed the numerical stability and
accuracy of the DBF framework. However, the DBF frame-
work still has a defect when processing the momentum
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conservation equation, which degrades its reliability. This
work reviews the DBF framework in more detail than [19]
and focuses on this defect, which is covered in Section 2.
Moreover, in the DBF framework, a pseudo parameter e
is introduced into the mass conservation equation [26] to
solve the linear system by an iterative solver HYPRE
[27], which also degrades the reliability of the DBF frame-
work. However, by replacing HYPRE with a direct solver
MUMPS [28, 29], the introduction of e is not necessary,
which is realized in this work. Furthermore, the flowchart
of the simulation should also be changed accordingly. Thus,
the new framework provided in this work is called the
improved two-scale model based on the DBF framework,
or the improved DBF framework for short.

However, the frameworks above only consider the mass
conservation law and momentum conservation law, and the
energy conservation law is not included, which is a major
drawback. Temperature is a key variable in the energy con-
servation law and has a significant influence on thermody-
namic parameters such as the surface reaction rate and
the molecular diffusion coefficient. However, these thermo-
dynamic parameters are deemed constants in those frame-
works. Moreover, in real applications, matrix acidization
is performed in a subsurface environment where the matrix
is warmed by terrestrial heat. Thus, the temperature should
be considered as a major factor in matrix acidization, which
promotes the necessity and reasonability of introducing the
energy conservation equation into these frameworks.

In addition to this work, many researchers have
acknowledged the temperature issue and upgraded the
two-scale model in their own ways. For example, Li et al.
[30] introduced a heat transmission equation in the form
of radial flows to the two-scale model and produced simula-
tion results near the wellbore. Ma et al. [2] also developed a
temperature-influenced model based on the two-scale model
and used it to simulate matrix acidization in fractured car-
bonate rocks. Kalia and Glasbergen [31] studied cases when
the temperatures of the acid fluid and the matrix were dif-
ferent and simulated acidization in the matrix under both
adiabatic and nonadiabatic conditions. They concluded
that the fluid temperature could be designed as a parameter
to control matrix acidization. Although these endeavors
attempted to consider the thermal effect on matrix acidiza-
tion, all of them were based on the Darcy framework, which
is not accurate enough to simulate matrix acidization, as
mentioned above. As a result, their reliability was degraded.
Therefore, this work provides a heat transfer model as an
expansion of a more reasonable improved DBF framework
and aims to output more reliable results. The new model
is a thermodynamically consistent DBF framework, which
can be called the thermal DBF framework for short. Differ-
ent from [30], this work studies matrix acidization in the
form of linear flows. Meanwhile, fractures in the matrix
are not considered, and a general matrix is acidized, which
is different from [2]. Inspired by [31], two cases are studied —
when the temperatures of the acid flow and the matrix are
the same and when they are different — and the results are
verified against [31] and [32], respectively.

The work in [19] only realized a 2D parallel code of the
DBF framework; the present study further realizes a 3D

parallel code of the DBF framework. In addition, the 2D
and 3D parallel codes of the improved DBF framework
and thermal DBF framework are also realized in the present
work.

In the following discussions, the improved DBF frame-
work is developed, and then the thermal DBF framework
is provided. In the model verification section, the correct-
ness of the improved DBF framework is checked by com-
paring its 2D and 3D results with existing works. Only
when the correctness of the improved DBF framework is
guaranteed can the reasonability of the thermal DBF
framework be assured. After this, a series of thermal exper-
iments are performed to investigate the temperature effect
on matrix acidization. The performance of the 3D parallel
code is evaluated at the end of this work.

2 Improved DBF framework and its solution
scheme

The meanings of all the notations in the statements below
are listed in Table 1. The Darcy framework has been widely
used to simulate the matrix acidization procedure. At the
pore scale, a group of semiempirical equations is provided
to describe the relationship of parameters at the pore scale,
such as porosity, permeability [33], and local mass-transfer
coefficient. These equations have seen few changes during
the study of matrix acidization simulation. However, at
the Darcy scale, which is the other scale of the Darcy frame-
work, these equations have seen many changes with contin-
ued study. Generally, there are three kinds of equations on
the Darcy scale: momentum conservation equations, mass
conservation equations, and concentration balance equa-
tions. The changes have mainly occurred in the momentum
conservation equations, while the other two kinds of equa-
tions have remained more or less the same, although some
small changes have been made according to the needs of dif-
ferent cases. Initially, the momentum conservation equation
is represented by Darcy’s law:

Vp—i—%uzo,

assuming that the permeability is homogeneous and iso-
tropic. However, the applicability of this equation is lim-
ited to conditions where the Reynolds number Re < 1
[34] and the Darcy number Da < 1. At the beginning of
matrix acidization, the porosity in the porous medium is
not high, and Darcy’s law can be leveraged to properly
describe the flow of fluid in the porous medium. However,
with the propagation of channels due to matrix acidiza-
tion, the areas eroded by the channels become enlarged.
In these channels, the porosity can grow and even
approach the value of one, which creates high permeabil-
ity in these areas. From the definition of the Darcy num-
ber, it can be determined that the Darcy number is much
higher than one as a result of this change. Moreover, in
high-permeability areas, the fluid velocity increases,
which may lead to a high Reynolds number that can
exceed the value of one, assuming that the viscosity and
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Table 1. Nomenclature.

Notation Meaning

P Pressure

7 Fluid viscosity

K Permeability value

u Velocity vector

Re Reynolds number

Da Darcy number

¢ Porosity

ps Mass density of the fluid

F Forchheimer coefficient

t Time

g Gravity vector

Cr Cup-mixing concentration of the acid

D, Effective dispersion tensor

d, Molecular diffusion coefficient

d; Longitudinal dispersion coefficient

d, Transverse dispersion coefficient

%og Constant depending on pore connectivity

Ax Constant depending on the structure of the
medium

At Constant depending on the structure of the
medium

™ Pore radius

E Orthogonal projection along the velocity

I Identity matrix

ke, Local mass-transfer coefficient

a, Interfacial surface area per unit volume

C, Concentration of the acid at the fluid-solid
interface

T Temperature

R(C,, T) Reaction rate

o Dissolving power of the acid

Ds Mass density of the solid phase

ks Surface reaction rate

Sh Sherwood number

Sheo Asymptotic Sherwood number

S Schmidt number

T Time step

HA(T) Reaction heat

A Heat conduction coefficient of the fluid phase

As Heat conduction coefficient of the solid phase

A Average heat conduction coefficient

0y Heat capacity of the fluid phase

0, Heat capacity of the solid phase

V¢ Amount of heat per unit volume of the fluid phase

Uy Amount of heat per unit volume of the solid phase

¥ Total amount of heat per unit volume

E, Activation energy

R Molar gas constant

mass density of the fluid remain more or less the same and
that the particle size remains constant. These reasons
indicate that Darcy’s law is not suitable for use in matrix
acidization simulations.

