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A B S T R A C T

Due to their initial low permeability, unconventional plays can be economical only through hydraulic fracturing.
This process, in order to be controlled needs to rely on a solid representation of the natural fracture geometry, an
accurate stimulation model which considers the interaction with natural lineaments, and a physical reservoir
model which can account for the different flow regimes occurring during production. The stimulated volume
drainage can be evaluated using either Decline Curves Analysis/Rate Transient Analysis (DCA/RTA) techniques
or reservoir simulation. In both cases, the geometry of the final Discrete Fracture Network (DFN) issued from the
natural characterization and the stimulation, is very important, and for practical purposes is either overly
idealized (Warren & Root approach) or oversimplified (Bi-wing). The models have shown their limitations when
confronted with measurements in the field, opening up ways to use DFN geometries within integrated reservoir
studies.

The present work addresses some of the issues above, developing a hierarchical Discrete Fracture Model
(DFM) based on the “filtering” of a stimulated DFN, realistically obtained by the characterization step and the
stimulation process. This leads to a triple-continuum representation, consisting of: (1) the matrix media, (2) a
high conductive stimulated fracture network and (3) a low conductive stimulated fracture network.

The method consists in homogenizing low conductive networks, keeping a user defined backbone of high
conductive fractures as the main “reservoir” DFN. One of the main advantages of this DFM relies on the way we
compute the well-known Multiple Interacting Continua (MINC) approach, using a “proximity function” form-
alism, able to simulate transient effects. Using practical examples, this paper demonstrates applicability capa-
cities of this method, enabling the integration of more complex geometries within a “quick” simulation fra-
mework.

1. Introduction and industrial issues

1.1. Issues and definition

Unconventional shale/tight reservoirs, holding a significant amount
of the world's hydrocarbon reserves, present very low permeability
characteristics, rendering their production possible only through multi-
stage hydraulic fracturing by maximizing the Stimulated Reservoir
Volume (SRV), where; the hydraulic fracturing is an effective technique
to enhance productivity, with a great impact on the performance of a
fractured well (Ozkan et al. (2011)). Note that, the SRV accounts for the
volume of porous media where complex network distribution formed
from naturally induced fractures, multiple hydraulic fractures, and
original matrix; where it is characterized by an induced matrix

permeability which is typically greater (or equal, case dependant) than
the original matrix permeability (Al-Rbeawi (2017, 2018)). Moreover,
such reservoirs are often naturally fractured, showing non percolating
complex natural fracture geometries. Their distribution might be non-
stationary, difficult to characterize (orientation lengths and densities),
thus making systematic homogenization dangerous.

Studies of the hydraulic fracturing process use either reservoir DCA
(Decline Curve Analysis), PTA (Pressure Transient Analysis)/RTA
(Rate-transient analysis) or simulation models. The routinely used DCA
methods adapted for unconventional reservoirs (Stretched Exponential
Model, Duong Model, power law exponential, logistic growth decline
…) follow fundamental work originally established by Arps (1945).
RTA is based on the same physics governing fluid storage and flow as
for PTA. In other words, RTA uses well flowing well pressures along
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with production rates to extract information. They rely on curve fitting
of historical production data, followed by projection forecasts. Specific
unconventional reservoir mechanisms; such as non-static permeability,
complex fracture networks, non-Darcy flow, adsorption etc.; were
added in additional models improving characterization of multiple
fractured horizontal wells at different stages of their life (Ketineni and
Ertekin (2012), Stalgorova and Mattar (2013)). In particular, the linear
rate signal exhibited from online early-time production data, if mac-
roscopic reservoir and fluid properties are known, is analyzed, leading
to total effective fracture area estimation. Although analytical produc-
tion data analysis methods analyses are routinely used for conventional
reservoirs, complexities associated to unconventional reservoirs make
their use delicate. All assume a priori geometries governing hydraulic
fracturing, leading to improved formulations, all addressing specific
characteristics and operational conditions (summarized in Okouma
Mangha et al. (2012)), integrating the role fractures play (hydraulically
stimulated). Moreover, these methods are data intensive if reliable
forecast are expected. Ideally, they should be used in parallel with
numerical methods, thus constraining decline-curve forecast. Work-
flows to ensure this consistency have been provided in the literature for
all reservoir types (Fetkovich et al. (1996); Mattar and Anderson
(2003), Clarkson (2013)).

Therefore, historical “engineered” representations such as Bi-Wing
approaches (Nordgren (1972), Daneshy (1973), Barree (1983), Bouteca
(1988)) or wiremesh (Xu et al. (2010), Weng et al. (2011), Meyer and
Bazan (2011)) became widely used. These model theoretically work
well when reservoir characteristics within the stimulated areas, such as
natural fractures, are known to be stationary and isotropic, leading to
homogenization, and therefore to one main stimulation path, (Parsegov
et al., 2018). Yet, hydraulic fracturing monitoring data such as micro-
seismic or tomographic techniques have determined that fracture paths
interact, between induced and natural fractures, creating more complex
geometries. Other methods such as Production Logging Tools (PLT) or
Data Acquisition System (DAS) confirmed the above phenomena, spa-
tially not matching the same locations probably due to tools in-
vestigation resolution. Most recently, the Eagle Ford in-situ information
project Hydraulic Fracture Test Site (HFTS), using various data acqui-
sition methods, has shown the complex nature of such networks and the
lack of predictability of “classical” approaches (Raterman et al. (2017)).
Even when natural fractures are scarce, the developed geometry can
become quite complex, consisting in many fracture branches making up
active clusters (Delorme et al. (2016), see; Fig. 1). Due to properties of
stimulation fluids, multi-scale geometries develop, potentially complex,
according to specific boundaries connecting the well to the reservoir
volume. That way different zones of the reservoir are enhanced, thus
affecting overall gas or/and oil production (Huang et al. (2014)). In

conclusion, the heterogeneity and the complexity of the reservoir be-
come dynamic properties, making flow modelling from such reservoirs
quite challenging for both stimulation and production simulation.

