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A B S T R A C T   

A coupled simulation strategy combining the embedded discrete fracture method (EDFM) and the extended finite element method (X-FEM) is developed to simulate 
the fluid driven fracture propagation process in porous media. This physical process includes three strong coupling mechanics: fluid flow in fractures and porous 
media, solid deformation with fractures, and fracture propagations. The EDFM and X-FEM are used to simulate fracture-related fluid mechanics and solid mechanics, 
respectively, with information exchanged under the iterative numerical coupling scheme. Mathematical equations on how to link these independent modules as well 
as numerical techniques on how to accelerate the coupling convergence rate are discussed in detail. 

Both X-FEM and EDFM avoid the cumbersome construction of unstructured grids to capture fracture paths and also avoid the remeshing for the fracture growth. 
They are first validated via benchmark problems individually and then are coupled to simulate fracture propagation problems in two dimensions and in three di-
mensions. Simulated multiphysics fields meet understandings qualitatively, and simulated fracture parameters (length, width and net pressure) match with analytical 
solutions quantitatively.   

1. Introduction 

The fluid-driven fracture propagation in porous media is a funda-
mental process to many applications in petroleum and mining engi-
neering, such as hydraulic fracturing, produced water reinjection, 
borehole integrity, and drill cuttings reinjection. Quantitative evalua-
tions of relevant fracture parameters are essential for the design analysis 
of these engineerings. However, modeling such a process is not an easy 
task because at least three strong coupling mechanics (Fig. 1) need to be 
accounted for: (1) fluid flow in fractures and porous media, (2) solid 
deformation, and (3) fracture propagations.1 These three mechanics 
have entirely different natures and are governed by equations with 
different forms. 

The pioneering contributors tried solving these coupled non-linear 
integral-differential equations by an analytical approach. Several 
classic fracturing models (PKN, KGD and Penny-shaped fracture model) 
were developed.2–6 With some strong assumptions of simple geometry, 
these analytical solutions can capture the critical physics in this process, 
which contributes significantly to understanding the mechanism and 
physical effects of parameters in these equations. However, these 

analytical solutions have limitations to solving complex fracture prob-
lems, both physically and geometrically. 

Later on, some pseudo-3D numerical tools were developed to simu-
late complex geometry problems with various finite element-based 
methods.7–9 These tools were able to give more realistic estimates of 
fracture geometry/dimensions and thus achieved great success for 
conventional reservoirs. However, in the majority of available models, 
flow and solid deformation governing equations are oversimplified for 
the unconventional reservoirs. The rock elastic behaviors in these nu-
merical models are described by a singular integral equation relating the 
fracture opening to the traction.10 This equation was derived by 
assuming an infinite homogeneous three-dimensional elastic body, 
which has limited applications for layered strata characterized by 
different mechanical properties and/or in-situ stresses. 
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where r ¼ ½ðx � x’Þ2 þ ðy � y’Þ2�1=2, and Tðx; yÞ is the normal traction on 
the fracture surface at local (x, y), w is the fracture width; G is the shear 
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modulus; ν is Poisson’s ratio of the material, and Ω is the fracture 
surface. 

Fluid leakoff rate through fracture surfaces into the porous media in 
these numerical tools is quantified by11: 

ql¼
2c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � τðx; yÞ

p (2)  

where constant cl is an empirical fluid leak-off coefficient and τðx; yÞ is 
the time at which the fluid leak-off begins at location (x, y) on the 
fracture surface. This leak-off equation is derived by assuming a steady- 
state one-dimensional fluid flow, which has limitations for low-perm 
reservoirs with two following considerations. First, the transient-state 
flow may last long when the permeability is extremely low. And sec-
ond, the pressure interference from nearby fractures is inevitable for 
complex fracture networks. 

The finite element method (FEM)12–15 and the discrete fracture 
method (DFM) based on the finite volume method (FVM)16,17 provide a 
more general solution for handling fracture-related solid- and 
fluid-mechanics, respectively. In these two methods, fractures are rep-
resented by one or one set of small-size grids which conform to the 
fracture paths. Fluid and solid mechanics behaviors are captured by 
assigning these grids with fracture-related properties. However, devel-
oping these numerical models is challenging, with the following con-
siderations. First, the mesh needs to be built in a way that the grid 
edges/faces coincide with all fracture surfaces, which requires the 
deployment of unstructured grids. Constructing such meshes is 
cumbersome especially for three-dimensional problems; second, in the 
finite element method, quadratic shape functions instead of linear shape 
functions are needed for the fracture tip grids to approximate the stress 
tip singularity; and third, remeshing is required at each time step for the 
fracture growth simulation. 

