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A B S T R A C T   

Two-phase flow in fractured and karstified porous media subject to coupled hydro-mechanical conditions is an 
important issue for oil recovery in carbonate reservoirs. However, due to the co-existence of porous media flow, 
fracture flow and free flow, as well as their couplings with geomechanical deformation, modeling the behavior of 
fractured karst systems remains challenging. In this work, a novel coupled hydro-mechanical model for simu-
lating the complex behavior of fractured and karstified porous media is developed. Two-phase Darcy’s equation 
is used to describe fluid flow in both matrix and fractures, while the free flow in cavities is considered based on 
an assumption of phase instantaneous gravity segregation. A modified Barton-Bandis’s constitutive model is used 
to mimic the nonlinear fracture deformation. The cavity deformation is solved based on the fluid pressure on the 
cavity boundaries. A mixed finite volume-finite element method and a fixed-stress iterative splitting method are 
adopted to numerically solve the coupled system of equations. The model is then applied to a series of 2D and 3D 
problems to unravel the impacts of fractures and cavities on two-phase flow and geomechanical deformation in 
fractured karst systems. The results indicate that cavities hinder water breakthrough due to storage effects, while 
water may quickly migrate through highly conductive fractures. Cavities tend to dominate the flow and me-
chanical processes even though fractures are present as well. Significant stress concentration is observed around 
cavities. Furthermore, the results of 3D cases imply that phase gravity segregation in cavities leads to lower water 
saturation in the area above cavities and delays water breakthrough.   

1. Introduction 

Carbonate reservoirs have played an important role in providing 
energy for the global demand. Understanding the coupled hydro- 
mechanical processes involving two-phase flow in the subsurface is 
critical for predicting and optimizing oil recovery in carbonate reser-
voirs. However, different from conventional homogenous porous media, 
carbonate reservoirs are often characterized by multiscale porosity 
structures, including porous matrix, natural fractures and karstified 
cavities.1,2 The co-existence of porous media flow, fracture flow and free 
flow as well as their couplings with the mechanical deformation in such 
complex systems, renders hydro-mechanical modeling of fractured karst 

systems very challenging. 
In the past, several models have been developed to study fluid flow in 

fractured vuggy media, such as equivalent continuum model,3–5 triple 
continuum model,6,7 and discrete fracture-vug model.8–10 The equiva-
lent continuum model treats the system as a single effective medium. 
The upscaling approaches, such as the homogenization theory3,4 and 
volume averaging method,5 are usually used to obtain the effective 
anisotropic permeability tensor. The advantages of such an equivalent 
continuum model include the simple data requirement and high 
computational efficiency, but the interactions among matrix, fractures 
and cavities are highly simplified by using effective or equivalent pa-
rameters. It neglects numerous fine-scale details inherent in 
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high-resolution geological models, which should be used with caution 
when fine-scale structures have significant impacts on the overall flow 
behavior.11 The triple continuum model characterizes the fractured 
karst media by dividing the entire domain into three superimposed and 
interacting subdomains (i.e. matrix, fracture, and cavity), and 
inter-porosity flow functions are used to couple the three subsystems.7 

However, due to the simplifications on the fracture-cavity configuration, 
the triple continuum model is not well suited for the modeling of a small 
number of larger-scale fractures and cavities, which may dominate the 
flow.12 To overcome these limitations, the discrete fracture-vug model 
has been developed to explicitly model fractures and cavities. In this 
method, Darcy’s law is applied for solving the flow in porous rock and 
fractures, while Navier-Stokes equations are used for analyzing the free 
flow in cavities. The Beavers-Joseph-Staffman (BJS)13,14 interface con-
ditions are adopted to couple the two different governing equations. 
Nevertheless, most of discrete fracture-vug models were focused on 
single-phase flow, except for a few studies that studied two-phase 
porous-free flow in a highly simplified system involving simple cavity 
geometry and no fracture.15–21 

As the structures of weakness in fractured karst media, fractures and 
cavities are prone to significant deformation under in-situ stress load-
ings. To properly describe the fracture deformation under normal and 
shear stresses, a number of constitutive models have been devel-
oped.22–29 Among these models, the empirical model proposed by Bar-
ton and Bandis25 is widely used, which considers the peak shear 
strength, fracture roughness degradation, and dilation in pre-peak and 
post-peak stages. Asadollahi and Tonon29 further improved the Bar-
ton-Bandis’s model to better estimate the peak shear displacement and 
shear dilation. Such a fracture constitutive model has been implemented 
into several numerical methods, such as distinct element method 
(DEM),30,31 finite element method (FEM),32–36 combined finite-discrete 
element method (FDEM),37,38 and extended finite element method 
(XFEM),39–41 to simulate the geomechanical deformation of fractured 
rocks. The coupling with flow can be further implemented based on 
hydro-mechanical calculation. For example, zero-thickness interface 
elements can be easily incorporated into standard FEM programs, and 
integrated with the discrete fracture model (DFM) using the same grid 
structure42 for flow simulation. On the other hand, several studies have 
been conducted to analyze the deformation of cavities. Lewandowska 
and Auriault43 developed an equivalent continuum model for 
hydro-mechanical modeling of porous media with single fractur-
e/cavity. The homogenization method is used to derive the equivalent 
parameters, such as equivalent permeability and mechanical properties. 
Yan et al.44 further improved the equivalent continuum model to 
consider multiple fractures and cavities. However, the previously 
mentioned limitations of the equivalent continuum method hold for 
these coupled models. Recently, Zhang et al.45 developed a numerical 
method to explicitly simulate the coupled hydro-mechanical behavior of 
both fractures and cavities. In their method, cavities were treated as 
virtual volumes of equal pressure in each cavity, and fractures were 
represented as thin layers requiring local grid refinement. Cavities were 
assumed incompressible during each time step, which, however, may 
cause numerical instability. The high computational costs associated 
with refined grids also limit its applicability for complex fractured karst 
porous media. Moreover, to accurately solve the hydromechanical 
coupled problem, two solution strategies, i.e. fully coupled and 
sequential-implicit methods, are usually adopted. The fully coupled 
method is known by its unconditional stability and high accuracy, but 
requires careful implementation with substantial local memory re-
quirements, specialized linear solvers, and complicated code manage-
ment.39,46,52 Compared with the fully coupled method, the sequential 
methods have inherent advantages from the standpoint of custom-
ization, software reuse and code modularity, among which the 
fixed-stress split method has proven to be unconditionally stable and 
systematically developed by researchers.46–53 