To address the issue, some corrections have to be made
to Darcy’s law to cope with the conditions of high perme-
ability and high Reynolds numbers. The first correction is
called the Brinkman correction. According to Darcy’s law,
the uniform velocity in a cross-sectional direction can be
seen when the permeability is low. However, in a porous
medium with high permeability, a no-slip condition should
be considered instead of uniform velocity. The Brinkman
correction introduces a viscous shear stress term to Darcy’s
law that can describe the no-slip well. The Brinkman-
corrected Darcy’s law can be expressed as,

U

H o
—V'u =0,
¢
in which %VQU is called the Brinkman term. In addition,
under the condition of high Reynolds numbers, form drag
can be much larger than viscous drag, which can be suit-
ably described by a Forchheimer correction. In this correc-
tion, a term called the Forchheimer term, which is
exprebbed as 2 = |ulu, is added to Darcy’s law. Combmmg
both corrections together, Darcy’s law can be modified as,
I 2
Vp+—u— Ll v
Prin gV

with F' = \/1;’—(!) as the Forchheimer coefficient [35]. In the

equation above, the right-hand side equals zero, which
means that the sum of all the external forces imposed
on the fluid is zero. However, this is not a general case.
For cases in which the sum of all the external forces is
not zero, the right-hand side of the equation should equal
the product of mass density and acceleration. With a
FEulerian expression of acceleration, the right-hand side
of the equation can be written as,

|u|U*O

If the gravity effect is considered, the momentum conserva-
tion equation in its final form can be written as,

Prov  Prg e —vp— Py By
¢at+¢2v uu = —Vp Ku+¢Vu

JJMU+mg (1)

Equation (1) is the momentum conservation equation used
in our previous work [19]. Because this kind of momentum
conservation equation introduces the Brinkman term and
Forchheimer term, this model is a two-scale model based
on the Darcy—Brinkman—Forchheimer (DBF) framework,
or the DBF framework for short. More details can be found
in [19]. However, the framework cannot meet Newton’s sec-
ond law, since porosity ¢ is changed during the simulation
procedure. It is noted that in the first term on the left-hand
side of equation (1), ¢ is outside of the time derivative,
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which indicates that ¢ does not change with time. This con-
tradicts the true physical observation, and thus Newton’s
second law is also violated. Thus, ¢ should be placed inside
the time derivative. After this operation, % can be deemed a
new variable — the effective velocity. Accordingly, the sec-
ond term on the left-hand side of equation (1) and the third
term on the right-hand side of equation (1) are changed,
which can be expressed as,

0 (u U _u u Uu
— =) +p— V—=-Vp—=u+V- - uV—
pf6t<¢> o e PTK "o
pi
f\/—XIUIU+pfg- (2)

It is noted that the left-hand side of equation (2) is in reality
the material derivative,

0 (u U v u D (u
”fat<¢>+pf¢ ¢_prt(¢>)'

The discussion above, taken from the theories of fluid
dynamics, demonstrates that the new momentum conserva-
tion equation should describe matrix acidization more rea-
sonably, and thus the new model is an “improved” two-
scale model based on the DBF framework, or the improved
DBF framework for short.

Since the flow in matrix acidization is assumed to be
incompressible, the mass conservation equation can be
expressed as,

V-u=0.

However, considering the local volume change in the matrix
acidization procedure, the mass conservation equation
should be modified as,

o¢

ot +V-u=0. (3)
The concentration balance equation can be derived from
the principle of species balance during matrix acidization.
The balance of species can be achieved by accumulation,
advection, diffusion, and reaction effects, which bring about
a straightforward expression of the concentration balance
equation,

(¢ Cy)
ot

+ V- ('U/Cf) =V- ((ch ’ VCf)
—kcav(Cf— Cs) (4)

In the equation, D, is a function of wu,

D, = d,I+ ||u||(dE+ d,E"),

with,
22x||ul||r
dl - (ZOSdm X|| || 177
2 7||ul|r
dy = ocogdm+7TH I P

¢

In the 3D condition,

2

. U Uty Ul
_ 2
= 5| wwe  uwp o wu |,
[l 2
(TR T VI VPR Vs
Et=I-E.

Uy, Uy, and u, represent the z-direction, y-direction, and
zdirection velocities, respectively. The 2D conditions
are similar. In fact, the concentration balance equation
is the other expression of the mass conservation law, in
addition to the mass conservation equation.

In equations (2)—(4), the velocity vector u, pressure p,
and the cup-mixing concentration of the acid Crare deemed
unknowns to be solved for. However, the three equations
cannot accomplish this since the values of the other vari-
ables are unknown. Thus, more auxiliary equations and
other necessary assumptions are needed. Three additional
equations are given as follows:

kC(C’f — Cs) = R(C,, T), (5)
o R(C,, T)a,x
E - P, ) (6)
Cy

(7)

1+
These equations are derived from mathematical deduction
and chemical experiments, and more details can be found
in [15]. Tt should be emphasized that equation (7) can be
put in equation (4) to substitute C; when solving Cr
Moreover, since the mass density p; and viscosity u of the
fluid will not change much during the matrix acidization
procedure, they should be given constants for simplicity.
It is also easy to understand that the dissolving power of
the acid o and the mass density of the solid phase p, can
also be deemed as given constants. For the reason
mentioned later, the surface reaction rate k; is no longer
deemed as a constant, as shown in [19]. Instead, it is a
function of the temperature T in this work. As a result,
the reaction rate also becomes a function of T and can be
rewritten as R(Cj, T), which is different from [19].

In addition, it is noted that some variables at the
pore scale, such as porosity, permeability, the interfacial
surface area per unit volume and the local mass-transfer
coefficient, appear in the equations at the Darcy scale.
Thus, their values should be known before we attempt to
solve for the unknowns on the Darcy scale with the help
of a series of equations on the pore scale. It is stipulated that
the subscript 0 represents the initial value or reference value
of the corresponding variable in the following equations,
and all the initial values are known. First, three equations
called the Carman—Kozeny correlation are provided as
follows:



Y. Wu et al.: Oil & Gas Science and Technology — Rev. IFP Energies nouvelles 76, 8 (2021) 5

K_¢ <¢><1 - %)){ ®)

Ko o \ (1 — )
Ty _ Ko,
ro | Kod’ ®)
Ay (]57”0
o oy (10)

From these equations, it can be seen how the permeability,
pore radius, and interfacial surface area per unit volume
change with porosity. Thus, as long as the porosity is
known, the values of these three variables can be computed
from the Carman—Kozeny correlation. At this point, we can
compute porosity. From equations (5) to (7), the equation
below can be derived:

8(,25 _ Q0 ka(‘ ks

9t~ puk t ) (D
The left-hand side of equation (11) describes the change in
porosity with time, and its right-hand side includes many
variables; except for a, and k., all the other variables have
no direct relationship with porosity. By using equations
(8)—(10), a, can be expressed as a function of ¢,

1—¢
v . 12
a g 1— ¢, (12)
Equation (11) can then be changed as,
0¢ _ apaCrk.ks(1— ¢) (13)

t  p,(ke+ k) (1= )

Moreover, the local mass-transfer coefficient k. can be cal-
culated from the expression of the Sherwood number Sh,
which is a dimensionless mass-transfer coefficient. The
expression is given as follows:

2k,

Sh
dTﬂ

= Shse + 0.TREY25c3. (14)

On the right-hand side of equation (14), Shy, is a given con-
stant, and the Reynolds number Re can be expressed as,

_2ulnpy
u

Re (15)

The Schmidt number Sc is expressed as,

nu dm
Py

Se = (16)

Thus, by leveraging equations (14)—(16) together, k. can be
calculated as,

d 2 tud,\!
g = 4 Shﬁo_?(M) (u_) Coan
27y It Py

¢

v

Pore
scale

Darcy
scale

A

Cf,u

Fig. 1. The interaction of the pore scale and Darcy scale. The
upper arrow indicates that the pore scale will affect Darcy scale
by the pore-scale variable ¢. As long as ¢ is changed, the pore-
scale variables used in the Darcy scale are changed, which brings
about the changes of the main variables u, p, and Cyin the Darcy
scale. The lower arrow indicates that the Darcy scale will affect
the pore scale by the Darcy-scale variables Cf and wu, since the
two variables will affect the value of ¢ directly. Once ¢ is
changed, all the other variables in the pore scale will be changed
accordingly.