The embedded discrete fracture method18–21 and the extended finite 
element method22,23 are two modeling techniques which extend the 
FEM and the DFM, respectively. Their basic ideas are both utilizing 
analytical-solution based approximations with geometrical preprocess-
ing to account for mechanic interactions between fractures and local 
matrix blocks. In this way, three shortcomings regarding the FEM and 
DFM, as discussed above (cumbersome unstructured gridding, compli-
cated fracture-tip shape functions, and remeshing for dynamic frac-
tures), can be alleviated. In the EDFM, fractures are conceptualized to be 
virtually embedded into nearby matrix grid blocks by treating the 
fractures as single or several additional computational volume elements. 

In the X-FEM, the near fracture area is enriched by two additional groups 
of virtual nodes to incorporate both discontinuous fields and the near-tip 
asymptotic fields. A few recent efforts have been reported towards the 
development of these two numerical algorithms, mainly aiming for their 
improvement on accuracy, geometrical versatility and numerical 
robustness. Wang discussed the computational geometry issues 
regarding the 3D-EDFM as fractures in realistic engineering cases cannot 
simply be represented in two dimensions or 2.5 dimensions.21 Hui et al. 
introduced three types of geometrical partitioning for complicated 
fracture-matrix topological characteristics.25 The developed EDFM is 
applied for simulating fluid flow and heat transfer in unconventional oil 
& gas reservoirs as well as hot dry rock geothermal reservoirs.21,24 Wang 
introduced a novel local mesh refinement approach with variable-node 
hexahedron elements for calculating stress intensity factors of straight 
and curved planar cracks.26 Agathos et al. studied the stable 3D X-FEM 
vector level sets for non-planar 3D cracks.27 

These novel discrete fracture methods enable us to conduct an 
analysis on the fluid-driven fracture propagation process. Lecampion 
investigated how to consider the presence of internal pressure inside the 
fracture.28 Pan et al. coupled the TOUGH2 and rock discontinuous 
cellular automation (RDCA) to simulate the fluid flow and geomechanics 
coupling in subsurface involving fracture-induced discontinuity. This 
coupling model is applied for caprock integrity analysis for CO2 injec-
tion in a deep brine aquifer29-.30 Chen discussed the implication of the 
X-FEM into ABAQUS via a new type of finite element.31 However, to the 
best of our knowledge, there have been no studies on the direct coupling 
between X-FEM and EDFM for the fluid-driven fracture propagation 
simulation. 

The objective of the present research is to construct a coupled nu-
merical approach combining X-FEM and EDFM to simulate both 2D and 
3D fluid-driven fracture propagation processes in the porous media. This 
study will also demonstrate the effectiveness of the simulation technique 
in predicting the complex processes. This paper is arranged as follows. 
Governing equations, numerical discretization approaches as well as the 
EDFM and X-FEM principles are briefly introduced in Section 2. In 
Section 3, key numerical techniques to couple these independent mod-
ules are described. In Section 4, several typical problems are simulated 
to validate the accuracy of our developed EDFM and X-FEM models. In 
Section 5, the coupled simulation is performed for both 2D and 3D 
fracture propagation problems. The matching of our numerical solutions 
with benchmark analytical solutions indicates this method produces 
correct results. 

2. Governing equations and numerical formulations 

This numerical study aims to understand the coupling between fluid 
flow and solid deformation during fluid-driven fracture propagations in 
porous media. These two physical processes have entirely different na-
tures and behaviors, and thus they are characterized by different gov-
erning equations. Correspondingly, two different numerical schemes are 
adopted to solve these two sets of equations. The finite volume method 
(also known as the integral finite difference method) is preferred for 
discretizing fluid flow PDEs because it captures local conservations 
naturally, while the finite element method is adopted for solid me-
chanics because it is intuitive for the displacement compatibility. 

The embedded discrete fracture method and the extended finite 
element method are two modeling techniques based on the finite volume 
method and the finite element method, respectively, for the fracture- 
related mechanics analysis. Both methods allow for the simulation 
related to fractures with structured grids. Thus, considerable flexibility 
is achieved by avoiding the construction of unstructured grids, which is 
quite challenging for complex three-dimensional fractures. 

2.1. EDFM for fracture related fluid flow 

The process of the fluid flow in porous and fractured media is gov-

Fig. 1. Three strong coupling processes during the fluid-driven fracture prop-
agations in porous media. 
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erned by the mass conservation equation along with Darcy’s law: 

∂
∂t
ðρφÞþ divðρvÞ¼ q (3)  

where ρ is the fluid density; φ represents the porosity; v is the Darcy 
velocity, and q is the sink/source per unit volume per unit time. 