It can be seen that significant efforts have been made to develop 

appropriate models for coupled hydro-mechanical modeling of fractured 
karst systems. However, to our best knowledge, hydro-mechanical 
modeling with two-phase flow calculation has not been achieved for 
fractured karst reservoirs due to the extremely high computational 
complexity, although coupled two-phase porous-free flow (without 
geomechanics) in fractured vuggy media15–19 and coupled two-phase 
flow and geomechanics in fractured media54 have both been studied. 
Therefore, the objective of this work is to develop an efficient coupled 
hydro-mechanical model for studying two-phase porous-free flow and 
geomechanics in fractured karst systems. Two-phase Darcy’s equation is 
solved to model fluid flow in both porous matrix and fracture networks, 
while the free flow in cavities is calculated based on phase instantaneous 
gravity segregation. The deformation of porous matrix is governed by 
the classical Biot’s poroelasticity theory. The modified Barton-Bandis’s 
model is used to describe the normal closure, shear deformation and 
shear-induced dilation of natural fractures. The fluid pressure is applied 
on the cavity boundaries when computing the deformation of cavities. 
Finally, a mixed finite volume method-finite element method 
(FVM-FEM) is adopted for space discretization and deriving numerical 
schemes: FVM together with DFM is used for solving flow, while FEM 
with zero-thickness interface elements is applied for calculating geo-
mechanics. The coupled problem is then iteratively solved by the 
fixed-stress split method. 

The rest of the paper is organized as follows: in section 2, the 
mathematical model for coupled two-phase flow and geomechanics in 
fractured karst porous media is presented; in section 3, detailed nu-
merical schemes and solution methods are formulated; in section 4, a 
validation of the proposed model is presented; in section 5, the model is 
applied to study a series of 2D and 3D problems; finally, a few conclu-
sions are drawn. 

2. Mathematical model 

In this section, the mathematical models that describe the two-phase 
flow and mechanical behaviors of fractured karst porous media are 
presented. 

2.1. Flow governing equations 

An isothermal water-oil two-phase system in fractured vuggy porous 
media is considered. The fluid flow in porous matrix and fractures obeys 
Darcy’s law. Conditions of equal pressure and two-phase instantaneous 
gravity segregation are assumed for free flow in cavities (to be described 
in detail in section 3.2). The mass balance equation in matrix, fracture, 
and cavity domains is written as 

∂
∂t
(φρβSβ)= − ∇ ⋅ (ρβvβ) + qβ, (1)  

where the subscript β = o or w denotes the fluid phase, i.e. oil or water, 
respectively; φ is the reservoir porosity, defined as the ratio of pore 
volume in deformable configuration to the total volume of the unde-
formed configuration; ρ is the phase density; S is the saturation; q is the 
sink/source term; v is the phase velocity in matrix or fractures, deter-
mined by Darcy’s law 

vβ = −
kkrβ

μβ
∇ψβ, (2)  

where k is the permeability; kr is the relative permeability; μ is the dy-
namic viscosity; ψ = p – ρgD is the phase potential; p is the phase 
pressure; D is the depth. 

Besides, the following constraint equations are required 

So + Sw = 1, (3)  

pw = po − pcow, (4) 
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where pcow is the oil/gas capillary pressure in matrix. The capillary 
pressure is modified with porosity and permeability according to the 
Leverett function55: 

pcow = pcow,0

̅̅̅̅̅̅̅̅̅̅̅̅̅
km0φm

kmφm0

√

, (5)  

where the subscript m denotes matrix, and 0 represents the initial state. 
The capillary pressure in fractures and cavities is omitted. 

2.2. Geomechanical governing equations 

The quasi-static momentum equilibrium equation in the solid 
domain is expressed as 

∇ ⋅ σ + b = 0, (6)  

where b is the body force vector; following a convention with tension 
being positive, the total stress tensor σ is defined as56 

σ=σ′

− αptI, (7)  

where σ′

= C : ε is the effective stress tensor; C and α are the elasticity 
tensor and Biot coefficient, respectively; pt = ΣpβSβ is the total pressure; I 
is the identity tensor; assuming the deformation to be infinitesimal, the 
strain tensor ε can be calculated as 

ε= 1
2
(
∇u+∇Tu

)
, (8)  

where ∇ indicates the gradient operator, and the superscript T indicates 
the transpose operator. 

The geomechanical boundary conditions of fractured karst systems 
are schematically shown in Fig. 1. The solid domain Ω is subjected to a 
prescribed displacement û on its Dirichlet boundary Γu, a prescribed 
traction t̂ on its Neumann boundary Γt, fluid pressure on the cavity 
boundary Γv, and fluid pressure and traction along the fracture bound-
ary Γ±

f as follows 

u = û on Γu

σ⋅ne = t̂ on Γt

σ⋅nv = − ptI⋅nv on Γv

σ⋅n+
f = − ptI⋅n+

f − t+f on Γ+
f

σ⋅n−
f = − ptI⋅n−

f − t−f on Γ−
f

(9)  

where ne is the unit outward normal vector on outer boundary; nv is the 
unit normal vector on the cavity boundary; n+

f and n−
f are unit normal 

vectors on the positive and negative fracture boundary with n+
f = − n−

f ; 
t+f and t−f are the tractions acting on the fracture boundary with t+f = −

t−f , which is a function of the fracture closure vector ζ. Notice that the 
Biot coefficient of fractures is set as 1.0 by default, while the fluid 
pressure is directly applied on the cavity boundaries without the scaling 
of Biot coefficient.57 

2.3. Constitutive relationships 

A series of constitutive relationships are adopted to couple the flow 
properties of matrix, fractures and cavities with the geomechanical re-
sponses (i.e. stress and strain). For matrix, the porosity variation in a 
deformable porous medium can be expressed as58 

Δφ*
m =

(
αm − φ*

m

)

Km
(Δpt +Δσv), (10)  

where K is the drained bulk modulus; σv is the total mean stress; φ* is the 
true porosity, defined as the ratio of the pore volume in the deformed 
configuration to the total volume of the deformed configuration52,58; the 
relation between the true porosity φ* and the reservoir porosity φ is 
given as φ = φ*(1 + εv); εv is the volumetric strain. Then, the matrix 
permeability can be calculated based on the Kozeny-Carman model59 as 
follows 

km = km0

(
φm

φm0

)3(1 − φm0

1 − φm

)2

. (11) 

The Kozeny-Carman model is used here because of its good theo-
retical basis and justified applicability for carbonates.60 Other 
porosity-permeability relations, such as the power-law correlation pre-
sented in Davies and Davies61 and Rutqvist et al.,53 can be also equally 
applied. 