Discrete Fracture Network (DFN) characterization techniques have
been used to describe unconventional reservoirs, simulating stimulation
processes leading to complex fracture geometries. Several modelling
approaches can be cited, enabling comparison or calibration using
microseismic (Mayerhofer et al. (2006), Williams-Stroud (2008)), or
pressure data (Elmo and Stead (2010), Nagel et al. (2013), McClure
et al. (2015)), or both (Delorme et al. (2013)). Historically, the diffi-
culties in applying these approaches concern the CPU intensive needs,
in order to be able to account for potentially a large amount of frac-
tures, and the reservoir property uncertainty through sensitivity simu-
lations. The present approach addresses this problem, solving the CPU
handicap, while retaining part of the initial complexity. Particular ef-
fort is done to capture principal heterogeneities as well as transient
behavior, using an adequate mesh. This leads to a main “backbone”
network, interacting through an adequately refined tight matrix which
favors nonlinear fracture matrix exchange terms often important in
such plays. This effect is well described in Yan et al. (2016b), who has
evaluated various shape factors used in dual porosity models, giving
examples highlighting the necessity of intra-porosity transfer terms
refinement to accurately restitute transients. Recently, Fuentes-Cruz
et al. (2014) presented a model for transient behavior of shale gas.
Fuentes-Cruz et al. (2014) modeled three cases of permeability varia-
tion: uniform (with no variation in permeability), linear and ex-
ponential; were they used type-curve matching for the identification of
the appropriate permeability model type. A linear flow followed by a
pseudosteady-state regime was naturally found for the uniform model
case. This obviously makes a good case, implying that realistic field
permeabilities will cause a deviation from the linear flow. Founding the
realistic shape factor becomes mandatory.

1.2. Theoretical prerequisite

The general equation governing three-phase, three-dimensional
flow in naturally fractured reservoirs for a single porosity model using
different petro-physical properties for matrix and fractures media, is
written as follows. The general form of the diffusivity equation in any
coordinate system, arbitrary spatial dimensions, heterogeneous per-
meability/viscosity, including gravity can be written as:
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where, the subscript p represents the phase, K is the absolute

Fig. 1. A large fracture network, and con-
ductivity distribution, with an irregular frac-
tures distribution intersecting with (several)
horizontal well at different injection times: (a)
slick water injection (30min in well 2), (b)
proppant injection in Well 2 (70min), (c) slick
water injection in Well 3 (210min) (d) proppant
injection in well 2 (230min) (after; Delorme
personal communication).
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permeability tensor of the medium, krp is the relative permeability of
phase p, µp is the viscosity of phase p, Bp is the volumetric factor of
phase p, P is the pressure of phase p, is the density, g is the algebraic
value of gravitational acceleration projection on z axis, z is depth
(positive, increasing downwards), corresponds to the porosity, ct is
the total compressibility. Also, q̃p

sc is the sink/source term of phase
p.Where the total compressibility, ct , is defined as the sum of the rock
compressibility (cr) and the fluid compressibility (cf ):

= +c c ct r f (2)

1.3. Setting up the problem

To model a realistic reservoir fracture network, a single-porosity
model where fractures are explicitly discretized is intellectually ap-
pealing. However, such approach leads to simulations consuming large
computational CPU time due to the large number of grid cells needed,
when matrix and fracture cells need to be conforming. On the other
hand, dual-porosity model, are often inadequate for such problems due
to the single averaged unknown describing potentially large matrix
grid-blocks for which the pseudo-steady state hypothesis is probably
wrong for extremely low matrix permeability reservoirs (Moinfar et al.
(2011), Kuchuk and Biryukov (2014), Jiang and Younis (2016)). Fur-
thermore, during the transient period in shale-gas reservoirs, a non-
linear variation of the pressure in the matrix media increases the
duration of the transient effects leading to a long transient periods
which cannot be handled by dual-continuum models (Chai et al., 2016),
Yan et al. (2016a). However, note that dual-porosity model is still lar-
gely used providing solution under specific assumptions such as
“smooth special heterogeneity and short transients”. Moreover, dealing
with gas formation in a three phase reservoir conditions, even if the
error might be small, Gas Oil Ratio might be badly predicted as the
pressure gradient within the matrix grid-block is coarsely accounted for
(Delorme et al., 2017).

That’s why lately, the basis of a new developments rely on the type
model called Discrete Fracture Model (DFM) has been largely studied
(Sarda et al. (2002), Karimi-Fard et al. (2004, 2006), Pichot et al.
(2012), Norbeck et al. (2014), Ngo et al. (2017). These models rely on
unstructured grids to conform to fracture geometry and locations,
where all fracture types are explicitly discretized, potentially leading to
a complicated (in 3D) and difficult to tract numerical system to solve
(Sun and Schechter (2015)). Furthermore, even if these were to be
known, to our knowledge there is no numerical solution which is able to
handle up to 300,000 fractures. To overcome these limitations, Lee
et al. (2001), Moinfar et al. (2013), Norbeck et al. (2014) propose a
hierarchical method, dealing more easily with these problems using
length criteria to limit the number of fractures to be accounted for.
Khvoenkova and Delorme (2011) presented a DFM with a reduced
number of degree of freedom thanks a tailored numerical scheme (one
node at each intersection only being required) enabling to deal with a
larger number of fractures. This model, suited for several wells scale
studies aim to capture the dynamic behavior of fractured reservoir
systems in which both the properties of individual fractures and the
connectivity of fracture networks are expected to evolve over time
(Delorme et al. (2013, 2016)). Moreover, the matrix-fracture interac-
tion is difficult to handle within these approaches because of the very
low matrix permeability that imply very fine gridding in the matrix
media. See for example (Artus and Fructus (2012), Sun et al. (2016))
and all literature on the widely applied logarithmically spaced/locally
refined (LS/LR) DFM technique. Non-conforming meshing strategies
have therefore been developed; (Reichenberger et al. (2006),
Khvoenkova and Delorme (2013), Fumagalli and Scotti (2013), Berrone
et al. (2014)).

Recently, Yan et al. (2017) and Mi et al. (2017) presented an En-
hanced Discrete Fracture Network (EDFN) model for multiphase flow
simulation in fractured reservoirs. EDFN is based on Voronoï technique

in order to discretize the matrix domain (DFN + image processing; see
also Sarda et al. (2002) in 2D, and Delorme (2015)) coupled with the
standard MINC method where, the fracture network is discretized by
assigning fracture nodes to each fracture intersecting points and frac-
ture extremities. Note that, the EDFN approach refines (subdivides) the
matrix grid block using a Local Grid refinement (LGR) technique in the
direction perpendicular to the fracture surface (1D MINC method).

In fact, the main difference between our proposed approach and
similar approaches presented in the literature relies on the application
of the MINC method. For example, the EDFN proposed by Yan et al.
discretizes logarithmically the equivalent matrix grid blocks using a 1D
MINC method to handle the flow between the matrix and the fracture,
when in this proposed approach the MINC exchange terms are esti-
mated during the image processing of the proximity function by ap-
plying a method introduced by Delorme (2015). Using a MINC proxi-
mity function (detailed in part 2), our proposed model ensures a well
modelling of the matrix-fracture flow interaction by subdividing the
matrix domain into nested volume taking into account the modeled
matrix-fracture distance distribution. This is not the case in the above
references where the influence volume only seems to be estimated using
the Voronoï technique.