With the integral finite difference method, the discrete nonlinear 
equations of Eq. (3) at node i are as follows32,33: 

1
Δt
�
ðfρVÞnþ1

i � ðfρVÞni
�
¼
X

ĵIηi

�ρ
μ

�nþ1

ijþ1=2

γij

�
ψnþ1

j � ψnþ1
i

�
þQnþ1

i (4)  

where the superscript n and nþ1 denote the previous time level and the 
current time level, respectively; Vi is the volume of element I; Δt is the 

time step size; ηi contains the set of neighboring elements (j) connecting 
to element i; subscript ijþ 1

2 denotes a proper averaging of properties at 
the interface between elements i and j; Qnþ1

i is the mass sink/source term 
at element i. γij is the defined transmissivity of flow terms. 

γij¼
Aijkijþ1=2

di þ dj
(5)  

where Aij is the common interface area between two elements; di and dj 
are distances from the element center (i and j) to the common interface. 
kijþ1=2 is an averaged absolute permeability along this direction. 

In the EDFM, fractures are conceptualized to be virtually embedded 
into nearby matrix grid blocks by treating them as a single or as several 
additional computational volume elements. The fracture thickness is 
only considered in the computational domain for fracture volume cal-
culations, but not represented in the grid domain, because fracture 
thickness is several orders of magnitude smaller than the grid size. These 

Fig. 2. Demonstration of EDFM and X-FEM for the fracture propagation.  

Fig. 3. Sketch diagram for a two-dimensional body.  

Table 1 
Algorithm for the two-stage coupling between EDFM and X-FEM.  

Algorithm: two stage coupling between EDFM and X-FEM 

1 Initialization 
2 Time Step 
2.1 Level-set function to capture fracture geometry for EDFM and XFEM 
2.2 Solve fluid flow equations for fluid pressure with fracture width 
2.3 Solver geomechanics equations for fracture width with fluid pressure 
2.4 if (Step 2.2 and Step 2.3 NOT converge) then 
2.4.1 Goto Step 2.2 
2.5 else 
2.5.1 if (Propagation criteria reached) then 
2.5.1.1. Update fracture geometry 
2.5.1.2 Goto Step 2.1 
2.5.2 else 
2.5.2.1 Convergence reached in this time step 
2.5.2.2 Goto Step 2  
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fracture volume elements connect to nearby matrix elements as well as 
connecting to adjacent fracture elements. Such connection information 
can be directly obtained through geometric processes, which calculate 
two critical parameters: the fracture-matrix contacting area and the 
average distance. In our previous work, we described a general 
geometrical calculation algorithm for complicated 3D fractures, proved 

this approach is accurate to handle steady and pseudo-steady state flow, 
and validated the EDFM approach by several numerical experiments.21 

Like the transmissivity term connecting two neighbor matrix elements 
(Eq. (5)), the fracture-index FIi connecting the computational fracture 
volume and its local matrix computation volume is defined as: 

FIi ¼
Aikm

dmþdf
(6)  

where Ai is the common interface area between the intersected block 
and the fracture; dm and df are distances from the matrix grid block and 
the fracture to this interface according to EDFM assumptions. 

2.2. X-FEM for fracture related solid deformation 

The weak form of the stress equilibrium equation provides us with 
the principle of virtual displacements: 
Z

V
εT σdV ¼

Z

Γt

UtT f t dΓt þ

Z

Γc

UcT f c dΓc (7)  

where ε, Ut and Uc are the virtual strain, virtual external boundary 
displacements, and virtual internal displacements at specific concen-
trated points, respectively; f t and f c are forces on boundaries; Γt and Γc 
are outer and internal boundaries for this object; 

Rewrite Eq. (7) as a sum of integrations over all elements and sub-
stitute the strain-displacement, strain-stress relations into the equa-
tion,12 we have 

KU¼R (8)  

where 

K¼
X

m

Z

VðmÞ
BðmÞT CðmÞBðmÞdVðmÞ (9)  

R¼
X

m

Z

ΓðmÞc

hcðmÞT f cðmÞdΓðmÞc þ 
X

m

Z

ΓðmÞt

htðmÞT f tðmÞdΓðmÞt (10) 

In Eq. (8), K is the global stiffness matrix; R is the residual vector 
related boundary conditions. BðmÞ is the strain-displacement matrix for 
the element m, CðmÞ is the stiffness matrix, and hðmÞ is the displacement 
interpolation matrix. 