Equation (17) includes the variable 7, which is a function
of porosity from equations (8) and (9),
$(1 — ¢o)
Ty =Ty, 18
TG 0) 1

which means that k. is in fact a function of porosity and
velocity. Thus, equation (17) can substitute for k. in equa-
tion (13), and then a new equation with porosity being the
unknown can be derived. However, the new equation is
too complex to derive an analytic formula of porosity,
and therefore, the value of porosity has to be computed
by a numerical scheme. Under that condition, a semi-
implicit scheme is applied. In the following statements,
the superscripts of the notations represent the time step.
The porosity at time step 7 is used in equation (18) to
calculate the pore radius at time step 7, which is then
put into equation (17) to compute k. at time step .
With the semi-implicit scheme, equation (13) can be
rewritten as,

¢ — 9" _ ax iR = ¢™)
At (K + k(1 — ¢y) ’

(19)

by which ¢*"" can be computed easily.

From the discussion above, it can be seen that the main
unknown to be solved at the pore scale is porosity ¢. As
long as the porosity value is obtained, the values of the
other variables at the pore scale can be derived from a series
of pore-scale equations. Furthermore, with the values of all
the pore-scale variables, the main unknowns in the Darcy
scale can be calculated by the Darcy-scale equations. In
addition, from the computation of porosity, it can be seen
that the variables w and Cjin the Darcy scale will affect
the porosity value. Therefore, the computations of the
Darcy scale and pore scale are coupled with each other, with
the Darcy-scale variables u and C;and the pore-scale vari-
able ¢ being their interaction media, which can be shown in
Figure 1.
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The derivations of all the equations at both the Darcy
scale and pore scale have been achieved in the former dis-
cussions, and then numerical schemes are applied to these
derivations to solve for the variables. Since porosity ¢ plays
a central role in the improved DBF framework, it should be
computed from equation (19) with the semi-implicit scheme
first. Then, with the computed porosity, permeability K
and the interfacial surface area per unit volume a, can be
computed with equations (8) and (12), respectively. Next,
equations (2) and (3) are combined together as a linear sys-
tem and solved for the velocity w and pressure p with the
semi-implicit scheme. It is emphasized that the term % in
equation (3) is substituted by equation (6) when the linear
system is solved. Moreover, with the update of porosity ¢,
the local mass—trz%nsfer coefficient is also updated by equa-
tions (17) to k%™ before solving the linear system. With
the semi-implicit scheme, equations (2) and (3) can be
rewritten as follows:

"Hi —u u’ Wiax! M
N ’ +Pfg'vﬁ ==V -

7+1

utt! Py Frtl

5T VR

+1

+V . uv

|ur‘u +pfga

T+1 T ’L‘+% T
a; ocC’fkc K

- +V-utt =0.
(k2 +EY)

After that, since the velocity w is updated, the local mass-
transfer coefficient can be updated again by equations
(17) to k%™ Last, the semi-implicit scheme is used to solve
equation (4) for concentration Cj, and then another linear
system is formed. It is emphasized that equation (7) is
put into equation (4) when the linear system is solved,
which is shown as,

pICT - 97 C o1 il
I v E— + V- (u C'f )

_v. (¢r+1DZ+1 . V0}~H)

T+1
Cf
kL
1+ Wil

T+1 1+l
-k a;

cit - (20)

In brief, the solution procedure can be described as a flow-
chart, which is shown in Figure 2.

From the flowchart, another difference of this work from
our former work [19] can be seen. In the former work, for
each iteration, the simulation begins with the computation
of the variables in the Darcy scale, such as pressure, veloc-
ity, and concentration, and ends with the computation of
the variables in the pore scale, such as porosity, permeabil-
ity, and the interfacial surface area per unit volume.
However, in the present work, the computation of the vari-
ables at the pore scale is performed ahead of the computa-
tion of the variables at the Darcy scale. The flowchart of
this work is more reasonable, which can be demonstrated
by the following statements. From equation (20), it is

observed that to obtain C%', we have to know ¢*'*, and
therefore the computation of ¢*"* should occur before the
computation of Ct"'. However, in our former work, the
computation of q{T "1 occurs after the computation of
C’}“, which is not reasonable. With this philosophy, in
the simulation of the improved DBF framework, the vari-
ables are first computed at the pore scale and then at the

Darcy scale.

3 Thermal DBF framework and its solution
scheme

Based on the improved DBF framework, a heat transfer
model that considers the heat transmission process in
matrix acidization is developed. The model is composed of
the improved DBF framework and the energy conservation
equation, which can be expressed as the governing equation
of the temperature T,

» U\ _v.avr - gt e
E+V (ug)—v AVT — pV u+,uV¢.V¢+Ku|
peE
+ —=|u|"+a,R(C,, T)H.(T), (21
\/?II ( JH(T), (21)
where,
O =19+ 9,

’195 = (]‘ - qb)psgé T?
L=+ (1 —¢)hs
H,(T) =|-9702 + 16.97T — 0.00234 T?|.

H,(T) is the reaction heat [30]. Arand A, are the heat con-
duction coefficients of the fluid and solid phase, respec-
tively, and thus, 1 is the average heat conduction
coefficient between the two phases. 0y and 0, are the heat
capacities of the fluid and solid phase, respectively. 45 A,
05 and 0, are deemed constants in this work. ¥, and 9,
are the amounts of heat per unit volume of the fluid and
solid phase, respectively, and thus, ¢ is the total amount
of heat per unit volume. The total energy is a sum of the
fluid energy and solid medium energy, which may vary with
time. The energy transportation caused by the fluid flow
occurs only between fluids in different spatial positions
due to fluid flow. The heat conduction in the interiors
of both fluids and solids and with each other are considered
in the first term of the right-hand side of (21). The effects of
the pressure and viscosity force of the fluid are described in
the second and third terms of the right-hand side of (21).
The effects of friction forces between fluids and solids are
described in the fourth and fifth terms of the right-hand side
of (21) based on the Darcy-Forchheimer framework.
The chemical reaction can produce heat, which is consid-
ered in the last term of (21). All the terms constitute the
source or sink of energy. It is emphasized that the temper-
ature of the acid and matrix is assumed to become the same
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=0

Initialize parameters

-

Solve Eq. 19 for porosity ¢

-

Solve Eq. 8 for permeability K

-

Solve Eq. 12 for the interfacial surface area per unit volume

-

1
Solve Eq. 17 for the local mass-transfer coefficient k?’

¢

Solve Eq. 2 and 3 for velocity u and pressure p

-

Solve Eq. 17 for the local mass-transfer coefficient kI+!

-

Solve Eq. 4 for concentration C,

Fig. 2. The flowchart of the improved DBF framework.

immediately when acid is injected into the matrix, since the
speed of heat transfer is much faster than the fluid speed.
Thus, the temperature of the acid and matrix can be repre-
sented by a single notation 7. In fact, differentiating
between the acid temperature and matrix temperature
brings challenges to theories and applications, and the
details of the heat transfer between the acid and matrix
must be studied thoroughly. Relevant work can be left to
the future. Furthermore, the surface reaction rate k, is
deemed a function of the temperature T, which can be
expressed as,

Zol 1y
ks = ks() - efleto T )

(22)

Arrive at the
end of
iterations?