More generally, this model can be considered of the same family of
Akkutlu et al. (2017) proposing a practical methodology to address this
issue by combining efforts in reducing the number of unknowns to
describe both the fracture and the matrix media while describing ade-
quately long transient effects. The difference with Akkutlu et al. relies
in the fact that in our case, fine scale simulation at the grid block scale
are not necessary to estimate boundary conditions, they are assumed.

1.4. Method outline

Fractured reservoirs are complex (Fig. 1), heterogeneous and ani-
sotropy. If they are to be treated mathematically, certain idealizations
must be taken into consideration (are imperative) especially under
practical considerations such as a rock matrix with very low perme-
ability compared with fractures. The United States Geological Survey
(USGS) has set a standard, such as “a reservoir with permeability less
than 0.1 mD” as being considered as a tight reservoir. Under these
circumstances, modelling the flow from such reservoirs with a standard
dual-porosity (DP) model becomes very challenging since by definition
it always assumes pseudo steady-state within the matrix.

Also, the presence of natural fractures affects the flow, since their
interaction with hydraulically induced fractures can guide the devel-
opment of an effective SRV. This implies knowing precisely the het-
erogeneity nature of many properties of the formation, which becomes
also a real challenge. The main objective of this work is to propose a
new DFM to deal quickly but adequately with this kind of heterogeneity
often seen in tight reservoirs and to model correctly the flow exchange
between the matrix and the different existing fractures, extending the
MINC matrix-fracture flow exchanges formulation, attempting to be
able to simultaneously account better for the transient period and keep
a tractable number of unknowns. To do so, we propose a DFM-MINC
proximity function in order to model flow from low reservoir perme-
ability.

In our proposed approach, the DFM is coupled with two other
media: (1) the matrix media zone and (2) a low conductive homo-
genized but connected fractures. The exchanges between these media
mentioned above are modeled using the MINC formalism. As known,
the MINC method was originally developed by Pruess and Karasaki
(1982) (see also, Wu and Pruess (1988)) to model heat and multiphase
fluid flow in fractured porous media. This concept consists in sub-
dividing individual matrix blocks into several nested meshes which
could result in a better modelling of the flow from matrix media to-
wards the fractures. Note that, the main difference between the MINC
method and a DP (dual-porosity) is based on how the pressure gradients
are accounted for. The DP model simulates matrix-fracture exchange on
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the basis of a pseudo-steady state flow hypothesis, whereas the MINC
method treats the problem entirely by a numerical method creating
fully the transients. Thus, in our new scheme, two exchanges occur: one
between the matrix and a low conductivity homogenized zone and a
second one between the fracture path (relating the reservoir to the well-
bore) and the global zone made up of the matrix and the homogenized
zone.

2. DFM based on a MINC proximity function

Unconventional reservoirs are naturally fractured with the presence
of connected and isolated fractures. For an economic production, low
permeability reservoirs are stimulated using hydraulic techniques, in a
way to improve reservoir permeability by creating a stimulated frac-
tures network connecting a huge reservoir volume to the wellbore.

Using horizontal well, creating several levels (scale dependent) of
complexity, this can be classified as: hydraulically stimulated - induced
fractures; interacting fractures (stimulated natural fractures + induced
fractures); non-stimulated natural fractures and even micro-fractures
within the organic matter (see; Fig. 2). All these types of fractures are
connected to each other leading to a very complex potentially con-
tinuous DFN (fully continuous at least for the part relating the reservoir
to the wellbore or partly continuous). A realistic representation of such
a full network would require too many unknowns and could easily
become a non-tractable numerical system.

Therefore, in order to simplify the system we have chosen to de-
velop a three media approach which fully accounts transient effects.
The main challenge of the method resides in adequately choosing
spatial delineation of the three media and estimating correctly the ex-
change term functions between each media.

The DFM is coupled with a MINC proximity function based on the
distance to all discrete fractures using a stochastic random point's dis-
tribution (Khvoenkova and Delorme (2013)). The proposed DFM-MINC
proximity function is based on a triple continuum media taking into
consideration: (1) matrix media, (2) homogenized fracture media and
(3) highly conductive fractures which are explicitly discretized.
Therefore the implemented MINC formalism applies to the majority of
fracture types found in unconventional reservoirs. The idealization/
approximation used is to consider two types of continuous fracture
media: (a) highly conductive fractures and (b) a stimulated natural
fractures with lower conductivities compared to hydraulic fractures. In
other words, to treat the presence of multi-scale fractures we suggest
classifying different existing fractures into the reservoir using a hier-
archy based on a conductivity criterion combined with connectivity.
Note that, the conductivity threshold between high and low fractures
conductivity could be defined by the user.

Thus, high conductive fractures are explicitly discretized due to
their crucial role in production, while other fractures are homogenized
leading to a homogenized fracture media lightly permeable. Besides,
our proposed DFM-MINC proximity function subdivides the matrix
media using the MINC method and mesh-less approach to simulate
properly the flow exchange between matrix and all sorts of fractures
(including both high and low conductive fractures). Refinement inside
the continuous media is flexible and user-defined. As an example of
validation, Fig. 3 presents the Error (compared to reference solution) in
L2 norm function number of matrix refinement for the cumulative gas
production; for both single and multiphase flow cases (see; Farah et al.

(2016)).
Our approach is appropriate for describing a large reservoir since it

treats the multi-scale problem. As mentioned above, three media exist
into our proposed discrete fracture model; the matrix, the homogenized
natural fractures (secondary) and hydraulic fractures (primary) denoted
m, f and F; respectively. Note that, different connections between dif-
ferent media exist and are identified as follows; connection between
primary and homogenized fracture (F-f), between homogenized frac-
ture cells (f-f), between homogenized fracture and matrix (f-m) and
finally between primary fracture and matrix (F-m). Moreover, the
connection between primary fractures and matrix (F-m) are also con-
sidered via the MINC approach. In fact, the MINC proximity function is
computed with respect to all the fractures, including primary fractures
(F) and natural fractures (f). So, the matrix-fracture exchange in the
MINC approach includes all fracture types. However, for the equivalent
(homogenized) fracture permeability and porosity computation, only
low conductive fractures are considered.

Thus, the proposed DFM consists in discretizing explicitly hydraulic
and highly conductive fractures, due to their very important role during
the production when other fractures are homogenized. Discretization is
performed at each fracture plane intersection to which a fracture node
is associated (represented by a red node in Fig. 2). Fractures porosity
and surface exchange values are assigned to each fracture node. Fur-
thermore, homogenized fractures are assigned using another re-
presentative node, which is represented by a blue node in Fig. 2. Fi-
nally, the matrix media is represented with a third node connecting
with the homogenized fractures through the blue node. In the matrix
media the MINC proximity function is applied taking into account all
existing fracture types into the grid cell. For a deeper investigation on
how the MINC proximity function is computed see, Farah (2016);
Appendix A – MINC Proximity Function; where a detailed description of
the MINC proximity function is presented.