In the X-FEM method, in addition to local element nodes according to 
the finite element method, the near fracture area is enriched by incor-
porating both discontinuous fields and the near-tip asymptotic 
fields.22,23 The discretized displacement can be expressed as follows: 

u
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where uðxÞ is the displacement at the location x; The set I consists of 
local element nodes; The set K includes those nodes of which the closure 
support the crack front, and the set J is the set of nodes which support 
crack and do not belong to K. The vector ui, bj and cl

k are the displace-
ment at nodes i, j and k, respectively; h is the displacement interpolation 
function; HðxÞ is the discontinuous Heaviside function: 

HðxÞ¼ f � 1 if  x > 0 
þ1 if  x < 0 (12)  

FlðxÞ is the asymptotic crack tip functions based on the asymptotic fea-
tures of the displacement field at the crack tip: 
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n ffiffi

r
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where ðr; θÞ are the local polar coordinates at the tip. 
Fig. 2 plots a 2D fracture before and after growth, associated with 

Fig. 4. Average fracture width as a function of the iteration number with 
Picard coefficient equals to 0.5 and 1.0. 

Fig. 5. Comparisons between numerical and analytical stress intensity factor.  

Fig. 6. Comparisons between numerical and analytical dimensionless pressure.  
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enrichment nodes for X-FEM and fluid-matrix flow connections for the 
EDFM. Two types of enrichment DOFs in X-FEM are demonstrated with 
black squares and black circles. The connection between the matrix grid 
block and the embedded fracture element in EDFM is represented by the 
contact area and distance. 

3. The coupling principles 

Strong fluid-solid coupling mechanics make the simulation of fluid- 
driven fracture propagation processes quite challenging. At least three 
physical processes (fluid flow, solid deformation, and fracture growth) 
and five relationships need to be considered1: (1) solid deformation 
changes the width of fractures and thus affects the effective fracture 
permeability as well as the fracture volume; (2) fluid flow induces solid 
deformation by the hydraulic loadings on crack surfaces; (3) fracture 
propagates when the stress state near the fracture tip meets the propa-
gation criterion; (4) the growth of fractures cause the redistribution of 
the stress and strain fields, and (5) fluid flow is affected by the fracture 
growth since fractures provide a high-conductivity pathway. In this 
section, we describe physical explanations and mathematical equations 
on how to link these independent modules in detail. The link from fluid 
flow to solid deformation treats the fluid pressure force on the fracture 
surface as an internal boundary. The converse link takes the calculated 
fracture widths and corrects fracture permeability and the fracture 
volume. The geomechanics effect in the porous media caused by the 
change of pore pressure is not included in this study; one can refer to 
other literature for this part.34,35 

3.1. Solid deformation on fluid flow 

Solid deformation affects fluid flow by changing fracture widths, 
which determines the fracture permeability as well as the fracture vol-
ume. The crack opening displacement, as shown in Fig. 3, equals to the 
difference between two internal displacements on both sides of the 
fracture: 

w¼Ucþ
� Uc� (14) 

Each internal displacement can be discretized as a linear combina-
tion of node displacements. Thus, the crack opening displacement can be 
obtained from the node displacement vector. This expression can be 
further simplified considering only the Heaviside function and the first 
asymptotic crack tip function in Eq. (11) are discontinuous across the 
fracture face. 
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For a given fracture segment, its aperture is the length of the 
displacement: 

wf ¼ jwj (16) 

The fracture aperture determines the fracture permeability accord-
ing to the cubic law: 

kf ¼
w2

f

12
(17) 

The volume of fracture element, as shown in Eq. (4), is related to the 
width by assuming local width variance in one grid block is negligible: 

Vf¼ wflfhf (18)  

where lf and hf are the length and height of the fracture element, 
respectively. 

3.2. Fluid flow on solid deformation 

Fluid flow induces solid deformation by the hydraulic loading acting 
on crack surfaces. As shown in Fig. 3, the linear elastic body, which 
contains fractures filled with fluids, subjects to forces from fluids on 
crack surfaces. This internal boundary condition can be described as: 

σ ¼ pfnΓc on Γc (19)  

where σ is the stress vector; pf is the fluid pressure in scalar form; Γc 
denotes this inner boundary by fractures; and nΓc is the normal vector of 
this boundary. 

In the weak form of stress equilibrium, this boundary condition ap-
pears in the residual part: 
Z

Γc

UcT� pfnΓc

�
dΓc¼

Z

Γþc
UcþT� pfnΓþc

�
 dΓþc þ

Z

Γ�c
Uc� T� pfnΓ�c

�
dΓ�c (20)  

where Γþc and Γ�c are two fracture faces; nΓþc 
and nΓ�c 

are their associated 
normal vector pointing outside of the fracture. Since the angle between 
two fracture faces is close to zero, these two normal vectors can be 
approximated in opposite directions. 