For natural fractures, the Barton-Bandis’s model23,24 is used to relate 
the fracture normal closure ζn with the normal effective compressive 
stress σn acting on the fracture surfaces 

σn =
κniζn

1 − ζn/ζm
, (12)  

where κni is the initial normal stiffness; ζm is the allowed maximum 
closure. κni and ζm may be estimated by23 

κni = − 7.15 + 1.75JRC + 0.02
JCS
w0

, (13)  

ζm = − 0.1032 − 0.0074JRC + 1.1350
(

JCS
w0

)− 0.2510

. (14)  

where JRC is the joint roughness coefficient; JCS is the joint compressive 
strength (in the unit of MPa); w0 is the initial aperture. JRC and JCS can 
be determined from experimental measurements, such as laboratory tilt 
tests or shear box experiments,62 on joint samples coring from reser-
voirs, and the values under a third loading cycle can be adopted since 
in-situ fractures are considered to behave in a manner similar to the 
third or fourth cycle.63 Then, the normal fracture stiffness κnn is derived 
as 

Fig. 1. Schematic of fractured karst porous media. The entire domain contains 
three types of media: porous matrix, fractures, and cavities. 
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κnn =
∂σn

∂ζn
=
(σn + κniζm)

2

κniζ2
m

. (15) 

The shear behavior of fractures is described by an empirical model 
proposed by Barton and Choubey62 

τt = σn tan
[

JRCmob log
(

JCS
σn

)

+ϕmob

]

, (16)  

where τt is the shear stress (MPa); JRCmob is the mobilized joint 
roughness coefficient; ϕmob is the mobilized friction angle. The calcu-
lation of JRCmob and ϕmob refers to Asadollahi et al.28 Then the shear 
fracture stiffness κtt is derived as follows 

κtt =
∂τt

∂ζt
= σn ⋅

[
∂JRCmob

∂ζt
log

(
JCS
σn

)

+
∂ϕmob

∂ζt

]

⋅cos− 2
[

JRCmob log
(

JCS
σn

)

+ϕmob

]

,

(17)  

where ζt is the tangential separation of the opposite fracture planes. 
Furthermore, shear dilation may occur during the shearing process. 

The shear-induced dilation ζv can be calculated by28 

ζv =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζpeak

3
tan

[

JRC⋅log
(

JCS
σn

)](
ζt

ζpeak

)(
2ζt

ζpeak
− 1

)

, ζt ≤ ζpeak

∫ ζt

ζpeak

tan
[

JRC⋅log
(

JCS
σn

)(ζpeak

ξ

)0.381
]

dξ + ζv, peak, ζt > ζpeak

,

(18)  

where ζpeak is the peak shear displacement, and ζv,peak is the dilation 
corresponding to ζpeak. 

The fracture mechanical aperture wm can be calculated after 
obtaining the fracture closure ζn and shear dilation ζv 

wm =w0 − ζn + ζv. (19) 

To further derive the hydraulic aperture defined as the equivalent 
aperture for laminar flow, the empirical relation proposed by Olsson and 

Barton64 is used to relate the hydraulic aperture wh with the mechanical 
aperture wm as 

wh =

{
w2

m

/
JRC2.5, ζt

/
ζpeak ≤ 0.75

̅̅̅̅̅̅
wm

√
JRCmob, ζt

/
ζpeak ≥ 1.0

, (20)  

where wh and wm are in the unit of μm, and the hydraulic aperture is 
determined by linear interpolation when 0.75< ζt/ζpeak < 1.0. 

Based on the hydraulic aperture, the fracture porosity φf can be 
updated, and the permeability kf can be calculated according to the 
cubic law65 

φf =
wh

wh0
φf0, (21)  

kf =
w2

h

12
. (22) 

For cavities, the constitutive model refers to the relation between 
cavity volume and the effective stress acting on the cavity boundary. 
However, the relation is difficult to be analytically obtained because 
cavity deformation is affected by various factors, such as cavity geom-
etry, stress distribution, and matrix properties. In this paper, a cavity- 
volume-updating method modified from Zhang et al.45 is adopted, 
which will be discussed in more detail in section 3.3. 

3. Numerical schemes 

In this section, we present the numerical formulations. With the grid 
structure defined, the FVM and FEM are used for the space discretization 
of the governing equations for flow and geomechanics, respectively. The 
coupled system of equations is iteratively solved by the fixed-stress 
splitting method. The simulation code is programmed using Fortran 
90, while Gmsh66 and Tecplot67 are used for preprocessing and post-
processing, respectively. 

Fig. 2. Schematic of (a) geological model, (b) unstructured geometrical grids, (c) grid structure for flow, and (d) grid structure for geomechanics.  
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3.1. Space discretization 

The problem domain, as shown in Fig. 2a, is initially discretized 
using a conformed grid. As shown in Fig. 2b, triangular elements are 
used to discretize the matrix and cavity domains, while linear elements 
are used for the discretization of pre-existing fractures. Based on the 
geometrical grids, the specific space discretization for flow and geo-
mechanics problems are illustrated. For flow, the cavity grid is firstly 
formed by merging all the grids in the cavity region. Then, a control 
volume is associated to each grid with primary variables, i.e. pressure 
and saturation, locating at the grid center (orange point) as shown in 
Fig. 2c. For geomechanics, the zero-thickness interface elements are 
applied to represent the discontinuity condition along fractures by 
splitting the fracture nodes, and the displacement unknowns are located 
at the grid vertices (green point) as shown in Fig. 2d. Following a similar 
procedure, a 3D grid system can also be established. 