Finalize parameters

in which kg is the surface reaction rate at temperature Ty,
E, is the activation energy, and R, is the molar gas
constant [31]. As a result, the reaction rate also becomes
a function of T, and its expression is rewritten as
R(C,, T) in (21). Moreover, the molecular diffusion coeffi-
cient d,, is also affected by the temperature T, which can
be expressed as [30],

Ego1 1

dm = dm() : eIT‘;!(T_UiT)' (23)
d0 is the molecular diffusion coefficient at temperature Tj,.
The heat transfer model induced from the improved DBF
framework is called the thermal DBF framework for short.
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After solving a series of equations in the improved DBF
framework, the semi-implicit scheme can be used to solve
equation (21) for the temperature 7, which can be
expressed as,

(6" o0y T+ (1= ), 0.T) = (6,0, T + (1= §)p,0.T)

At
+ AV (u1+l¢r+lp‘f6f Tr+l)

T+1

-V (¢1+1/1f + (1 _ ¢1+1))¥S)VTI+1 _ pt+1v . ut+l + ‘uvi

¢1+1
T T+1
Vu+1+ n ur+1|2+p‘fF+ |u‘r+1|3
o K VK
Cf+1
+ kZ‘Fla/i"Fl (C;Jrl _ - ! - ) }'{r(Tt)7
G

and the third linear system is formed. It is noted that equa-
tion (7) is put into (21) in the above expression. When using
the thermal DBF framework to simulate matrix acidization,
the flowchart is shown in Figure 3. It can be seen in the fig-
ure that the molecular diffusion coefficient d,, and the sur-
face reaction rate k, are calculated first, followed by a series
of computations in the improved DBF framework, and the
computation of the temperature is performed last. It can
also be seen that by using the variables ¢, u, p, and Cj,
the improved DBF framework changes the main variable
T in the energy conservation equation, while the energy
conservation equation also changes the variables of the
improved DBF framework by T, or k, and d,,, which can
be seen in Figure 4. From these results, it can be determined
that the thermal DBF framework considers all three kinds
of conservation laws: mass, momentum and energy, and
should simulate matrix acidization more reasonably.

At the end of this section, the relationships among the
Darcy framework, the DBF framework, the improved

4 Discretization and parallelization

Possible discretization methods include the multipoint flux
approximation method and the hybrid finite volume
method. The multipoint flux approximation method is
“designed to give a correct discretization of the flow equa-
tions for general nonorthogonal grids as well as for general
orientation of the principal directions of the permeability
tensor” [36], while the hybrid finite volume method is “the
ideal method for computing discontinuous solutions arising
in compressible flows” [37]. Since this work considers orthog-
onal grids and incompressible flows, the finite difference
method should be a better fit from all possible discretization
methods. In the following discussion, the finite difference
method is used to discretize the model, and the experiment-
ing field approach [38-42] is used to compute the coeffi-
cients in the two linear systems. Although these
approaches have been used in the 2D simulation of matrix
acidization in our previous work [19], it is necessary to
expand them to the 3D simulation, which is a focus of this
work.

The equations used in the thermal DBF framework are
discretized one by one according to the flowchart shown in
Figure 3. For simplicity, suppose there is a 3D Cartesian
grid. For equations (8), (12), (19), (22), and (23), every
variable is imposed at the center of the cube. For
equation (17), except the variable w, the other variables
are imposed at the center of the cube. However, ||u|| should
also be imposed at the center of the cube. Generally,
u = (u, u, u,) and its three components are imposed on
the faces of the cube. In other words, the z-direction
velocity u, is imposed on the z-direction face, which is ver-
tical to the z-axis. The processes of the ydirection velocity
u, and zdirection velocity wu, are similar. Thus, for a cube
with its a-coordinate ranging from ¢ to ¢ + 1, y-coordinate
ranging from j to j + 1 and zcoordinate ranging from
kto k + 1, there is,

2
ltll (g a0y = \/ (um,z’+1‘j+%,k+% - um,ﬂgmg) + (uwgmmg - uy‘i+%,jﬁk+%>

DBF framework and the thermal DBF framework can be
summarized. Initially, the Darcy framework is provided to
simulate matrix acidization and achieves great success. In
the framework, the communication between the pore scale
and Darcy scale advanced the progress of simulation. Then,
considering the clear fluid area that cannot be described accu-
rately by Darcy’s law, the Brinkman term and Forchheimer
term are introduced to the momentum conservation equation,
and the DBF framework is developed. However, this frame-
work cannot obey Newton’s second law, and a modification
is made, thus suggesting the improved DBF framework. Until
now, all the frameworks have only considered two kinds of
conservations, i.e., mass conservation and the momentum
conservation, which is insufficient. Thus, based on the
improved DBF framework, a third kind of conservation,
energy conservation, is introduced in the thermal DBF frame-
work. Their relationships can also be seen in Figure 5.

2 2
+ (“z.wg,jﬁkﬂ - uz,H%,jJr%,k) )

with the subscript representing the coordinate. Equation
(2) is discretized on the faces of the cube, with the a-direc-
tion momentum equation discretized on the z-direction
face, the gydirection momentum equation discretized on
the y-direction face and the zdirection momentum equation
discretized on the zdirection face. Thus, the porosity and
permeability on the faces should be known. However, from
the discussion above, it can be seen that the porosity and
permeability are imposed at the center of the cube. Thus,
the harmonic method must be applied to obtain their values
on the faces. It is emphasized that the advection term in
equation (2) is discretized with the upwind scheme. After
performing all the operations, the z-direction momentum
equation imposed on the a-direction face with its z-coordi-
nate being 4, y-coordinate ranging from jto j+ 1 and zcoor-
dinate ranging from k to k + 1 can be discretized as
below:
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in which %, and %, represent the y-direction average veloc-
ity and zdirection average velocity on the face, respectively.
u, is computed as the average of the ydlrectlon velocities
on the four ydirection faces adjacent to the face. The com-
putation of @, is similar. g, is the z-direction component
of g. It is noted that in the above equation, it is assumed
that,

T
U, .. k+%>07 ut

z,z,]—%, 1k+1 >0 and uz z]+1 k+1 > 0.