Fig. 7. Illustration of a KGD model (left) and its numerical setup in this study (right).  
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Fig. 8. Comparisons between numerical results and KGD analytical results. 
From up to bottom are the fracture length, fracture width at the inlet and the 
net pressure at the inlet. Fig. 9. Stress contour when the fracture length is 1.2 m. From top to bottom are 

the normal stress in the x-direction, the normal stress in the y-direction and 
shear stress. 
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nΓþc � � nΓ�c (21) 

Substitute Eq. (14), Eq. (15) and Eq. (21) into Eq. (20), we have:   

The equation above indicates the pressure force acting on the frac-
ture surface can be transferred to the force acting on element nodes, 
which can be incorporated directly into the R matrix in Eq. (8). In this 
way, the effect of fluid flow on solid deformation is captured. 

3.3. Solid deformation on fracture propagation 

According to the theory of linear elastic fracture mechanics, a frac-
ture can propagate if the stress intensity factor exceeds the fracture 
toughness. In this study, we use the maximum circumferential stress 
criterion for two-dimensional scenarios.36,37 The fracture can grow if the 
following condition is met: 

Kθc ¼ cos
θc

2

�

KIcos2θc

2
�

3
2

KIIsinθc

�

� KIC (23)  

where Kθc is the maximum circumferential stress; KIC is the fracture 
toughness, which is a property of the material; θc is the direction of 
fracture propagation: 

θc¼ 2tan� 11
4

2

4KI

KII
� sign ðKIIÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

KI

KII

�2

þ 8

s 3

5 (24) 

In Eq. (23) and Eq. (24), KI and KII are the mode I and mode II stress 
intensity factors, which are defined as: 

KI¼ lim
r→0

ffiffiffiffiffiffiffi
2πr
p

σxxðr; 0Þ (25)  

KII¼ lim
r→0

ffiffiffiffiffiffiffi
2πr
p

σxyðr; 0Þ (26)  

where σxx and σxy are the normal stress in the x-direction and the shear 
stress, respectively; r denotes the distance to the fracture tip. The length 
of crack growth can be correlated with the stress intensity factor as well 
according to Paris’ law. 

For 3D cases, the mode I stress intensity factor at the fracture tip can 
be calculated as (Yew and Weng 2014) 

KI¼
E

8ð1þ νÞð1 � νÞ

�
2π
r

�1=2

wðrÞ (27)  

3.4. Fracture propagation on solid deformation and fluid flow 

The growth of fractures changes solid- and fluid-mechanical behav-
iors of the system, which are captured by the X-FEM and the EDFM 
without remeshing. The fracture path can be obtained explicitly by a set 
of discrete points or implicitly via the level-set method. In X-FEM, as 
indicated in Eq. (11), another two sets of degrees of freedom (DOF) are 
introduced for fractures. Their associated enrichment functions depend 
on the fracture path, which can be obtained directly through the geo-
metric calculation. With the growth of fracture, the number of DOFs as 
well as their associated enrichment functions change correspondingly 
(Fig. 2). Ultimately, the global stiffness matrix (matrix K in Eq. (8)) is 
reconstructed. In the EDFM, the new fracture segment is represented by 
the addition of one or one assemblage of computational volume ele-
ments. Critical parameters for this incorporation are the contacting area 
and the average distance, which can also be geometrically obtained 
given the fracture path. 

Fig. 10. Fracture geometry (half-width vs. length) at an injection time of 2.5s, 
5s, and 10s. 

Fig. 11. Sensitivity analysis of the simulation results on grid size and 
initial fracture. 

Fig. 12. Comparisons of the propagated fracture radius vs time between the 
analytical solution and the numerical solution with various fracture toughness. 
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3.5. Numerical coupling procedures 

Three different routines are developed adequately: (1) modeling 
fluid flow in porous media with fractures based on the EDFM; (2) 
modeling solid deformation with fractures based on the X-FEM; and (3) 
determining if fracture propagates (if yes, calculating propagation 
length and directions). These three strongly interacted modules are 
coupled in two stages, as demonstrated in Table 1 by two loops. The goal 
of this two-stage coupling is obtaining a multi-physics field which sat-
isfies all physics discussed above. This multi-physics field combines 
pressure field, stress field, and fracture geometry. 

The iterative coupling method is selected for the coupling between 
fluid flow and solid deformation in the inner loop. Fluid flow variables 
and geomechanics variables are solved separately and sequentially by 
corresponding routines, and the coupling terms are interacted on at each 
time step. Data transfer between these two routines is described in 
sections above. The iterative coupling procedure is repeated until a 
satisfactory convergent fracture width is obtained. The criterion of 
convergence is 

max

 
�
�
�wn

kþ1;i� wn
k;i

�
�
�

wn
kþ1;i

!