3.2. Discretized flow equations 

The flow equation (1) is discretized in space in the context of the 
FVM, and the time derivative is approximated using a backward, first- 
order finite-difference scheme. The discretized equation can be written 
in residual form as 

Rn+1
β,i =

[
(φρβSβ)

n+1
i − (φρβSβ)

n
i

] Vi

Δt
−
∑

j∈ηi

[
(ρβλβ)

n+1
ij+1/2Tn+1

ij

(
ψn+1

β,j − ψn+1
β,i

)]

− Viqn+1
β,i ,

(23)  

where the subscript i denotes the index of grid block; the superscripts n 
and n+1 represent the previous and current times, respectively; ηi rep-
resents all the neighbors of the grid block i; the subscript ij+1/2 denotes 
an upstream weighting quantity at the interface of the grid blocks i and j; 
V is the grid volume; Δt is the current time step size; λβ is the mobility of 
the fluid phase β, defined as λβ = krβ/μβ; Tij is the transmissivity asso-
ciated with the connection between the grid blocks i and j, which can be 
divided into three categories: transmissivity between matrix grids, 
fracture-related transmissivity, and cavity-related transmissivity. 

The transmissivity between matrix grids can be evaluated by two- 
point flux approximation (TPFA) as follows68 

Tij =
TiTj

Ti + Tj
, (24)  

where Ti is the one-sided transmissivity associated with the matrix block 
i, defined as 

Ti =
kiAij

di
ni⋅ci, (25)  

where ki is the absolute permeability of the block i; Aij is the interface 
area between the grid blocks i and j; di is the distance between the 
centroid of the block i and the centroid of the interface; ni is the unit 
normal to the interface inside the block i; ci is the unit vector along the 
direction of the line joining the centroid of the block i to the centroid of 
the interface. Notice that TPFA may lead to inconsistent fluxes on gen-
eral meshes and for anisotropic permeability tensors. In that case, the 
multi-point flux approximation method (MPFA) can be used for higher 
numerical accuracy.69 

The fracture-related transmissivity includes the transmissivity be-
tween matrix and fracture grids and transmissivity between fracture 
grids. For the transmissivity between matrix/fracture grids, as well as 

Fig. 3. Schematic of a vertical slice of a cavity grid and one of its connected 
matrix/fracture grids. The irregular cavity (dashed line) is represented by a 
straight-edged structure (cavity grid). The red and blue parts represent the oil 
and water phases, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Schematic of fracture deformation related variables (ζ, tf, and nf) in the (a) 2D and (b) 3D local coordinates.  
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fracture grids in one individual fracture, equation (24) is still applicable. 
While for the fracture grids at fracture intersections, which involve 
multiple fracture grids (commonly more than two grids), the approxi-
mation, i.e. star-delta transformation, proposed by Karimi-Fard et al.70 is 
used 

Tij =
TiTj
∑nf

k=1
Tk

, (26)  

where nf is the number of intersected fracture grids. 
The cavity-related transmissivity consists of the matrix/cavity 

transmissivity and fracture/cavity transmissivity. Because of the 
extremely high conductivity of cavities, the cavity-related transmissivity 
may be approximated by the one-sided transmissivity of the matrix or 
fracture grid, as calculated from equation (25). 

In addition, the water-oil two phase is assumed to be separated 
vertically in cavities with water locating in the lower space and oil 
occupying the upper space. Based on this assumption, the phase mobility 
λβ is redefined as follows 

λβ = k̃rβ

/

μβ, (27)  

where the viscosity μ and relative permeability k̃r are still determined by 
upstream weighting method, but k̃r is redefined. When fluid flows from 
matrix or fractures into cavities, k̃r takes the relative permeability of 
matrix or fractures. Reversely, k̃r takes the phase flow fraction, which, 
for 2D scenarios, can be assigned as the saturation in cavities as 

k̃rβ = Sβ. (28) 

For 3D scenarios, k̃r is derived as follows for a structured hexahedral 
grid system. Fig. 3 shows a vertical slice of a cavity grid and one of its 
connected grids, in which the irregular cavity is represented by a 
straight-edged structure obtained by merging the grids in the cavity 
region. The phase flow fraction k̃r can be expressed as 

k̃rw =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, Sw ≤ Sd

Sw − Sd

Su − Sd
, Sd < Sw ≤ Su

1, Su < Sw

, k̃ro = 1 − k̃rw, (29)  

where Su and Sd are the saturations corresponding to the upper and 
lower bounds of the connected grid, calculated by 

Su =
Vu

Vv

Sd =
Vd

Vv

(30)  

where Vv is the cavity volume; Vu and Vd are volumes corresponding to 
Su and Sd, as illustrated in Fig. 3. Clearly, Vu and Vd are commonly 
different for each cavity-connected grid in 3D, which need to be pre-
processed. In a similar way, k̃r can be also derived on other types of 3D 
grids. 

Then equation (23) is solved using the Newton-Raphson iteration 
method, and the primary variables are updated during each iteration as 
follows 

∑

γ

∂Rn+1
β,i

(
xγ,k

)

∂xγ
Δxγ,k+1 = − Rn+1

β,i

(
xγ,k

)

xγ,k+1 = xγ,k + Δxγ,k+1

(31)  

where γ denotes the index of the primary variable; k is the Newton 
iteration level; x represent the primary variables, such as oil pressure po 
and water saturation Sw. The Newton-Raphson iteration continues, and 
the primary variables are updated until the residuals are less than the 
tolerance for convergence. 

3.3. Discretized geomechanical equations 

The geomechanical equation is discretized by the FEM method. With 
the virtual work theory and divergence theorem, the weak form for 
equations (6) and (7) can be derived as 
∫

Ω
δε : σ′ dΩ −

∫

Ω
δε : αptІ dΩ −

∫

Ω
δu⋅bdΩ

+

∫

Γf

δζ⋅tf dΓ +

∫

Γf

δζ⋅ptI⋅nf dΓ +

∫

Γv

δu⋅ptI⋅nv dΓ −

∫

Γt

δu⋅̂t dΓ = 0
(32)  

where nf = n+
f = − n−

f , and tf = t+f = − t−f ; the displacement un-
knowns u are approximated by interpolating the nodal displacement u 
with the shape functions 

u=Nu, (33)  

where N is the shape function matrix. ζ = u|Γ+

f
− u|Γ−

f 
denotes the frac-

ture closure vector. For convenience, the fracture-related integrations, i. 
e. fourth and fifth terms in equation (32), are evaluated in the local 
coordinate system. The variables ζ, tf, and nf are transformed into the 

Fig. 5. Schematic showing the cavity volume variation. The deformed cavity is decomposed into a series of triangular elements, and the cavity volume is updated by 
summing up the volumes of these elements. 
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local coordinate system as shown in Fig. 4, but the same notations are 
still used in the following equations. 