Y:1,+5
The discretization of the y-direction and zdirection momen-
tum equations is similar. Under the Neumann boundary
condition for pressure, the momentum conservation equa-
tion on the boundary degenerates to,

U = Uup,

in which up is the boundary normal velocity. The dis-
cretization of equation (3) is straightforward. Equation
(4) is discretized at the center of the cube. For a cube with
its 2-coordinate being from ¢ to ¢ + 1, y-coordinate being
from j to j + 1 and zcoordinate being from k to k + 1,
the left-hand side of equation (4) is discretized as,

¢1+1 T+1 _ d)r T
A R D A Lar ks fi k)
At
uH‘l T+1 _ ur+1 T+1
i R e o B N g N
Az
Tan T+1 — ! T+1
i Yt Lk T Ltk T it ktd T itk
Ay
UT+1 t+1 _ ur+1 T+1
+ it g k1 i kL RTITE A RIE NI
b}
Az

with the upwind scheme being used to obtain the concen-
tration value on the face of the cube, since the computed
concentration is imposed at the center of the cube. If D, is
written as,

D, = D?/r Dw/ D?/z )
Dz.T, Dzy Dzz

the first term of the right-hand side of equation (4) can be
discretized as,
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T 1] stands for the average value of —*

The notation

on the z-direction face with its a-coordinate being i + 1,
which is calculated by the four ﬂ on the four ydlrectlon
faces adjacent to the - dlrectlon face. The meanings of
the other similar notations are analogous. The discretiza-
tion of the second term of the right-hand side of equation
(4) is trivial and thus not given here. It is easy to see that
the stencil pattern of T is the same as Cj thus, the dis-
cretization of equation (21) holds the same philosophy as
that of equation (4), and the details are no longer given.
To use the experimenting field approach to compute the
coefficients of the three linear systems, the unknowns to be
computed can be divided into four fields: the velocity field,
the pressure field, the concentration field, and the tempera-
ture field. If there is a 3D domain and it can be divided into
eight cubes as shown in Figure 6, then the velocity field can
be represented as arrows on the faces of the cubes, and the
pressure field, concentration field and temperature field can
be represented as points at the centers of the cubes. Each a-
momentum, y-momentum, and zmomentum conservation
equation can be discretized on each z-direction, y-direction,

and zdirection face, respectively. Each mass conservation
equation, concentration balance equation, and energy con-
servation equation can be discretized at each center of the
cube. This kind of grid is called a staggered grid in CFD.
The experimenting field approach used in the 2D simulation
[19] is expanded to the 3D case directly, and the details are
no longer given in this work.

To capture the details of the configuration of the matrix
after acidization, a fine 3D grid is needed in the simulation,
which brings about a large number of cells in the 3D grid,
and as a result, it is necessary to introduce parallelization
in the simulation. In the first step, domain decomposition
must be performed on the 3D domain. The main purpose
of domain decomposition is to allocate the discretized equa-
tions to the processors. Suppose there is a 3D Cartesian grid
with nz, ny, and nz cubes in the 2, 1, and zdirections,
respectively, and there are npzx, npy, and npz processors in
the 2, 3, and zdirections, respectively. nx, ny, and nz are
supposed to be divisible by npz, npy, and npz, respectively.
Furthermore, it is stipulated that e 2 2, > 2, and

npy —

22 > 2. For the processor with the coordmate (I,J,K), the

npz
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Solve Eq. 23 for the molecular diffusion coefficient d,,
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-

Solve Eq. 19 for porosity ¢

-

Solve Eq. 8 for permeability K
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Solve Eq. 12 for the interfacial surface area per unit volume
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-
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Solve Eq. 17 for the local mass-transfer coefficient k: z
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Solve Eq. 2 and 3 for velocity u and pressure p

-

Solve Eq. 17 for the local mass-transfer coefficient kX*!
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Solve Eq. 4 for concentration C,

-

Solve Eq. 21 for temperature T
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Finalize parameters
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Fig. 3. The flowchart of the thermal DBF framework.
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Fig. 4. The interaction of the improved DBF framework and the energy conservation equation.
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Darcy and Forchheimer term DBF
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framework framework

Fig. 5. The relationship among the Darcy framework, the DBF
framework, the improved DBF framework, and the thermal
DBF framework.
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Fig. 6. Staggered grid.

following equations discretized at the centers of the cubes
with the coordinate (4, j, k) are allocated to it,
n

IT-1)x2y1<i<Ix ™,
npx npx

J-D)x—Li1<j<ix—2L,
npy npy
(K—1)x 2 41<k<Kx—=,
npz npz

1<I<npzr, 1<J<npy, 1<K<npz

and the equations discretized on the z-direction faces with
the coordinate (4, j, k), which are the z-momentum conser-
vation equations, are allocated to it as,

(I-1)x 2 41<i<Ix—= 43,
npx npx
(J—l)xﬂ+1§jgjxﬂ7
npy npy

(K-1)x 2 41<k<Kx-2,
npz npz

s 1, if I =npz

o 0, otherwise

1<I<npzr, 1<J<npy, 1K< npz

The allocation strategy of the y-momentum conservation
equations and the zmomentum conservation equations is
similar. After the allocation of the discretized equations,
the variables that are needed by the equations should also
be allocated to the processors, with some variables being
communicated among the processors. By the domain
decomposition strategy, each discretized equation can be
allocated to only one processor, with the benefits that it
can keep load balance of the processors and reduce the com-
munication cost among the processors.

After domain decomposition, a suitable parallel solver
can be leveraged to solve the three linear systems. In the
2D parallel simulation of the work [19], the parallel solver
HYPRE is used. There are many numerical algorithms that
can be used in HYPRE, such as the Generalized Minimal
RESidual method (GMRES) and the Algebraic Multigrid
Method (AMG). However, few simple cases can be solved
by these algorithms. As a result, more complicated cases
have to be solved by the direct solver UMFPACK [43] in
a serial code, which limits the application of the parallel
code. The main issue of these complicated cases is that their
condition number is too large. In this work, another parallel
solver called MUMPS is used, which can solve complicated
cases that HYPRE cannot solve. With the help of MUMPS,
most of the cases for the improved DBF framework and the
thermal DBF framework can be run in parallel, which
makes the fine 3D simulation feasible. In MUMPS; a vari-
ant of the Gaussian elimination method — the multifrontal
method — is used. This method can solve a large sparse sys-
tem of equations in parallel: the equation system is first
divided into independent subsets, which are called fronts,
and then the fronts are processed on different processors
simultaneously. It is emphasized that unlike HYPRE,
which is an iterative solver, MUMPS is a direct solver,
which makes the time step larger in the simulation. More-
over, the direct solver can solve the linear system directly,
with no need to add a pseudo parameter e in the mass con-
servation equation, which is the case in the work [19].
There, e is introduced to ensure a linear system with an
invertible coefficient matrix; otherwise, the iterative solver
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HYPRE cannot solve it. However, the introduction of e
changes the attribute of the flow in matrix acidization from
incompressible to slightly compressible, which contradicts
the real case and makes the DBF framework less reliable.
Last, with the help of FORTRAN 90 and MPI, a series of
2D and 3D parallel codes are developed. In the following
sections, these codes are used to run a series of numerical
experiments on the Shaheen supercomputer [44].

5 Verification of the improved DBF framework
5.1 3D shear-driven cavity flows

It can be seen that the model of shear-driven cavity flows
[45] is in fact a reduction of the improved DBF framework,
since equations (2) and (3) reduce to the following two
equations:

ou

1 2
E—&-V-uu——Vp—&-EV u,

V.-u=0,

which describes shear-driven cavity flows. Therefore, the
3D code of the improved DBF framework can be used to
simulate 3D shear-driven cavity flows identically as long
as some parameters are simplified, such as ignoring the
concentration balance equation. In terms of 3D shear-
driven cavity flows, a laminar incompressible flow is inside
a unit cube cavity whose y-direction top surface is moved
by an z-direction uniform velocity of 1 m/s, as shown in
Figure 7. The Reynolds number (Re) is 100. The gravity
effect is ignored. The grid has 20° cubes. The simulation
results of stable flows are shown in Figures 8 and 9,
respectively. The two figures display the velocity profiles
of the z-direction component on the vertical centerline
and the y-direction component on the horizontal center-
line of the plane z = 0.5. The simulation results can be
compared with Figure 6 in [45]. To the naked eye, we
cannot clarify their differences, which proves the correct-
ness of the 3D code of the improved DBF framework to
some extent.