< ε (28)  

where ε is an assigned tolerance. 
Note that this iterative method uses an initial guess to generate 

successive approximations to the solution. For the first time step, this 
initial estimate is obtained by pre-running the iterative coupling with an 
infinite fracture permeability. For the following time steps, the 

converged result at the last time step is used. The Picard iteration 
technique is adopted to mitigate numerical oscillations and accelerate 
the convergence rate. 

wðnÞkþ1¼αF
�
wðnÞk

�
þð1 � αÞwðnÞk ; 0 < α � 1 (29)  

where α is the Picard coefficient; wðnÞk is the fracture width in the kth 

iteration during the nth time step; FðwðnÞk Þ is the calculated fracture 

width after one loop of calculations based on wðnÞk ; and wðnÞkþ1 is the 
updated fracture width for the next iteration. For a 2D numerical test, 
the iteration number reduces from 142 to 19 by changing the Picard 
coefficient from 1.0 to 0.5 (Fig. 4). 

Once the iteration between these two modules is converged, the 
stress intensity factor is calculated and compared with the fracture 
toughness to determine if the fracture propagates (Eq. (23)). If the 
fracture propagation criterion is not met, which means the fracture in 
this condition is stable, the coupling convergence among these three 
modules is achieved. Otherwise, the fracture propagation fracture ge-
ometry is updated for the next large-loop iteration (Table 1). 

4. Validations 

In this section, two numerical experiments are conducted to evaluate 
the accuracy of our developed X-FEM and EDFM codes. The in-house 
program used in this paper is written in MATLAB. The X-FEM codes 
are developed based on an open-source 2D MATLAB X-FEM codes.38 The 
validation benchmarks chosen for these two tests are analytical 
solutions. 

4.1. Solid deformation model validations 

An angled center crack is put inside a plate which is subjected to a 
far-field uniaxial stress. The plate dimensions are five times larger than 
the crack length to approximate the infinite setting. The exact stress 
intensify factors for the infinite plate is given39: 

KI ¼ σ
ffiffiffiffiffiffi
πL
2

r

cos2 ðβÞ (30)  

KII ¼ σ
ffiffiffiffiffiffi
πL
2

r

sinðβÞcosðβÞ (31) 

A series of numerical experiments are conducted by rotating the 
center crack. Fig. 5 shows numerically calculated stress intensity factors 
have a good agreement with the analytical solution for the entire range 
of β. 

Fig. 13. Simulated fracture width distributions at 6 min and 16 min.  

Fig. 14. Simulated fracture radius vs. time with various reservoir 
permeabilities. 
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4.2. Fluid flow model validations 

An angled center crack is put inside a closed-boundary 2D reservoir 
with the unit thickness. Fluid is produced at a constant rate from the 
fracture center. Gringarten et al. give the general analytical solution of 
the well pressure with a “uniform flux” or “infinite-conductivity” ver-
tical fracture40: 

pD
�
tDxf ; jxDj < 1

�
¼

ffiffiffiffiffiffiffiffiffiffiπtDxf
p

2

�

erf
�

1 � xD

2 ffiffiffiffiffiffiffitDxf
p

�

þ erf
�

1þ xD

2 ffiffiffiffiffiffiffitDxf
p

��

�
1 � xD

4
Ei
�

�
ð1 � xDÞ

2

4tDxf

�

�
1þ xD

4
Ei
�

�
ð1þ xDÞ

2

4tDxf

� (32)  

where erf and Ei denote the error function and exponential integral 
functions, respectively; xD ¼ 0 for the uniform flux case, and xD ¼ 0:732 
for the infinite conductivity vertical fracture case. Simulations with 
various fracture angles are conducted. Since the reservoir can be 
approximated as the infinite set, the pressure data at the production 
point with various fracture angles keep the same. Fig. 6 plots analytical 
solutions of the dimensionless pressure at the fracture center as well as 
numerical solutions with various fracture angles. The good agreement 
verifies our numerical implementations about the EDFM is correct. 

5. Numerical results 

The developed coupling method is here applied to two fracture 
propagation problems in two dimensions and three dimensions, 
respectively. Models designed for these two problems are based on the 

classical KGD model and the penny-shaped fracture model. The primary 
objective of these two examples is to demonstrate the capacity of our 
developed numerical coupling approach in accurately simulating the 
complex multiphysics in the fracture propagation process. Note that 
though fracture geometries in these two illustrative examples are rela-
tively simple, the coupling approach is applicable for complicated- 
geometry cases because both X-FEM and EDFM can handle fractures 
with complicated geometries. 