For convenience, a MINCn model is defined as one matrix cell is
subdivided into “n” nested volumes. (For example; a MINC6 means that
the matrix media has been subdivided into 6 subdivisions). Moreover,
in order to perform this kind of DFM, a homogenization method must
be taken into account. To do so, a study comparing an analytical ap-
proach, a local numerical upscaling and a global numerical upscaling;
in order to quantify the effect of the homogenization method on our
DFM; is done (see; Khvoenkova and Delorme (2009); Farah (2016)).
Note that, in this work the equivalent permeabilities are computed with
a global numerical upscaling method on the homogenized fracture cells,
as we found it was the most accurate homogenization method in this
case.

Fig. 4 summarizes the several steps to apply in order to compute our
DFM-MINC proximity function on an irregular complex discrete frac-
ture network. It must be mentioned that, the matrix-fracture exchange
is particularly important for low matrix permeability reservoirs, indu-
cing long transient periods. Connections between different media and
transmissibility calculations are described in details below.

2.1. Intersection between the well and the hydraulic fractures

A node (green node in Fig. 5) is assigned to the intersection between
the well (red dashed line in Fig. 5) and the hydraulic fracture. Hence, a
connection between the intersection of the horizontal well (green node
in Fig. 5) and the hydraulic fracture node (red node in Fig. 5) is done

Fig. 2. Illustration of different fractures types occurring
into a reservoir.
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through the calculation of the transmissibility using Eq. (3).

=T k
d

Awell F
F

well F
F (3)

where, kF is the fracture permeability, AF corresponds to the exchange
surface ( =A e ZF F F) (note that, eF and ZF corresponds to the hydraulic
fracture aperture and the fracture depth in z direction; respectively) and
dwell F correspond to the average distance between the two nodes (red
and green nodes). To take into account the radial flow behavior towards
the well, a numerical PI is used for the flow modelling inside the
fracture plane to connect the calculated well node pressure and the true
wellbore pressure. Note that, only an intersection of primary fractures
network with a well are taken into consideration (green node is as-
signed; Fig. 5).

2.2. Flow between hydraulic (primary) fractures

As stated above, the flow between highly conductive fractures
should be taken into consideration and is explicitly discretized. Each
“impacting” fracture is explicitly modeled, using a limit number of
fractures nodes. Each intersection of two (or more) high conductive or
hydraulic fractures is first computed. The fracture volumes and the
exchange surfaces are assigned to the fracture nodes and are estimated
using a Voronoï mesh in each fracture plane (see, Delorme et al.
(2013)). Here, Fig. 6(a) presents an illustration of a 2D example

consisting of; hydraulic, natural and isolated fractures, where each in-
tersection between hydraulic fractures plane (solid black lines) is as-
signed with a fracture node (red node in Fig. 6(b)).

Due to the model choices, a connection between the fracture nodes
Fi and Fj occurs along one fracture only, facilitating its computation via
Eq. (4):

= =T A k
d

and A e l* *F F F
F

ij
F F Fij/i j (4)

where, kF corresponds to the fracture permeability, AF to the fracture
exchange area and dij represents the distance between the two fracture
nodes, respectively node i and j. Also, eF corresponds to the hydraulic

Fig. 3. The L2 norm Error function of number of refinement concerning (left) a single-phase flow and (right) a multiphase flow for the cumulative gas production
from a reservoir example (see; Farah et al. (2016)).

Fig. 4. The several steps to follow leading to the application of our proposed DFM on a complex fracture network.

Fig. 5. Illustration of the intersection between a horizontal well and a hydraulic
fracture.
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fracture aperture and lFij corresponds to the borderline length between
the cells (fracture depth in z direction in the 2D case, but requires
Voronoï segment calculations inside the fracture in 3D to be K-ortho-
gonal, Delorme et al. (2016)).

2.3. Exchange between primary fractures and homogenized fractures

To connect the primary fractures (red node Fi in Fig. 6(b)) to the
homogenized media (blue node fi in Fig. 6(b)), the transmissibility is
calculated using Eq. (5):

=
+

+ +
T

k k d d
k d k d

A
d d

k
d

A
* ( )
* *

*
( )

*F f
f F f F

f F F f

F

f F

f

f
F/i j

i i i i

i i i i

i

i i

i

i
i

(5)

where, fi corresponds to a homogenized fracture grid cell node, Fi
corresponds to a hydraulic fracture node, AFi corresponds to the prin-
cipal fracture exchange surface of node Fi within the homogenized grid
cell fi , k fi corresponds to the homogenized fractures permeability. The
distance d fi corresponds to the average distance from the grid cell to the
principal (hydraulic) fractures.

Note that, the average distance< >d fi of a homogenized grid cell i to
the fracture existing into a grid cell is calculated using the same sto-
chastic approach based on a randomly method (randomly points dis-
tribution inside the studied grid cell). Firstly, the cell grid is discretized
into n sub-domains, and then a point is randomly selected in each sub-
domain (see, Fig. 6(c)). Using this method may avoid biased distance
distribution computation for fractures of type Warren and Root, where
the fractures are parallel to the grid axes. Moreover, it allows numerical
problem simplification without requiring complicated meshing proce-
dure that might be involved in workflows using the same ideas (Yang
et al. (2017)).

The average distance dn of a homogenized grid cell to the hydraulic
fractures is obtained.

< > =
=

d
n

d1
f

p

n

p pt frac
0

1

( )i

where, n is the number of sample points launched into the studied grid
cell and dp pt frac( ) corresponds to the distance from each sample point to
the nearest fracture inside the grid cell.

2.4. Flow between homogenized low conductive fractures

The connection between two grid cells of homogenized low con-
ductivity fractures, identified by a blue node in Fig. 6(b), is calculated
using Eq. (6):
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+

T
k k

k d k d
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* *
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f f f f
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i j
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(6)

where, A f fi j correspond to the exchange surface between the two
homogenized grid cells, k fi and k fj correspond to the homogenized
fractures permeabilities, respectively to node i and node j. The distances
d fj and d fj correspond to the average distance from the center of the
homogenized grid cell to the exchange surface.

2.5. Intra-matrix and tight matrix to homogenized fractures flow

The MINC proximity function (see; Farah (2016), Ricois et al.
(2016)) is applied to compute the matrix and fracture exchange, and
the connection between the subdivisions of the matrix (intra-matrix)
media using the MINC proximity function is discussed.