5.2 2D linear flows

The 2D linear flows in a previous work [17] are simulated
again by the improved DBF framework, with more or less
the same experimental parameters, which are shown in
Table 2. In [17], the flows are simulated with the Darcy
framework [15], but Navier-Stokes fluid dynamics are con-
sidered. Thus, among all the state-of-the-art models devel-
oped from the Darcy framework, the model is close to the
improved DBF framework, and its results can be compared
with the results from the improved DBF framework. It is
noted that the subscript 0 represents the initial value. ¢,
represents the initial average porosity in the medium, with
a heterogeneity magnitude of 0.03. The gravity effect is
ignored. In the 2D simulation, there is a rectangular
matrix of 0.1-m length (z-direction) and 0.04-m width

|
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y
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}
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\
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Fig. 7. 3D shear-driven cavity flow configuration and coordi-
nate system [45].
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Fig. 8. Velocity profile of the 2-direction component (u) on the
vertical centerline of the plane z = 0.5.

(y-direction). Acid flow is injected into the matrix from
the left boundary and goes out of the matrix from the right
boundary, which means that the injected velocity is
imposed on the left boundary, and the Dirichlet boundary
condition for pressure is imposed on the right boundary.
It is stipulated that the pressure imposed on the right
boundary is the same as the initial pressure in the matrix.
For concentration, the Dirichlet boundary condition is
imposed on the left boundary, and the no-flux boundary
condition is imposed on the right boundary. The upper
and lower boundaries are closed for both pressure and con-
centration, which means that no-flow, no-flux boundary
conditions are imposed. The acid concentration is initially
zero in the matrix. The injected velocity of the acid
flow of 0.5 M hydrogen chloride (HCI) on the left bound-
ary is changed in the simulation, which leads to different
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Fig. 9. Velocity profile of the y-direction component (v) on the
horizontal centerline of the plane z = 0.5.

Table 2. Experimental parameters.

Parameter Value

o 1.52 x 10" Pa

T 1.0 x 107° kg/(m-s)
K, 9.869233 x 107'% m?
bo 1.8 x 107!

oy 1.01 x 10® kg/m?

Cy 5.0 x 10% mol/m®
Ay 3.6 x 1077 m?/s

%os 5.0 x 107!

Ax 5.0 x 107"

- 1.0 x 107*

To 1.0 x 10°%m

o 5% 10 m™!

o 5.0 x 10~% kg/mol
s 2.71 x 10* kg/m®

ks 2.0 x 107° m/s

Shie 3.66

Af 5.8 x 107" W/(mK)
s 5.526 W/(m-K)

0; 4.184 x 10* J/(kg'K)
0, 2.0 x 10* J/(kg'K)
kg 2.0 x 107 m/s (298 K)
Ao 3.6 x 1077 m?/s (298 K)
E, 5.02416 x 10" J/mol
R, 8.314 J/(K-mol)

configurations of the matrix after acidization. The grid has
180 cells in the a~direction and 72 cells in the y-direction,
which is the same size as that in [17]. Since the author of
[17] declared that their grid is fine enough to describe
matrix acidization, our grid is also capable of doing so.

- Acid-efficiency Curve
» 19.80 *

PVBT
T

o 7.27
6.62 * Y
x
6 561 547
4.63 454 E:

L L L h L L L
1.67e-7 4.17e-7 1.67e-6 4.17e-6 7.17e-6 1.67e-5 4.17e-5 1.67e-4

Injected Velocity (m/s)

Fig. 10. Acid-efficiency curve of the 2D linear flows. The
numbers beside the points represent the values of PVBT.

Table 3. Time steps for the injected velocities of the 2D
linear flows.

Velocity (m/s) Time step (s)

1.67 x 1077 1579
417 x 1077 643
1.67 x 107 150
417 x 107° 60
7.17 x 107° 16
1.67 x 107° 16.5
417 x 107° 6.43
1.67 x 107* 1.5

The Pore Volumes to BreakThrough (PVBT) of differ-
ent injected velocities are given in Figure 10, and the curve
in the figure is called the acid-efficiency curve. Break-
through is defined as the moment when the pressure drop
across the medium drops to 1% of its initial value [46]. In
Figure 10, it can be seen that the acid-efficiency curve in
this work matches the corresponding curve in Figure 8 of
[17]  well when injected velocity ranges from
417 x 107" m/s to 1.67 x 10~* m/s. When the injected
velocity is 1.67 x 1077 m/s, its corresponding PVBT is
6.62, which is not reasonable. The injected velocity of
1.67 x 107" m /s is very slow, which may indicate a face dis-
solution pattern. According to [16], under such conditions,
approximately 100 million grid cells are needed to capture
the face dissolution pattern accurately, which indicates that
our grid is not fine enough to output accurate results.
Unfortunately, due to the limits of supercomputing power,
a simulation based on 100 million grid cells cannot be fin-
ished in a reasonable time, so it is not performed in this
work. The minimum PVBT is 4.54, which is achieved at
an injected velocity of 4.17 x 107° m/s.

A fixed time step is assumed for the simulations, and the
time steps corresponding to the injected velocities are
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Fig. 11. Porosity profiles at breakthrough for five different injected velocities of the 2D linear flows. (a) u, = 4.17 X 1077 m/s, face
dissolution. (b) u, = 1.67 x 107% m/s, conical wormhole. (c) u, = 4.17 x 107% m/s, dominant wormhole. (d) u, = 7.17 x 107% m/s,
ramified wormhole. (e) u, = 1.67 x 10~° m/s, uniform dissolution.

shown in Table 3. It is emphasized that all the time steps
ensure that the Courant number is less than one. A sensitiv-
ity test is performed when each of the time steps is increased
by two times to assure that the Courant number is less than
one and all the values of PVBT are the same, which demon-
strates that the simulation results in Figure 10 can be
deemed the true results.

The porosity profiles at breakthrough corresponding to
five different injected velocities are given in Figure 11.

In the figure, it can be seen that five dissolution patterns
appear in their turns when the injected velocity increases.

5.3 3D linear flows

The simulation of 2D linear flows has achieved reasonable
results, and it can be expanded to the simulation of 3D lin-
ear flows by adding another dimension to the matrix, with a
length of 0.04 m. After this addition, a 3D matrix is created
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Table 4. Time steps for the injected velocities of the 3D
linear flows.

Velocity (m/s) Coarse time step (s) Fine time step (s)

1.04 x 1077 9322 4661
3.04 x 1077 3611 /

7.04 x 1077 984 492
1.04 x 1076 593.2 296.6
3.04 x 107° 237.2 118.6
7.04 x 107° 139 69.5
1.04 x 107° 91.6 45.8
1.04 x 107* 21.2 /

with a 0.1-m length in the zdirection and 0.04-m length in
the z- and gy-directions, respectively. According to [17], dis-
solution patterns from a conical wormhole to uniform disso-
lution can be captured accurately only when the grid has at
least 180 cells in the zdirection and 72 cells in the a-direc-
tion and y-direction. However, the face dissolution pattern
requires a finer grid. To ensure that the Courant number
is less than one, the number of iteration steps can be large,
which brings about a long simulation period. Even though

0.06 0.07 0.08 0.09 0.1

the code runs on Shaheen, at least one month is needed
for the fastest case to achieve breakthrough. Thus, that
kind of grid currently exceeds computing capacity, and a
coarser grid is thus given in this work. The number of cells
is divided by two in each dimension, and a coarser grid,
with 90 cells in the zdirection and 36 cells in the a-direction
and gy-direction, is used to simulate the 3D linear flows.
Although the coarser grid is not fine enough to capture
all dissolution patterns accurately, the simulation results
can still be used to verify the correctness of the 3D code
of the improved DBF framework. The acid flow is injected
into the matrix along the zdirection. The other experimen-
tal parameters and boundary conditions are the same as the
2D simulation.