5.1. Two dimensional KGD model 

This section simulates a 2D hydraulic fracture propagation problem. 
The model designed is based on the classical Khristianovic-Geertsma-de 
Klerk (KGD) model. As demonstrated in Fig. 7, it composes only one 
layer of linear elastic medium with Young’s modulus of 4:14� 1010 Pa 
and the Poisson’s ratio of 0.20. The thickness of the formation layer is 
1.0 m. Its minimum stress is 6:4� 107 Pa. Incompressible Newtonian 
fluid (with the viscosity of 1.00 Pa⋅s) is injected at a constant rate of 
5:0� 10� 5m3=s for 20 s, which initializes and propagates the hydraulic 
fracture. Both the fracture toughness and the formation permeability are 
set to be zero following assumptions in the classical KGD model. 

Fig. 8 presents comparisons of fracture half-length, fracture width at 
the wellbore, and net pressure, respectively, which are calculated from 
numerical and analytical solutions. The analytical solution for the above 
problem can be found from the textbook.41 These comparisons indicate 
that numerical results are in good agreements with the analytical solu-
tion for this problem. The discrepancy in the early time is because the 
fracture is assumed to grow from an initial length of 0.42 m instead of 

Fig. 15. Simulated fracture geometry, fluid pressure profile and stress profiles.  
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zero. The difference afterward is caused by grid resolutions (cell size) in 
the numerical approach. Note that the numerical method in this study 
simulates fracture propagation with a single wing. The contour of the 
normal stress in the x-direction, the normal stress in the y-direction and 
the shear stress when the fracture length is 1.21 m is plotted in Fig. 9. It 
can be seen that the stress concentration effect at the fracture tip is 
captured in the simulation result. Fracture half-width profiles at 
different injection time are shown in Fig. 10. 

A series of numerical tests are then conducted by varying the grid 
size and initial fracture length to investigate their influence on simulated 
fracture geometry. Detailed input parameters, as well as simulated 
fracture inlet widths, are demonstrated in Fig. 11. For this problem, this 
coupling numerical algorithm can converge to the correct answer if the 
grid size and the initial fracture length are set up relatively conserva-
tively. However, the accuracy cannot be unconditionally guaranteed if 
the initial set up is too deviated, as can be seen in the case with the grid 
size of 0.4 m and the initial length of 1.0 m 

5.2. Three dimensional penny-shaped fracture model 

The penny-shape fracture propagation problem involves an axisym-
metric hydraulic fracture propagation in a 3D infinite elastic medium. In 
this problem, the formation of Young’s modulus is 5:83� 1010 Pa and 
the Poisson’s ratio is 0.30. The formation initial reservoir pressure is 
3:4� 107 Pa, and the minimum stress is 6:4� 107 Pa. Incompressible 
Newtonian fluid with the viscosity of 0.1 Pa⋅s is injected at the fracture 
center with a constant rate of 0:106m3=s. In the base case, the fracture 
toughness is 4:0� 106 Pa

ffiffiffiffi
m
p

, and the formation permeability is zero. Six 
other cases with variational fracture toughness and formation perme-
abilities are also simulated to conduct the sensitivity analysis. The 
analytical solution considering both are not available, and only com-
parisons between the simulation results and analytical results for cases 
without fluid leak-off are presented. 

Only a quarter of the fracture is simulated by considering symmetry 
in this problem. The fracture is positioned in the mid of the X-axis. This 
quarter-model has dimensions of 45m� 150m� 150m which contain 
8100 elements. The size of each element is 5m� 5m� 5m. The reservoir 
permeability is zero to model the impermeable rock condition as 
assumed in the analytical solution. If the fracture propagation criteria 
are met, the increase of fracture radius is set to be 2.0 m. 

In addition to the base case, three other cases are simulated with 
different fracture toughness (0, 6:0� 106 Pa

ffiffiffiffi
m
p

, and 8:0� 106 Pa
ffiffiffiffi
m
p

). 
Both viscosity-dominated and toughness-dominated scenarios are 
covered in these four cases. Analytical solutions for the fracture radius of 
this penny-shaped fracture with viscosity-dominated (K < 1) regime and 
toughness-dominated regime (K > 4) can be referred in literature.6 

Fig. 12 presents comparisons between the numerical solutions and 
analytical solutions about the fracture radius vs. time with various 
fracture toughness. It indicates from low toughness (KIC ¼ 0) to high 
ones (KIC ¼ 8:0� 106 Pa

ffiffiffiffi
m
p

), all results from the numerical approach 
are in good agreement with the analytical solutions. Simulated fracture 
width profiles for the base case at 6 min and 16 min are demonstrated in 
Fig. 13. 