Inside the SRV, a connection between the matrix domain and the
fractures must be handled. The calculation of the exchange surface of
all sorts of fractures intersecting (connected) with a grid cell is con-
sidered. In other words; hydraulic, stimulated and non-stimulated
natural fractures are taken into account in order to apply the MINC
proximity function for matrix-fracture exchange modelling (see;
Fig. 6(c), (d) and (e)) which is in a strong difference with Jiang and

Fig. 6. Illustration of (a) an irregular DFN (b)
principal hydraulic fractures intersecting with
each other's (solid black lines) where a red node
(Fi and Fj) is assigned to each hydraulic fracture
intersection, (c) the random p points launched in
each homogenized grid cell (fi and fj) inter-
secting with a hydraulic fracture, (d) the calcu-
lated distance of each point to the nearest frac-
ture where different colors (blue, orange, grey,
purple and black) represent different distances
to the nearest fracture; blue (the nearest) and
black (the farthest) and (e) DFM-MINC6 proxi-
mity function taking into account all sort of
connected fractures. (For interpretation of the
references to color in this figure legend, the
reader is referred to the Web version of this ar-
ticle.)
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Younis (2016) and Yan et al. (2017). To do so, a number of points are
randomly launched (see; Fig. 6(c)). Furthermore, the distance of each
point to the nearest fracture is calculated. Fig. 6(d) represents an il-
lustration of the different calculated distances taking into account the
fracture network; where, different colors (blue, orange, grey, purple
and black) represent the distance to the nearest fracture. Note that, the
blue points represent the nearest distances to the fracture network,
where the black represent the farthest ones. Thus, the matrix grid cell is
subdivided (see, Fig. 6(e)) relatively based on the distance from the
fractures by using this distance distribution function.

Let's consider the example presented in Fig. 6, the fracture volume
V1, for a given distance dm1, consists in the first continuum (#1) of the
MINC method concerning the matrix media, which is connected to the
homogenized fracture cell using Eq. (7):
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where, AF fi j corresponds to the surface exchange between fractures and
matrix taking into account all sort of connected fractures within this
grid cell, k fi is the permeability of homogenized fracture cell, d fi cor-
responds to the half average fracture aperture, km correspond to the
matrix permeability and dm#1 to the average distance from the first
continuum (#1) of the matrix media.

The MINC proximity function is computed using a random ap-
proach. Usually, the sub-domains (matrix refinement) are constrained
by a given percentage of the total volume, defined by the user which
gives him flexibility in subdividing the sub-regions depending on frac-
tures density and flow regime (see; Farah et al. (2016)). So, we can
consider the volumes are known. Instead, we need to determine the
distances which separate two matrix sub-domains. This is not a difficult
task; however, the biggest challenge is to calculate the area of an in-
terface between two matrix sub-domains. One of the originalities of this
work relies on the way we compute the well-known MINC method using
a “proximity function” formalism (distribution function). In fact, the
information from our distance distribution function (Fig. 6(d)) is used
in order: (1) to subdivide the matrix domain (Fig. 6(e)), (2) to calculate
the average distances per matrix sub-domains to the fracture media and
(3) to calculate the exchange surface between two consecutives matrix
sub-domains.

In order to calculate the matrix-matrix interaction surface between
two sub-domains, we suggest approximating this exchange surface with
the derivative of the cumulative volume function with respect to the
distance as described in Eq. (8):
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where, the distance +di 1 corresponds to the average distance from vo-
lume +Vi 1 to the fractures and di 1 is the average distance of Vi 1. The
volumes Vi 1 and +Vi 1 correspond to the cumulative volume of grid cells

+i 1 and i 1; respectively. Note that, the volumes and the average
distances are calculated using the distance distribution function.

Once the exchange area is known, the connection transmissibility
between the matrix subdivisions is calculated by Eq. (9).

= = …
+

+ +T k
d

A where i n; , 1,2, , ( 1).M M
m

i i
exchange subdivision/

, 1
i i i i1 , 1 (9)

where, +di i, 1 corresponds to the average distance between two succes-
sive matrix subdivisions and nsubdivision corresponds to the number of
matrix refinement.

On the other hand, another potential connection could occur be-
tween a SRV matrix media (MINC subdivision) and a non-SRV matrix
media. So, transmissibility value must be calculated in order to model
properly fluid flow on the SRV boundary. This calculation is not pre-
sented here, however for a detailed description; see, Farah (2016).

The algorithm above is one which transforms a 3D problem into a

1D. In effect, the very low permeability characteristic of the tight ma-
trix, compared to the fractures, makes the main flow mechanism (ex-
cept gravity) to be close to a diffusivity problem (fracture to matrix and
vice-versa) governed by moving boundaries into the fracture system
and into the matrix system during the transient period. This requires a
sufficiently refined discretization, evolving through time, limiting nu-
merical dispersion within acceptable cost. This diffusive mechanism is
classically solved in 3D even if it depends only on the directional matrix
permeability considered, the distance to the fracture and fluid proper-
ties. Our algorithm uses this to aggregate information in terms of dis-
tance to the closest fracture, thus 1D, using the so-called proximity
functions. In addition, any directional anisotropy could be accounted
for using a normalized distance (Delorme, 2015). McClure 2017 pro-
vides an example of reducing 3D into a 1D problem when dealing with
leak-off term estimation. However, complex fracture geometries often
found in unconventional reservoirs, construction of a mesh can be
challenging and fastidious, especially in 3D. Our technique is useful
because it avoids redoing the overall procedure. The proximity func-
tions (and geometrical issues) are solved one time, not requiring con-
forming mesh, and can then be used in AMR technologies to restitute
the accurate life periods field behavior. The main limitation is the
vertical fluid flows, created by gravity for example. This is one of our
current research interests. A possible way to include gravity would be to
add in the equation a hydraulic head adjustment to the matrix pressure
boundary condition in the 1D solution to the diffusivity equation. An-
other drawback is that the volume of the 1D matrix sub-element is
higher than the 3D refined ones, increasing numerical dispersion. Yet,
again, as fractures are more conductive, they favor equilibration at the
boundaries of the problem, justifying this dilution into the matrix ac-
cording to the distance to the fractures (such an effect is widely ob-
served in connected fractured reservoir where the transition zone be-
tween water, oil and gas due to capillarity is absent).

2.6. Summary

This part sums up our DFM-MINC proximity function approach
early proposed in this section. Fig. 7(a) and (b) present a 3D and 2D
fracture view, respectively. Fig. 7(c) describes the principle behind our
methodology which transforms a 3D problem (Fig. 7(a)) to a 1D one in
conjunction with a limited number of node at each intersection of active
fracture plane (a red node is assigned to such an intersection). More-
over, Fig. 7(c) illustrates the different possible connections occurring
into a SRV grid cell where; hydraulic, natural stimulated, natural non-
stimulated and isolated fractures exist. Connection can be classified as;
Hydraulic (F) – Hydraulic (F), Hydraulic (F) – Homogenized (f),
Homogenized (f) – Homogenized (f), Homogenized (f) – Matrix#1 (M1)
and finally Matrix – Matrix (for a MINC6 model, 6 matrix subdivisions
exist; M1 – M2 – M3 – M4 – M5 – M6 are connected to each other's).