The local fracture closure ζ can be approximated as 

ζ=Bf ũ, (34)  

where ũ is the nodal displacement vector of the fracture interface 
element; Bf is the global displacement-closure relation matrix. Detailed 
formulation of Bf can be found in Park and Paulino71 and Ghosh et al.72 

Then the tractions acting on the fracture surface (σn, τt) and fracture 
stiffness (κnn, κtt) can be calculated based on equations (12) and (15)– 
(17). 

The discretized equations can be obtained by introducing the ap-
proximations, i.e. equations (33) and (34), into the weak form in 
equation (32), and the residual form can be expressed as 

R= fin − Q − fb + ff + Qf + Qv − fe, (35) 

in which 

fin =

∫

Ω
BTσ′

dΩ, Q =

∫

Ω
αBTm dΩ pt, fb =

∫

Ω
NTbdΩ, ff =

∫

Γf

BT
f tfdΓ,

Qf =

∫

Γf

BT
f nfdΓpt, Qv =

∫

Γv

NTnvdΓpt, fe =

∫

Γt

NT t̂dΓ,

where B = LN, and L denotes the differential operator matrix; m is the 
vector of delta Dirac function defined as m = [1, 1, 0]T for two 
dimensional problems, and m = [1, 1, 1, 0, 0, 0]T for three dimensional 
problems. Then the nonlinear equation (35) can be solved using 
Newton-Raphson iteration method as follows 

∂R
(

uk

)

∂u
δuk+1 = − R

(

uk

)

uk+1 = uk + δuk+1

(36) 

in which 

∂R
(

uk

)

∂u
=

∂fk
in

∂u
+

∂fk
f

∂u
=Kb +Kf , Kb =

∫

Ω
BTDBdΩ, Kf =

∫

Γf

BT
f DfBfdΓ,

where D is the elastic modulus matrix; Df =
∂tf
∂ζ

⃒
⃒
⃒
⃒
ζk 

is the local fracture 

constitutive matrix, defined as 

Df =

[
κtt 0
0 κnn

]

in two dimensions, and 

Df =

⎡

⎢
⎢
⎣

κttζ2
t1

/
ζ2

t + τtζ2
t2

/
ζ3

t κttζt1ζt2
/

ζ2
t − τtζt1ζt2

/
ζ3

t 0
κttζt1ζt2

/
ζ2

t − τtζt1ζt2
/

ζ3
t κttζ2

t2

/
ζ2

t + τtζ2
t1

/
ζ3

t 0
0 0 κnn

⎤

⎥
⎥
⎦

for three dimensional problems. 
Once the geomechanical problem is solved, the cavity volume can be 

accordingly updated. As shown in Fig. 5, taking a 2D case as an example, 
the deformed cavity is decomposed into a series of triangular elements 
with each element composed by two nodes on the cavity boundary and 
the cavity center. The cavity volume Vv can be calculated by 

Vv =
∑nv

i=1
Vv,i, (37)  

where nv is the number of triangular elements composing the cavity grid; 
Vv,i is the volume of the i-th triangular element. Then the cavity volume 
can be updated with the volume of each triangular element updating 
according to the nodal displacement of the cavity boundary. 

3.4. Solution strategy 

As illustrated in Fig. 6, the fixed-stress split iterative method46–53 is 
used to sequentially solve the coupled two-phase flow and geomechanics 
problem. In each time step, the flow problem is firstly solved with the 
total mean stress fixed. The matrix and fracture porosities, as well as 
cavity volumes, are updated during each flow iteration as follows 

Fig. 6. Flowchart of fixed-stress iterative split method for solving coupled flow 
and geomechanics problem. 
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φk
m = φk− 1

m +
α(1 + εv) − φk− 1

m

Km

(
pk

t − pk− 1
t

)

φk
f = φk− 1

f +
αφf0

w0knn

(
pk

t − pk− 1
t

)

Vk
v = Vk− 1

v +
∂Vv

∂p

⃒
⃒
⃒
⃒

σn

(
pk

t − pk− 1
t

)

(38)  

where ∂Vv/∂p can be numerically calculated as 

∂Vv

∂p

⃒
⃒
⃒
⃒

σn
=

Vv(pk + δp)|σn − Vv(pk)|σn

δp
. (39) 

Then the geomechanical problem is solved with the updated bulk 
pressure obtained from the flow problem. The matrix porosity is updated 
as follows 

φm =φm0 +α(εv − εv0) +
(α − φm0)(1 − α)

Km
(pt − pt0). (40) 

The fracture aperture and porosity, as well as cavity volume, are 
updated following equations (19)–(21) and (37). The matrix and frac-
ture permeabilities are updated based on equations (11) and (22). Once 
the fixed-stress iteration converges, the next time step starts. The 
coupling convergence criterion is that the relative changes of fluid 
pressure and displacement at two adjacent coupling iterations are within 
a preset tolerance, i.e. |pn+1 − pn|/|pn+1| < ε and |un+1 − un|/|un+1| < ε, in 
which | | denotes the norm of the vector and ε may be set as 10− 4. 
Moreover, it should be noted that the update of pore volume of matrix 
and fractures is achieved by fixing their grid volumes and updating the 
porosities, while the pore volume of cavity is updated by changing the 
cavity grid volume according to equation (37) with the cavity porosity 

Fig. 7. (a) Geometrical configuration of the fractured medium, (b) water saturation profiles at different pore-volume (PV) water injection, and (c) cumulative oil 
production results obtained from Karimi-Fard et al.70 and this work. 

Fig. 8. (a) Geometrical representation of the experiment model (the thickness of the model is 2 cm), and water saturation profiles obtained from (b) experiment in Di 
et al.73 and (c) our proposed cavity model at 20s, 80s, and 180s of water injection (from upper to lower panel). 
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being 1. 
The proposed model and numerical schemes provide a new modeling 

framework for studying the two-phase flow and geomechanical behav-
iors of fractured karst reservoirs. The main advantage of the method-
ology is to allow modeling the fully-coupled hydro-mechanical process 
in fractured karst reservoirs, including two-phase Darcy’s flow in matrix 

and fractures, free flow in cavities, non-linear fracture displacement and 
large cavity deformation. Moreover, two-phase fluid redistribution in 
cavities can be efficiently solved based on the assumption of phase 
instantaneous gravity segregation. 