The time steps for different injected velocities are shown
in Table 4. There are two groups of time steps, with the val-
ues of the second column being two times the corresponding
values of the third column, the purpose of which is to test
the convergence of the results. All the time steps guarantee
that the Courant number is less than one. It is emphasized
that due to the limits of Shaheen, a code can run on the
supercomputer for three days at most. Therefore, simula-
tions for velocities of 3.04 x 1077 m/s and
1.04 x 10 *m /s at fine time steps are not performed since
their simulation time to achieve breakthrough is beyond
three days. The acid-efficiency curves for both groups of
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Fig. 12. Acid-efficiency curves of the 3D linear flows. The numbers beside the points represent the values of PVBT.

time steps are shown in Figure 12. The numbers beside the
points represent the values of PVBT, with the blue points
coming from coarse time steps and the red points coming
from fine time steps. In the figure, it can be seen that the
values of PVBT from coarse time steps are very close to
those from fine time steps, which demonstrates the conver-
gence of the results. Moreover, the values of PVBT tend to
decrease with finer time steps. It can be expected that with
finer grids, smaller PVBT values can be achieved. The min-
imum PVBT is 3.567, which is achieved at the injected
velocity of 1.04 x 107% m/s. This coincides with the work
[17], where the minimum PVBT is achieved at the injected
velocity of 0.1 cm®/min, which is the same as 1.04 x
10~% m/s. However, in [17], the minimum PVBT is approx-
imately two, which is smaller than ours due to the finer
grid. Except for the points at the injected velocity of
1.04 x 10°" m/s, the shape of the acid-efficiency curves
matches the corresponding shape in the [17] well. The drop
in PVBT values at that velocity is due to the inaccuracy of
the simulation when the grid is not fine enough, which can
also be seen in the simulation of 2D linear flows above. Fur-
thermore, the minimum PVBT of 2D simulations is larger
than that of 3D simulations, and the injected velocity of
2D simulations at which the minimum PVBT is achieved
is also larger than that of 3D simulations, which conforms
to the qualitative trends in [15].

These effects of the injected velocities on dissolution
patterns are shown in Figure 13. It can be seen in the figure
that five different dissolution patterns can be simulated.

6 Verification of the thermal DBF framework
6.1 Isothermal conditions

The correctness of the improved DBF framework is a major
premise of the thermal DBF framework, which has been

verified in the last section. The correctness of the thermal
DBF framework is discussed in this section. First, an exper-
iment is carried out with isothermal conditions in which the
injected acid temperature and the initial matrix tempera-
ture are the same. Since 2D experiments are eligible to ver-
ify the correctness of the model, the grid of the 2D linear
flows is used again, with 180 x 72 cells in total. 3D exper-
iments are left to future work. To compare the numerical
results with the chemical results of the “effects of tempera-
ture” experiment in [32], three temperatures are chosen:
295 K, 323 K, and 353 K, which correspond to 22 °C,
50 °C, and 80 °C in [32]. The boundary conditions and
initial conditions for pressure and concentration are the
same as those in the 2D linear flow experiment above.
In addition, for temperature, adiabatic conditions are
applied, which means that except for the acid injection
boundary (left boundary), all the other boundaries are
adiabatic boundaries. The experimental parameters can
be seen in Table 2. It is noted that the values of d,, and
k,in Table 2 are not used in the experiments of this section,
since they are variables in the thermal DBF framework. All
the parameters are more or less the same as those in the
“effects of temperature” experiment of [32].

The values of PVBT for different injected velocities and
temperatures are shown in Table 5. It can be seen in the
table that when the temperature is 295 K, the minimal
PVBT is 4.350, which is achieved at the optimal injected
velocity of 2.67 x 107° m/s; when the temperature is
323 K, the minimal PVBT is 4.362, which is achieved at
the optimal injected velocity of 9.17 x 10~° m/s; when
the temperature is 353 K, the minimal PVBT is 4.416,
which is achieved at the optimal injected velocity of
4.17 x 107° m/s. To verify the convergence of the results,
both coarse-time-step and fine-time-step results are com-
puted. The coarse time step is two times the fine time step
for every injected velocity. All the time steps can guarantee
that the Courant number is less than one. It can be seen
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Fig. 13. Porosity isosurfaces at breakthrough for five different injected velocities of the 3D linear flows. (a) u, = 3.04 x 10”7 m/s, face
dissolution. (b) u, = 7.04 x 10" m/s, conical wormhole. (c) u, = 1.04 x 10~® m/s, dominant wormhole. (d) u, = 3.04 x 10° m/s,
ramified wormhole. (e) u, = 1.04 x 107> m/s, uniform dissolution.
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Table 5. Values of PVBT. The first row represents injected velocities, and their unit is m/s.

4.17 x 1.67 x 2.67 x 4.17 x 7.17 x 9.17 x 1.67 x 4.17 x 1.67 x 4.17 x 717 x
1077 107° 10°° 107° 1079 1079 107° 107° 10 1074 1074
295 K coarse 6.750 4.387 4.352 4.982 5.703 5.553 5.789 8.465 / / /
time step
295 K fine time 6.745 4.385 4.350 4.981 5.703 5.552 5.788 8.465 / / /
step
323 K coarse / 7.348 6.387 5.530 4.602 4.364 4.473 5.708 6.917 11.771 17.666
time step
323 K fine time / 7.344 6.383 5.528 4.601 4.362 4.471 5.708 6.916 11.771 17.665
step
353 K coarse / / / / 7.321 6.952 5.785 4.418 5.844 5.669 6.438
time step
353 K fine time / / / / 7.319 6.947 5.783 4.416 5.843 5.668 6.437
step
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Fig. 14. Acid efficiency curves of different temperatures in isothermal conditions.

in the table that the differences of the coarse-time-step and
fine-time-step results are very small, which means conver-
gence is achieved. The values of PVBT from fine time steps
constitute the acid-efficiency curves of different tempera-
tures in Figure 14. Since these experimental parameters
hint that the injected acid is 0.5 M HCI, the matrix is lime-
stone; Figure 14 is compared with Figure 6 in [32]. In the
two figures, it is evident that both the minimal PVBT
and the optimal injected velocity increase when the temper-
ature increases, which means that the numerical simulation
results can be observed in labs. It is noted that when the
injected velocity is below approximately 4.17 x 107% m/s,
the values of PVBT increase with increasing temperature;
when the injected velocity is above approximately 4.17 x
107 m/s, the values of PVBT decrease with increasing
temperature, which means that the former is a mass-
transfer controlled regime and the latter is a kinetically

controlled regime. The porosity profiles at breakthrough
in the optimal injected velocity are given in Figure 15 for
the three different temperatures. It can be seen in the figure
that with the increase of the temperature, the diameter of
the wormbhole also increases, which matches the observation
in Figure 7 of [32]. This also explains why the minimal
PVBT value increases with increasing temperature. In fact,
the transferring efficiency of HCI decreases due to increased
acid consumption on the walls of the wormhole, which
brings about the phenomenon above.