Our modelling approach is based on a triple continuum media,
taking into consideration: (1) matrix media (m), (2) homogenized
fracture media (f) and (3) highly conductive fractures (F), which are
explicitly discretized. The MINC formalism is implemented to model
flow exchange between the matrix media and the fractures (all the
existing fractures).

Fig. 8(a), (b) and (c) present some of the advantages and dis-
advantages from the existing models in the literature. On the other
hand, Fig. 8(d) summarizes the principle basic behind our proposed
DFM-MINC proximity function by highlighting several advantages re-
sulting from this proposed approach.

In summary, several advantages of our proposed DFM-MINC
proximity function are:

1. First, the hierarchical method significantly reduces the number of
nodes when compared to a standard DFM.

2. Second, the implementation of the MINC method insures an ade-
quate flow modelling simply by calculating a better pressure
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gradient through the matrix domain.
3. Third, the 3D reservoir problem is simulated essentially by a series

of a 1D flow problem numerically simpler.
4. Fourth, our DFM-MINC proximity function is meshless. In other

words, the whole approach consists in a virtual mesh with nodes
connected to each other, using transmissibility values mimicking
flow exchange from matrix media through the discrete fracture
network to the well.

5. Fifth, it should be mentioned that our approach has the advantages
of reduced computational cost, while entirely bypassing the chal-
lenges in gridding the refined scale model. When identified, the
primary fracture network may be discretized with a minimal
number of nodes (a fracture node to each fractures plane intersec-
tion) and exchange terms have been explicitly described for em-
bedding it in any reservoir grid with potential large grid cell sizes.

6. Last but not least, the user has the possibility to choose the Cartesian
grid mesh in order to compute the MINC proximity function.
Moreover, the user is able to fix the level of matrix refinement
needed, which is a function of the fractures density and flow regime

Fig. 7. Illustration of (a) a 3D fracture view, (b) a 2D fracture view and (c) the DFM-MINC proximity function optimization (1D problem) with the possible
connection of the different media occurring between matrix (M1, M2 …, M6), hydraulic fractures (F) and homogenized fractures (f).

Fig. 8. The principle idea behind our triple continuum approach presenting: (a) the explicit discretized model, (b) the DP model and (c) the MINC method, leading to
(d) our DFM-MINC proximity function for flow modelling from unconventional low reservoir permeability.

Table 1
A summary of the existing connection and the related transmissibility formula
used to connect different media.

Connection between media Transmissibility

Well – Hydraulic fractures =T AWell
kF

dwell F
F/ F and a PI to relate the

wellbore pressure
Hydraulic - Hydraulic

fractures
=T A ,Fi Fj

kF
Dij F/ where =A e Z*F F F
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k fi
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(see; Farah et al. (2016)).

Table 1 summarizes the different possible connections occurring
into our model. Besides, transmissibility calculations between existing
media are presented. Note that, our proposed DFM-MINC proximity
function is based on a triple medium, where six main transmissibility
calculations are done in order to describe the flow behavior for such
problem.

3. Validation of the DFM - cross fractures case

In this part, a simple case treating a single-phase flow is studied in
order to validate the DFM. The following example consists in a matrix
block of 65 ft in x and y directions with the presence of two hydraulic
fractures with a fracture aperture fixed at 0.04 ft placed in the center of
the block as shown in Fig. 9. The permeabilities are defined as 10−4 mD
and 2000 mD, in the matrix and fracture media; respectively. The
porosity of the matrix media is 0.05. The depth of the block is 330 ft in z
direction. A horizontal well is placed into the formation. A horizontal
well (green node in Fig. 9(a)) is placed and intersects with the hydraulic
fracture (dashed line).

Three simulation models are performed and compared. First, an
explicit model which discretized the fractures using a local grid re-
finement (LGR) technique around the fractures is taken into con-
sideration. This model uses very small grid cells and is set as a reference
solution (Fig. 9(b)). A standard dual-porosity (DP) model using a block
of 65 ft is performed. Care was taken in the calculation of the effective
fracture permeability and porosity for the DP model (Fig. 9(c)). On the
other hand, in order to perform the MINC proximity function, p random
points are launched (Fig. 9(d)) and our DFM is illustrated in Fig. 9(e),
where a red dot is assigned to the intersection between the hydraulic
fractures. Note that, our example is based on a MINC6 model.

Fig. 10(a) and (b) illustrate the cumulative distribution function for
the example presented earlier in this section. Fig. 10(a) presents three

samples of 100 points; Random #1, 2 and 3. Fig. 10(b) illustrates the
cumulative distribution function for 1000 and 10,000 points. Clearly,
increasing the number of random points increases the reliability of the
distribution function leading to a better estimation of the exchange
surface. In fact, as the number of randomly points increases, the pre-
cision of the transmissibility calculation increases as well, our DFM
becoming more and more accurate in comparison to the reference so-
lution. However, in practice we should limit the number of sampling
points in due to CPU time constraint. Hereafter, the number of random
points is limited at 100 points.

For this case gas is the fluid chosen. The initial reservoir pressure is
3800 psi and the bottom hole well flowing pressure is 1000 psi. The
cumulative gas production resulting from different simulation models
are presented in Fig. 10(c). Clearly, the DP model is not accurate
comparing to the explicit discretized model. However, our DFM using
three different point distributions presents accurate results in compar-
ison to the reference solution. Based on the results shown in Fig. 9(c) we
can conclude that our DFM is an improvement over the DP solution and
that the MINC proximity function could handle the matrix-fracture
exchange with a very good accuracy. More validating results have been
investigated in Farah (2016); the reference solution, the dual porosity
model and our DFM-MINC proximity function are there compared in
many configurations such as; isolated fracture, orthogonal fractures,
diagonal fractures and an irregular fractures distribution; all leading to
our model validation.

4. Application to a synthetic 2D discrete fracture network

For this case, a more representative synthetic 2D case is considered,
first using a single-phase gas reservoir and then a two-phase tight oil
example. Different matrix permeability values are used; testing the
robustness of the model when confronted to a multiphase flow problem,
which makes the simulation quite challenging (see; Khvoenkova et al.
(2015), Jiang and Younis (2017)). For a tight-oil reservoir example,

Fig. 9. Illustration of (a) a cross fracture model, (b) the explicit discretized model, (c) standard dual-porosity model, (d) the stochastic approach for a regular
distribution of p points (p=100), where the volume is discretized into p equal volume (cubic or rectangular) sub-domains and then a randomly point in each
discretized domain is selected and (e) the optimization of the MINC proximity function.