Fig. 9. (a) Geometry of the fractured karst medium, and comparison of (b) ux and (c) σxx profiles calculated by COMSOL and this work.  

Fig. 10. Comparison of (a) ux and (b) σxx on the line of y = 35 as shown in Fig. 9a.  

Fig. 11. Geometries for 2D (a) single-cavity, (b) single-fracture, and (c) single-fracture-cavity systems.  
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4. Model validation and verification 

In this section, three simulation cases are presented to examine the 
accuracy of the proposed method, regarding three different aspects. 
Firstly, the implementation of DFM for simulating flow in fractured 
porous media is verified against a widely used benchmark test obtained 
from Karimi-Fard et al.70 In the second case, the proposed cavity model 
is validated against a physical experiment conducted by Di et al.73 

Finally, the deformation of a fractured karst medium is simulated to 
verify the implementation of the geomechanical model by comparing 
against the results of a standard finite element solver of COMSOL Mul-
tiphysics.74 Note that the terms of “validation” and “verification” are 
distinguished here based on their definitions.75 

4.1. Two-phase flow in fractured media 

As shown in Fig. 7a, a model setup adapted from Karimi-Fard et al.70 

is used to verify the implementation of DFM for simulating two-phase 
flow in fractured porous media. Fig. 7b shows the comparison of 
water saturation profiles under different water injection volumes, and 
Fig. 7c illustrates the cumulative oil production profile. A close match is 
observed between our model and the one by Karimi-Fard et al.70 

4.2. Two-phase flow in a vuggy medium 

The two-phase flow experiment conducted on a closed vertical slab 
model with a cuboid cavity at the middle,73 as illustrated in Fig. 8a, is 
used to validate the proposed cavity flow model. The porosity and ab-
solute permeability of the porous medium are 0.53 and 8 × 10− 9 m,2 

respectively. The entire domain is initially saturated with oil. The water 

is injected with a constant rate of 0.45 L/min, and the production point 
is exposed to the atmosphere. A linear variation of relative permeability 
is used for the porous medium. Fig. 8b–c shows the comparison of water 
saturation profiles obtained from the experiment conducted by Di 
et al.73 and our simulation, in which the good agreement validates our 
model. 

4.3. Deformation of a fractured karst medium 

As shown in Fig. 9a, a fractured karst medium with a fracture 
crossing a cavity is designed to test the geomechanical model based on 
the zero-thickness interface element method. The fractures are modeled 
by grid refinements in COMSOL and zero-thickness interface elements in 
our model, respectively. The Young’s modulus and Poisson’s ratio of the 
medium are 20 GPa and 0.25, respectively. The results calculated by 
COMSOL are used as reference. Fig. 9b–c shows the comparison of ux 
and σxx profiles between the reference and our results, and the distri-
bution of ux and σxx on the line of y = 35 is provided in Fig. 10. The small 
displacement discontinuity across the fracture can be observed in 
Fig. 10a, and the good fits confirm the accuracy of our geomechanical 
model. 

5. Model applications 

In this section, the model developed is applied to a series of 2D and 
3D problems to investigate the effect of fractures and cavities on the flow 
and geomechanical behaviors of fractured karst reservoirs. 

5.1. 2D simple fracture-cavity systems 

As shown in Fig. 11, three simple fracture-cavity systems, including 
single-cavity, single-fracture, and single-fracture-cavity models, are 
constructed to investigate the effect of an individual fracture and/or 
cavity on the flow and geomechanical processes in the system. The basic 
parameters23,62,63 used in the simulation are summarized in Table 1. The 
relative permeability curves for matrix and fractures, as well as the 
capillary pressure curve for matrix, are shown in Fig. 12. The fracture 
and cavity are assumed to be initially oil-saturated due to the capillary 
imbibition. No-flow boundary conditions are applied on all the bound-
aries. Note that these parameters and characteristic curves will also be 
used later in sections 5.2 and 5.3. Then water-flooding simulations are 
conducted on the three models (as shown in Fig. 11) with the injection 
and production wells located at two opposite corners. A triangular gird is 
used to discretize the three models with the element size set as 1.5 m. 
The total numbers of coupling iterations are 929, 1002 and 976, and the 
numbers of time steps are 561, 590 and 570 for the three models, 
respectively, which means about two fixed-stress iterations per time step 

Table 1 
Basic parameters used in the simulation.  

Matrix porosity 0.1 

Matrix permeability (mD) 0.1 
Matrix Young’s modulus (GPa) 20 
Matrix Poisson’s ratio 0.27 
Biot coefficients for matrix and fractures 0.3, 1 
Initial fracture aperture (mm) 0.3 
JRC 15 
JCS (MPa) 120 
Residual friction angle (◦) 31 
Initial pressure (MPa) 20 
Initial water saturation in matrix 0.224 
Pressure for production and injection (MPa) 5, 35 
Water density (kg/m3) 1000 
Oil density (kg/m3) 800 
Water viscosity (mPa∙s) 0.25 
Oil viscosity (mPa∙s) 0.4  

Fig. 12. (a) Relative permeability curves for matrix and fractures and (b) capillary pressure curve for matrix.  
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in average. The CPU time is 515, 614 and 631 s for the three models on a 
PC with an Intel(R) Core(TM) i7-4790 processor. 

Fig. 13 shows the distributions of pressure and water saturation in 2D 
simple fracture-cavity systems during the injection of 200 m2 water. As 
shown in Fig. 13a, similar pressure distribution can be observed in the 
three cases, but pressure disperses a little slower in the single-cavity and 

single-fracture-cavity cases because of the stabilization of the cavity. 
However, significant difference can be observed when comparing the 
water saturation distributions in the single-cavity and single-fracture 
models. As shown in Fig. 13b, the cavity can hinder the water break-
through. Water seems to flow towards the production well bypassing the 
cavity. This can be attributed to the storage effect of cavities. Water will 

Fig. 13. Distributions of (a) pressure and (b) water saturation in matrix for 2D single-cavity, single-fracture, and single-fracture-cavity systems during the injection of 
200 m2 water. 
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be stored in the cavity when the injected water reaches to it, and water 
cannot completely flow through the cavity until the cavity is fully filled 
with water. However, this infilling processes may take a long time due to 
the large volume of the cavity, which can be evidenced by the slow in-
crease of water saturation in the cavity, as illustrated in Fig. 15c. 
Different with the hindering effect of the cavity, the fracture promotes 
the water breakthrough. As shown in the middle panel of Fig. 13b, the 
fracture serves as a dominant flow channel, and the injected water can 
be efficiently transferred towards the production well through the 

fracture. Moreover, similar water saturation distribution can be 
observed in the single-fracture and single-fracture-cavity cases (middle 
and lower panels in Fig. 13b) before water reaches to the cavity. How-
ever, cavity gradually dominates water flow after the water reaches to 
the cavity, and then the water saturation distribution in the single- 
fracture-cavity case becomes similar to that in the single-cavity case. 
Fig. 14 shows the Mises equivalent stress distribution after the injection 
of 200 m2 water. More obvious stress concentration is observed in the 
single-cavity and single-fracture-cavity models because the cavity 

Fig. 14. Mises equivalent stress distribution for 2D (a) single-cavity, (b) single-fracture, and (c) single-fracture-cavity systems after the injection of 200 m2 water.  