6.2 Nonisothermal conditions

Isothermal conditions are common in labs. However, in field
cases, the injected acid temperature is often different from
the initial matrix temperature. Due to the geothermal
factor, the initial matrix temperature may be higher than
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Fig. 15. Porosity profiles at breakthrough in the optimal injected velocity for three different temperatures. (a) 295 K,

u, = 2.67 x 10°% m/s. (b) 323 K, u, = 9.17 x 10™® m/s. (c) 353 K, u, = 4.17 x 107° m/s.

the injected acid temperature. Thus, to expand the simula-
tions from labs to fields, nonisothermal conditions are con-

Table 6. Values of PVBT for nonisothermal conditions.

sidered. In the experiment, four cases with different Injected acid Tnitial matrix PVBT
combinations of the injected acid temperature and initial  {erperature (K) temperature (K)

matrix temperature are simulated, with an injected velocity

of 9.17 x 10° m/s, and the values of PVBT are shown in 295 323 5.552
Table 6. The other experimental parameters are the same 353 323 6.948
as the isothermal conditions. All the results are from the 323 295 4.362
fine-time-step simulations. It can be seen in Table 6 that 393 353 4.362

when the injected acid temperature is fixed at 323 K, the




Y. Wu et al.: Oil & Gas Science and Technology — Rev. IFP Energies nouvelles 76, 8 (2021)

Porosity field in porous media

21

Porosity

0.04 -
0.9
0.035
0.8
0.03
0.7
0.025
L— 0.6
£ oo
> 05
0.015
04
0.01
03
0.005
0.2
0 - " =
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
X(m)
(a)
004 Porosity field in porous media Porosity
0.9
0.035
0.8
0.03
0.7
0.025 -
e~ 0.6
£ oo
> 05
0.015 '
0.4
0.01
0.3
0.005
) 02
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
X(m)
(b)
0.04 Porosity field in porous media Porosity
0.9
0.035
0.8
0.03
0.7
0.025
—_ 0.6
£ o0
> 05
0.015
0.4
0.01
0.3
0.005
0.2
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
X(m)
(c)

Fig. 16. Porosity profiles at breakthrough for three different initial matrix temperatures. The injected acid temperature is 323 K, and
its injected velocity is 9.17 x 107% m/s. (a) 295 K. (b) 323 K (c) 353 K.

changed initial matrix temperatures will not change the val-
ues of PVBT. For three different initial matrix tempera-
tures: 295 K, 323 K, and 353 K, the values of PVBT are
the same as 4.362. However, when the injected acid temper-
ature is changed, even though the initial matrix tempera-
ture is unchanged, the values of PVBT will be changed,
which is evident from the first two rows in Table 6. From
the two rows, it can be further seen that the two PVBT
values are nearly the same as the corresponding values in
the isothermal conditions, which also demonstrates that
the injected acid temperature, instead of the initial matrix

temperature, has an effect on the PVBT value. Thus, the
injected acid temperature governs the PVBT value and
can be a design parameter in matrix acidization, which
can also be concluded from [31]. The porosity profiles at
breakthrough for three different initial matrix temperatures
are given in Figure 16, where the same kind of porosity pro-
files can be seen clearly. Thus, Figure 16 demonstrates that
the temperature of the initial matrix is not a key factor
affecting matrix acidization once again.

To learn the reason why the injected acid temperature
has such a significant effect on matrix acidization, the
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change in the average matrix temperature with time is
investigated. The initial matrix temperature is set as
323 K, and the injected acid temperatures are 295 K and
353 K, respectively, which are also the cases represented
by the first two rows in Figure 6. The history of the average
matrix temperature from the beginning to breakthrough is
shown in Figure 17. It can be seen in the figure that the
matrix temperature becomes more or less the same as the
injected acid temperature immediately after acidization
begins and continues to be similar until breakthrough. This
explains why the initial matrix temperature has almost no
effect on matrix acidization.

After the discussion above, it is concluded that the ther-
mal DBF framework can simulate reasonable numerical
results, which are verified by the numerical and chemical
experiments of other works. This indicates that the thermal

DBF framework can be an effective tool in the field of
matrix acidization.

7 Performance evaluation

The performance of the 2D parallel code was evaluated in
[19], and this work tries to evaluate the performance of
the 3D parallel code. The test is performed on the 3D grid
used above. Moreover, the number of iterations is set to
100 to save supercomputing resources. Meanwhile, since
the sparsity pattern of the coefficient matrix of the linear
system of the energy conservation equation is the same as
that of the concentration balance equation, evaluating both
of the linear systems is a redundancy. Therefore, only the
linear system of the concentration balance equation is
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evaluated, which means the performance of the 3D
parallel code of the improved DBF framework is evaluated
in this section. This evaluation result can foresee the
performance of the 3D parallel code of the thermal DBF
framework.

The experiment of the improved DBF framework in the
verification section is performed again, and the performance
results are shown in Figure 18. It can be seen in the figure
that the solver time takes up most of the run time (>98%),
which is reasonable. Except for the solver code, the other
parts of the code only perform simple operations such as fill-
ing arrays and communicating data among processors,
which will not cost much time. Moreover, the run time
decreases with the increase in the number of processors,
which means a certain level speedup can be achieved.
However, when the number of processors increases to 144,
further speedup seems impossible. The similar scalability
of the MUMPS solver can be seen in [47].

8 Conclusion and future work

Since Wu et al. [19] contributed the DBF framework to the
field of matrix acidization, improvements to the framework
have been ongoing. This work is such as endeavor and tries
to correct a defect in the momentum conservation equation
of the DBF framework and maintain the momentum con-
servation equation when the porosity is changed. Further-
more, by introducing a direct solver called MUMPS, the
pseudo parameter e in the mass conservation equation
can be deleted, which keeps the incompressible attribute
of the acid flow in matrix acidization and thus makes the
framework more reasonable. In addition, the simulation
flowchart is also changed in this work, which is another cor-
rection to the DBF framework. After these revisions, the
new framework can be called the improved DBF framework
for short. The improved DBF framework is realized by 2D
and 3D parallel codes with the help of MPI and FORTRAN
90 and verified by comparison with a series of previous
works. It is emphasized that the 3D simulation results of
the improved DBF framework are given for the first time
in this work. The improved DBF framework can simulate
similar numerical results with [17] and [45], which demon-
strates its reliability.

The correctness of the improved DBF framework makes
it feasible to develop a thermal DBF framework based on
this verification. In addition to the mass conservation law
and momentum conservation law, which are included in
the improved DBF framework, the thermal DBF frame-
work also considers the energy conservation law and thus
introduces the energy balance equation to the improved
DBF framework. Verification to the thermal DBF frame-
work is done under isothermal conditions and nonisother-
mal conditions, and the numerical simulation results
match the conclusions from other chemical and numerical
experiments such as [31] and [32]. Therefore, the thermal
DBF framework is reasonable and trustable.

Since the accuracy of matrix acidization simulation is
highly dependent on the size of the grid, very fine grids
are required for trustable results, which brings about the

need to develop parallel codes to finish simulations in
reasonable time. However, parallelizing the improved
DBF framework and thermal DBF framework is not an
easy task due to their complex equation systems. With
the help of MPI and FORTRAN 90 and the experimenting
field approach, this work overcomes these difficulties and
develops scalable parallel codes, which is another large con-
tribution to the field of matrix acidization.

With the reliable improved DBF framework and ther-
mal DBF framework, a series of numerical investigations
on matrix acidization can be carried out in the future,
and more reasonable results are expected.
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