We also conducted a sensitivity analysis concerning the reservoir 
permeability. Three cases with various formation permeability (1:0�
10� 14 m2, 5:0� 10� 14 m2 and 1:0� 10� 13 m2) are simulated. Simulated 
fracture radius vs. time in these three cases are compared with the result 
of the base case, as shown in Fig. 14. It indicates that the loss of fluid into 
formations also governs the fracture extent, like the fracture toughness. 
The amount of this fluid loss is controlled by the fluid viscosity, for-
mation permeability, fracture-matrix contact area, and the fracture- 
matrix pressure difference. For the highest permeability (1:0�
10� 13 m2) case, the fracture radius grows to 31 m with 7 min of fluid 
injections. This fracture growth stops afterward because a dynamic 
balance is reached between the fluid injection and the fluid loss into 

formations. With the decrease of formation permeability, this ultimate 
fracture radius increases and the time to reach this radius increases as 
well. One can expect this fracture radius regrows with enough injections 
when the formation pressure is increased to a value close to the fluid 
pressure in fractures. But this phenomenon is not observed in the time 
range of this simulation (16 min). For the case of zero permeability, the 
fracture keeps increasing with a gradually slowing down growth rate. 

This coupling algorithm can calculate six stress components (three 
normal stresses and three shear stresses) and one fluid pressure with 
time. Here we show 3D contours of the simulated fluid pressure, xx- 
normal stress and xy-shear stress after 5 min of injections for the case 
with the permeability of 1:0� 10� 13m2 (Fig. 15). Results at four hori-
zontal layers (z ¼ 3 m, 13 m, 23 m and 33 m) are demonstrated. The 
simulated radius of the propagated fracture at this time is 29 m. 

Fig. 15 demonstrates that this numerical algorithm captures different 
patterns and scopes for the fields of three coupling physics (fracture 
propagation, fluid flow and solid deformation) in this problem. Simu-
lation results meet the qualitative expectation as well. The simulated 
fluid pressure contour cannot be described by the exact linear flow 
pattern because the time fluid leak-off begins at different fracture lo-
cations varies. A slight pressure depletion at the horizontal layer of z ¼
33 m is observed, although the fracture tip hasn’t reached this height. 
This is because fluid flows in the vertical direction with pressure dif-
ferences in the porous media. The stress concentration effect at the 
fracture tip, which is a key in the linear elastic fracture mechanics, can 
be observed in the xy-shear stress contour with different heights. 

6. Summary 

1. We present a coupled simulation strategy combining the 
embedded discrete fracture method and the extended finite element 
method to simulate the fluid-driven fracture propagation process in 
porous media. Key physics in this process includes three strong coupling 
mechanics: fluid flow in fractures and porous media, solid deformation 
with fractures, and fracture propagations can be captured through this 
numerical approach. Both EDFM and X-FEM avoid the cumbersome 
construction of unstructured grids to capture fracture paths for fracture- 
related fluid mechanics and solid mechanics. They also avoid the 
remeshing for the fracture growth. 

2. Mathematical equations on how to link these independent mod-
ules as well as numerical techniques on how to accelerate the coupling 
convergence rate are discussed in detail. The link from fluid flow to solid 
deformation treats the fluid pressure force on the fracture surface as an 
internal boundary. The converse link takes the calculated fracture 
widths and corrects fracture permeability and the fracture volume. The 
growth of fracture path is calculated based on the stress field from the X- 
FEM simulation. This fracture growth, in turn, changes solid- and fluid- 
mechanical behaviors of the system, which are captured by the recon-
struction of equations in EDFM and X-FEM. 

3. The EDFM and X-FEM are validated via benchmark problems 
individually and then are coupled to simulate fracture propagation 
problems in two dimensions and in three dimensions. Simulated multi-
physics fields meet understandings qualitatively, and simulated fracture 
parameters (length, width and net pressure) match with analytical so-
lutions (KGD for 2D problems and Penny-shaped fracture model for 3D 
problems) quantitatively. 

4. In this 3D demonstration example, because we assume the for-
mation is homogeneous and isotropic, the fracture propagates following 
a penny shape, and thus the front shape can be controlled just by the 
radius. For more complicated 3D applications, tracking the 3D fracture 
surface and capturing the fracture paths, determining the direction and 
length of fracture growth are challenging and not covered in this work. 
Further development addressing these questions will enable this nu-
merical tool for more complicated and practical engineering analysis. 
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