Fig. 15. Comparison of (a) oil production rate and (b) water-cut profiles among 2D single-cavity, single-fracture, and single-fracture-cavity models, and (c) water 
saturation evolution in the cavity of single-cavity and single-fracture-cavity models during the injection of 200 m2 water. 
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boundary is only supported by the fluid pressure, while the stress is more 
uniform in the single-fracture model because the fracture can be sup-
ported by not only the fluid pressure but its rough surfaces. The similar 
water saturation and stress distributions in the single-cavity and single- 
fracture-cavity models indicate the dominant effect of the cavity on the 
flow and mechanical behaviors. It should be noted that most of the 
above conclusions can be also drawn from a non-coupled model, but the 
flow and deformation details caused by the interactions between flow 
and geomechanics are better captured by the coupled approach. 

Fig. 15a–b provides the oil production rate and water-cut profiles 
during the injection of 200 m2 water. The injected water firstly reaches 
the production well with less water injection volume in the single- 
fracture model, because the fracture tends to promote the water 
breakthrough, while the hindering effect of the cavity delays the water 
breakthrough in the single-cavity and single-fracture-cavity models. 
Another observation from Fig. 15a and b is that the oil production rate is 
higher, and the water-cut is lower in the single-cavity and single- 
fracture-cavity models after the injected water reaches the production 
well. This is mainly because the cavity hinders the water breakthrough, 
and slows down the water production. On the other hand, the large- 
volume oil in cavity can be continuously supplied to the production 
well, which stabilizes the oil production rate. Fig. 15c shows the water 
saturation evolution in the cavity of the single-cavity and single- 
fracture-cavity models. The water saturation in the cavity is slightly 
higher in the single-fracture-cavity model because the injected water 
can flow into the cavity more efficiently through the fracture connected 
with the cavity. 

5.2. 2D fracture-cavity network 

To investigate the effect of more realistic fracture/cavity systems, 
three models, i.e. cavity-network, fracture-network, and fracture-cavity- 
network models, are established, as illustrated in Fig. 16. In the cavity- 
network model, the cavities are randomly generated with the cavity 
radius following an exponential distribution with the mean radius being 
5 m. The volumetric fraction of cavities is 0.1. In the fracture-network 
model, two sets of fractures oriented approximately 45◦ and 140◦ are 
generated. The fracture length follows an exponential distribution, 
while the mean fracture length is set to be 8 m. The fracture-cavity- 
network model is generated by combining the cavity-network and 
fracture-network models. A triangular grid is used to discretize the three 
models with the element size set as 1.5 m. The total numbers of coupling 
iterations are 1156, 1015 and 1118, and the numbers of time steps are 
510, 575 and 497 for the cavity-network, fracture-network, and 
fracture-cavity-network models, respectively. The CPU time is 1963, 
1722 and 3437 s for the three models on the same PC as used in sub-
section 5.1. 

Fig. 17 presents the distributions of pressure and water saturation in 

2D fracture-cavity network systems during the injection of 200 m2 

water. As shown in Fig. 17a and compared with the cases of simple 
fracture-cavity structures (i.e. Fig. 13b), much slower pressure disper-
sion can be observed in the cavity-network and fracture-cavity-network 
cases due to the enlarged cavity volumes. Moreover, more complex 
water saturation distribution patterns can be observed in Fig. 17b. 
Because of the hindering effect of the randomly distributed cavities, the 
water-flow paths become tortuous in the cavity-network model, as 
illustrated in upper panel of Fig. 17b. Large amount of oil still remains 
behind the cavities, because the injected water cannot completely flow 
through the cavities. Similar water saturation profile is also observed in 
the fracture-cavity-network model, i.e. lower panel of Fig. 17b. How-
ever, water distribution is more non-uniform in the fracture-cavity- 
network model since the fractures act as high-conductivity water-flow 
channels, which accordingly lead to higher water saturation in the vi-
cinity of fractures. Differently, as shown in middle panel of Fig. 17b, 
water quickly breaks through in the fracture-network system. Almost the 
entire domain can be swept by the injected water due to the spatially 
distributed fractures. In addition, significant stress concentration can be 
observed when cavities are present, and the interaction between frac-
tures and cavities can further intensify the non-uniformity of stress, as 
evidenced by Fig. 18. 

Fig. 19 shows the oil production rate and water-cut profiles during 
the water injection. The overall production patterns are similar with 
those of simple fracture-cavity structures (i.e. Fig. 15). However, two 
differences can be observed. Firstly, the injected water reaches the 
production well much earlier in the fracture-network model. This can be 
attributed to the higher conductivity of the fracture network, and the 
enhanced hindering effect of the cavity network. The other difference is 
that the water-cut is much lower in the cavity-network and fracture- 
cavity-network models than that in fracture-network model, which 
can be also attributed to the enhanced hindering effect of the enlarged 
cavity volume. 

Moreover, various-sized cavities may be distributed in fractured 
karst reservoirs even with the same total cavity volumes.7 To investigate 
the effect of cavity size distribution on the flow and geomechanical 
behaviors, two models dominated by large-sized cavities and small-sized 
cavities are constructed as shown in Fig. 20, and the model (c) in Fig. 16 
dominated by medium-sized cavities is used for comparison. The total 
cavity volumes are same in the three models. 