Fig. 10. Illustration of the cumulative distribution function for (a) a sample of 100 points and (b) 1000 points using the randomly discretized technique for the block
of 50 ft and (c) the cumulative gas production for 1000 days of production.
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when the fracture pressure drops below the bubble point, gas starts to
appear in the matrix formation near the fracture faces. Standard ap-
proaches based on DP formulations cannot correctly handle this kind of
problems. However, our proposed DFM-MINC proximity function is
able to reproduce this behavior quite well.

The stimulated reservoir volume is at 820×1804×20 ft3 as shown
in Fig. 11(a). The reservoir parameters of the 2D example presented in
Fig. 10(a) are summarized in Table 2. A horizontal well is placed in the
x-direction and in the middle of the reservoir. The reservoir consists in
3 sets of 276 fractures (see, Fig. 11(a)). The hydraulic fracture (solid
blue line in Fig. 11(a)) oriented in y-direction has a width of 0.012 ft
and a permeability of 20 Darcy, while the two sets of stimulated natural
fractures have a thickness varying from 0.004 ft to 0.005 ft and a per-
meability varying from 250 mD - 300 mD (An average of conductivity
varying from 1 mD-ft to 1.5 mD-ft). The first set of natural fractures
denoted Fracture set_1 is oriented with an average angle of 15° to the
north and has a mean of 200 ft in length with a fracture density of 0.03.
The second set of fractures denoted Fracture set_2 has an average or-
ientation of 115° to the north and a mean length of 400 ft with a
fracture density of 0.015. A conductivity criterion of 2 mD.ft is applied
on the connected DFN. So, apart from the high conductive hydraulic
fracture, all other fractures, including stimulated and non-stimulated
natural fractures are homogenized inside the SRV (global homo-
genization and not Oda-type of up-scaling). Isolated fractures are not

taken into consideration neither in computing the reference solution
nor in our DFM. In fact, only a connected discrete fracture network is
considered and studied. The hydraulic fracture is considered as a rec-
tangular in a vertical plane with the half-length of 738 ft (total length of
1476 ft) in y-direction. The reservoir net thickness is 20 ft and the top of
the reservoir is set at 3950 ft.

4.1. Generation of a reference solution

In order to provide a reference solution, the matrix media is dis-
cretized using very fine grid cells and the discrete fracture network is
explicitly discretized taking into account all sort of connected fractures,
where the matrix cells exchange with fracture nodes are estimated as
described in Delorme et al. (2016). This approach consists in using our
DFM-MINC proximity function of one single level (MINC1) with fine
matrix cells volume.

To provide a reliable reference solution, three simulations con-
sisting in three different mesh refinements are done, called Solution #1,
#2 and #3 (see, Fig. 11(b), (c) and (d)). Fig. 11(b), (c) and (d) corre-
spond to the red box selected in Fig. 11(a). The first (Solution #1)
consists in 550000 grid cells. The second and the third consist in 2.2
and 8.8 million grid cells; respectively. In fact, the SRV has been dis-
cretized in x, y and z direction as following; 500× 1100 x 1;
1000×2200 x 1 and 2000× 4400 x 1 matrix grid cells, respectively
for simulations #1, #2 and #3. Note that, the grid size is 1.64 ft in x and
y direction for Solution #1, 0.82 ft for Solution #2 and 0.41 ft for So-
lution #3. Obviously, Solution #3 must be the most accurate one as it
presents the smallest grid cell size comparing to Solution #1 and #2. In
order to select to most reliable solution, the three solutions called So-
lution #1, #2 and #3 have been performed for a single-phase flow case
taking a matrix permeability of km=10−4 mD. The results are illu-
strated in Fig. 11(e). Clearly, based on these results all solutions are
very close comparing to each other. In particular, Solutions #2 and #3,
with 2.2 and 8.8 million grid cells respectively, provide almost the same

Fig. 11. Illustration of (a) the reservoir bounding box taking into account the DFN; (b) the grid refinement from the red box selected in Fig. 11(a) for Solution #1, (c)
Solution #2, (d) Solution #3 and (e) the comparison of the cumulative gas production for the three solutions; Solution #1, #2 and #3. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Reservoir properties of the 2D synthetic example presented in Fig. 11(a).

Property/Parameter Value Unit

Hydraulic Fracture Permeability 20 D
Induced-fracture Permeability 300–400 mD
Hydraulic Fracture Width 0.012 ft
Induced-fracture Width 0.004–0.005 ft
Reservoir Net Thickness 20 ft
Top of the Reservoir 3950 ft
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results concerning the cumulative gas production after 5000 days of
production. However, the CPU time of the Solution #1, #2 and #3 are
2 h, 6 h and 34 h, respectively. Due to a high CPU time presented by
Solution #3; Solution #2 consisting in a 2.2 million grid cells can be
reasonably considered as a reference solution. So in the following, So-
lution #2 is considered as a reference solution for single and multiphase
flow simulations.

4.2. Shale-gas reservoir

For this study, only a single phase flow (gas only) is taken into ac-
count. Moreover, three simulation models, an explicit discretized
model, a dual-porosity model and the DFM based on a MINC proximity
function, are performed and compared. As mentioned above, the re-
ference solution consists in 2.2 million grid cells. Also, it must be
mentioned that the equivalent permeabilities of the DFM are computed
with a global numerical upscaling method on the homogenized fracture
cells.

The initial reservoir pressure and the bottom hole pressure are set at
3800 and 1000 psi respectively. The matrix permeability is 10−4 mD.
Moreover, Fig. 12 presents the comparison of the reference solution
(Solution #2), the dual-porosity model and the DFM for 5000 days of
production. Clearly, based on our results from this case the DFM pre-
sents a better result than the dual-porosity model. Thus, the im-
plementation of the MINC proximity function into the DFM improves
significantly the capability to predict inter-porosity flow exchange.
Based on these results, we conclude that our DFM is able to predict gas
production from unconventional fractured shale-gas reservoirs and

provides an accurate result comparing to a reference solution. Besides
matching the reference solution, the DFM decreases greatly the CPU
time. The DFM took only 20 s to perform the 2D synthetic shale-gas
reservoirs for a single-phase flow problem, while it took around 6 h for
the reference solution (Solution #2) to be performed. The proposed
DFM proves then its efficiency.

4.3. Tight-oil reservoir

The next simulation scenario retains the same fracture network as
presented earlier (see; Fig. 11(a)). In this section, we evaluate the ac-
curacy and the ability of the model to treat a multiphase flow, where a
tight-oil reservoir is studied. Initially, both oil and water are present in
the reservoir. We consider the initial water saturation in this shale oil
reservoir at 0.4, where the irreducible water saturation is set at 0.1.
Also, the formation porosity is 0.05. The matrix permeability is set as
10−4 mD. The initial reservoir pressure is 3800 psi and the horizontal
well produces at a constant bottom hole pressure of 1160 psi, which is
below the bubble point pressure set as 2710 psi. The top of the reservoir
is 3950 ft. Fig. 13(a),(b), (c) and (d) illustrate the relative permeabilities
curves and capillary pressure for the matrix media, for the oil-water
system and the gas-oil system; respectively.