Fig. 21 illustrates the distributions of pressure and water saturation 
in fractured karst models dominated by different-sized cavities during 
water injection. As shown in Fig. 21 and compared with the medium- 
sized cavity case (i.e. lower panels of Fig. 17a and b), pressure dis-
perses faster and water breaks through more quickly in the large-sized 
cavity dominated model. This is because that with the same total cav-
ity volumes, cavities become more localized when the cavity size be-
comes large. In that case, preferential flow paths for injected water are 

Fig. 16. Geometries for 2D (a) cavity-network, (b) fracture-network, and (c) fracture-cavity-network systems.  
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more likely to be formed. However, the injected water can be hindered 
by the well distributed cavities in the small-sized cavity dominated 
model, as illustrated in Fig. 21b. Furthermore, it can be found in Fig. 22 
that stress concentration is more obvious around the large-sized cavities. 
Fig. 23 presents the oil production rate and water-cut profiles of models 
dominated by different-sized cavities. Lower oil production rate and 
higher water cut are observed when the model is dominated by larger- 

sized cavities. 

5.3. 3D fracture-cavity network 

To show the applicability of our proposed model for 3D complex 
fractured karst porous media, two 3D models, i.e. fracture-network and 
fracture-cavity-network models, are constructed, as shown in Fig. 24. In 

Fig. 17. Distributions of (a) pressure and (b) water saturation in matrix for 2D cavity-network, fracture-network, and fracture-cavity-network systems during the 
injection of 200 m2 water. 
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these two models, the five orthogonal fractures are manually generated, 
and the two cavities have the same volume of 1200 m3. The stress 
boundary condition is applied to the right, back, and bottom boundaries 

with the vertical stress Sz = 60 MPa, and the horizontal stress Sx(y) = 40 
MPa. The roller constraint boundary condition is adopted to the 
opposing three boundaries. A structured grid is used for the spatial 

Fig. 18. Mises equivalent stress distribution for 2D (a) cavity-network, (b) fracture-network, and (c) fracture-cavity-network systems after the injection of 200 
m2 water. 

Fig. 19. Comparison of (a) oil production rate and (b) water-cut profiles among 2D cavity-network, fracture-network, and fracture-cavity-network models during the 
injection of 200 m2 water. 

Fig. 20. Geometries for fracture-cavity-network systems dominated by (a) large-sized cavities and (b) small-sized cavities.  
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Fig. 21. Distributions of (a) pressure and (b) water saturation in matrix for 2D fracture-cavity-network systems dominated by different-sized cavities during the 
injection of 200 m2 water. 

Fig. 22. Mises equivalent stress distribution for 2D fracture-cavity-network systems dominated by (a) large-sized cavities and (b) small-sized cavities after the in-
jection of 200 m2 water. 
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discretization, and the grid size is set as 2 m. The total numbers of 
coupling iterations are 368 and 513, and the numbers of time steps are 
both 279 for the fracture-network and fracture-cavity-network models, 
respectively. The CPU time is 15,871 and 21,678 s for the two models on 
the same PC as used in subsection 5.1. 

Fig. 25a–b compares the distributions of pressure and water satura-
tion in matrix during the injection of 10,000 m3 water, and the corre-
sponding water saturation distribution in fractures is shown in Fig. 25c. 
Obviously, the hindering effect of the cavities can be still observed, 
which is evidenced by the higher oil saturation surrounding the pro-
duction well in the fracture-cavity-network model. Furthermore, gravity 
has a significant impact on the water saturation distribution. As shown 
in the lower panel of Fig. 25b, the water saturation is lower in the area 
above the two cavities because under the effect of gravity, water cannot 
flow out from the top of the cavities until the cavities are fully saturated 
by water. Similar to the 2D models, there is a strong stress concentration 
when cavities are present, while the stress is more uniform in the 
fracture-network model (see Fig. 26). 

Fig. 27a–b shows the oil production rate and water-cut profiles 
during the injection of 10,000 m3 water. It is obvious that, compared to 
the fracture-network model, the oil production rate is higher and the 
water-cut is lower in the fracture-cavity-network model after water 
breakthrough, and the explanation is similar with that in section 5.2. 
Moreover, Fig. 27c provides the water saturation evolution in the two 
cavities of the fracture-cavity-network model. Apparently, the injected 
water firstly flows into the lower cavity, and the water saturation in the 
lower cavity starts to increase almost at the beginning. Then, the water 

saturation in the upper cavity begins to increase when water reaches 
after a large amount of water injection. 

6. Conclusions 

In this study, a novel and efficient coupled hydro-mechanical model 
is developed to simulate two-phase flow and geomechanics in fractured 
karst porous media. The proposed model takes into account two-phase 
Darcy flow in porous matrix and fractures, free flow in cavities, 
nonlinear fracture deformation and cavity deformation as well as the 
coupling between flow and geomechanics. The model has been validated 
against some existing numerical and experimental results, and its 
capability of simulating coupled two-phase flow and geomechanics in 
complex fractured karst porous media has been further demonstrated 
based on a series of 2D and 3D case studies. The following conclusions 
can be drawn from our simulation results: (1) cavities hinder water 
breakthrough due to the storage effect, while water can break through 
quickly via high-conductivity fractures; (2) strong stress concentrations 
can be observed when cavities are present; (3) cavities dominate the 
flow and geomechanical behaviors when fractures and cavities coexist; 
(4) with the same total cavity volumes, water tends to break through 
more quickly in the model dominated by large-sized cavities due to more 
localized cavity configuration; (5) gravity tends to have an important 
impact on the water saturation distribution in 3D systems: water satu-
ration is often low in the area above cavities during water flooding. 
Future work will focus on further considering the cavity shape change 
due to the large stress acting on the cavity boundaries by using the finite 

Fig. 23. Comparison of (a) oil production rate and (b) water-cut profiles among fracture-cavity models dominated by different-sized cavities during the injection of 
200 m2 water. 

Fig. 24. Geometries of 3D (a) fracture-network, and (b) fracture-cavity-network models.  
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Fig. 25. Distributions of (a) pressure, (b) water saturation in matrix, and (c) water saturation in fractures for 3D fracture-network and fracture-cavity-network 
models during the injection of 10,000 m3 water. The profiles for matrix are shown in five layers with a spacing of 10 m. The length in the z-direction is shown 
twice the real size. 
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deformation theory. Moreover, the Navier-Stokes equations may be 
required for more accurately modeling the free flow in cavities, since the 
assumption of phase instantaneous gravity segregation is not valid under 
turbulent flow. 
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