Once the well is put into production, the reservoir pressure begins to
decrease and when the reservoir pressure decreases below the bubble
point pressure, gas starts to appear inside the reservoir near fracture
faces. The bubble point distance to the fracture will move during the
production. Such phenomenon is difficult to reproduce with a dual-
porosity model because of the large and heterogeneous block occurring
in very low matrix permeability. Especially during the transient period
where a non-linear variation of the pressure in the matrix media renders
difficult the estimation of the pseudo matrix pressure average.
However, the MINC method presents a solution for this problem.

Simulations results are presented in Fig. 14. Our DFM, based on
different MINC model (MINC2, MINC4 and MINC8), is compared to the
reference solution. Fig. 14(a), (b), (c), (d) and (e) show respectively the
results of daily gas rate, daily oil rate, cumulative gas production, cu-
mulative oil production and the gas oil ratio (GOR). Fig. 14(a) and (b)
illustrate the daily gas and oil rate after 2000 days of production for the
three simulation models whereas Fig. 14(c) and (d) show the cumula-
tive gas and oil production for 5000 days of production. Clearly, the
DFM based on a MINC8 model (dotted red line) matches the reference
solution, predicting the same amount of cumulative gas production
(around 30*106 cft) after 5000 days. As well as for the cumulative oil
production, our DFM predicts around 14000 bbl where the reference
solution predicts around 13500 bbl at the end of production. Fig. 14(e)
illustrates the GOR for 5000 days. Our DFM based on a MINC8 model
shows the same trend as the reference solution. We should also notice
that the grid size (depending there on the MINC refinement) impact the
predictions (same conclusions were given by Chai et al. (2016)), ap-
pealing adapted meshing strategies.

Fig. 15 shows a comparison of the tight-oil reservoir simulations for
different matrix permeability km=10−4 mD and km=10−5 mD,

Fig. 12. Simulation results comparing the reference solution (Solution #2),
dual-porosity model and the discrete fracture model for the shale-gas reservoir
example.

Fig. 13. (a) Water/oil and (b) gas/oil relative permeability curves, (c) Water/oil and (d) gas/oil capillary pressures.
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testing the DFM to different matrix permeability. Based on results, our
DFM is able to reasonably match flow production (more so for the lower
permeability), as well as the GOR, for which trends are equally good for
both permeabilities. Based on results from Fig. 15, our DFM proved it is
ability to predict flow production for different matrix permeability for a
multiphase flow problem. Moreover, our DFM reduces enormously the
CPU time from 7 h to 30 s simply by reducing the number of grid cells
from 2,200,624 to 387 grid cells.

Finally, results from all cases (Figs. 12, Figs. 14 and 15) show good

prediction for both single and multi-phase production in shale-gas or
tight-oil reservoirs. Computing the MINC method using the proximity
function stochastic process is an efficient method to simulate flow for
fractured reservoirs, enabling a correct GOR prediction, which is diffi-
cult in low-permeability multiphase flow unconventional reservoirs.
Although the DFM approach was introduced to simulate shale-gas re-
servoirs, it also showed its ability to properly model a tight-oil reservoir
example.

Fig. 14. (a) Simulation results of the tight-oil reservoir with km=10-4 mD (a) gas rate, (b) oil rate, (c) the cumulative gas production, (d) the cumulative oil
production and (e) the GOR.
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5. Conclusions

This paper presents a practical hybrid methodology based on a
MINC proximity function in order to model flow behavior from low
permeable fractured reservoirs. The method combines the advantages
of multi-continuum and Discrete Fracture Model representations for
fractured unconventional reservoir simulation. It is specifically appro-
priate for large reservoir modelling and interferences testing analysis or
when data are sparse to perform sensitivity studies. Through this work,
the reliability and the ability of this proposed DFM-MINC proximity

function is tested on an irregular complex fracture network, including
an irregular fracture distribution for a multiphase flow with a low re-
servoir permeability of 0.0001 mD and 0.00001 mD.

Clearly, based on our approach we aim at preserving the continuum-
type model advantages while explicitly addressing the role of dominant
stimulated fractures as main fluid conduits connecting the reservoir to
the wellbore. We conclude the following:

1. Realistic (potentially) complex fracture geometry can be re-
presented; the hypotheses used to simplify the model are accurate to

Fig. 15. Comparison of the simulation results between the reference solution and our DFM of the tight-oil reservoir for km=10−4 mD and km=10−5 mD (a) gas
rate, (b) oil rate, (c) the cumulative gas production, (d) the cumulative oil production and (e) the gas oil ratio (GOR).
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reproduce refined scale simulations.
2. Severe permeability contrasts that characterize tight-oil/shale gas

reservoirs are adequately captured using both overlapping fracture
and matrix porous media. The MINC proximity function can easily
handle such phenomenon due to the very small nested matrix sub-
cells near fractures faces.

3. Computational cost to model stimulated systems can be reduced
using this hybrid methodology derived from MINC concept. The 3D
problem in the low permeable matrix is indeed reduced to a 1D
problem in that case, reducing the required number of unknowns to
efficiently capture transient effects.

4. 3D proximity functions can be easily calculated and implemented in
any reservoir simulators through an option of non-neighbor con-
nections, offering flexibility. It can be inserted in practical in-
tegrated studies either to adjust numerical parameters or to perform
sensitivity analysis.

A critical remaining step for fulfilling this kind of modelling is to
parameterize the criterion establishing the different levels of media as
well as the type and number of refinement to use within the proximity
function. These issues have been partially addressed in this work. It is
suggested that the criterion for classification should be able to identify
the primary fractures that exhibit significant potential gradient and
have a large impact on the transient flow regime during production
process. Sensitivity on the cell sizes to use inside a given data-set would
also provide some highlights helping the user to make the best decision
based on his objectives.

Finally, the results from the presented applications are good enough
to compare with a reference solution (obtaining similar results with a
gain of an order of magnitude of 4 in CPU time), while a standard DP
model is not accurate at all. The large CPU gain and precise proximity
functions evaluation of the presented model should allow to deeply
study other involved mechanisms (currently neglected even if it could
be important in precise cases) such as Fick diffusion (Yan et al. (2016b))
or interactions with vuggs (Zhang et al. (2018)). The formalism of these
models is indeed very close to our approach. Moreover, the applic-
ability, ability, efficiency, and robustness of the proposed DFM to model
flow behavior from low permeable fractured reservoirs is proven
through the examples presented in this work, which provide accurate
simulation results for both single and multiphase flow problems. Fur-
thermore, our DFM is particularly useful for multi-phase flow reservoir
simulations.
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