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Droplet dynamics on a solid substrate is significantly influenced by surfactants.
It remains a challenging task to model and simulate the moving contact line
dynamics with soluble surfactants. In this work, we present a derivation of the
phase-field moving contact line model with soluble surfactants through the first
law of thermodynamics, associated thermodynamic relations and the Onsager
variational principle. The derived thermodynamically consistent model consists of two
Cahn–Hilliard type of equations governing the evolution of interface and surfactant
concentration, the incompressible Navier–Stokes equations and the generalized Navier
boundary condition for the moving contact line. With chemical potentials derived
from the free energy functional, we analytically obtain certain equilibrium properties
of surfactant adsorption, including equilibrium profiles for phase-field variables, the
Langmuir isotherm and the equilibrium equation of state. A classical droplet spread
case is used to numerically validate the moving contact line model and equilibrium
properties of surfactant adsorption. The influence of surfactants on the contact line
dynamics observed in our simulations is consistent with the results obtained using
sharp interface models. Using the proposed model, we investigate the droplet dynamics
with soluble surfactants on a chemically patterned surface. It is observed that droplets
will form three typical flow states as a result of different surfactant bulk concentrations
and defect strengths, specifically the coalescence mode, the non-coalescence mode
and the detachment mode. In addition, a phase diagram for the three flow states
is presented. Finally, we study the unbalanced Young stress acting on triple-phase
contact points. The unbalanced Young stress could be a driving or resistance force,
which is determined by the critical defect strength.
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1. Introduction
The flow of droplets on a solid surface is ubiquitous in nature and many industrial

applications, ranging from spray coating, crude oil recovery and microfluidics to
ink-jet printing (Dupuis & Yeomans 2005; Blake et al. 2015; Patil et al. 2016). The
droplet dynamics is significantly dependent on the properties of the solid surface, e.g.
the wettability (Blake et al. 2015; Shang, Luo & Bai 2019). Surfactants, interface
active agents, can change the wetting properties of a solid surface by altering the
contact angle (Lai, Tseng & Huang 2010; Xu & Ren 2014; Zhang, Xu & Ren 2014).
An interesting example in daily life is that detergents (surfactants) are added into
a washing machine to clean clothes effectively. Oil droplets that stick to clothes
becomes less ‘sticky’ under the effect of surfactants, and the water currents can
readily wash away the droplets. Another typical example is surfactant-based enhanced
oil recovery in the petroleum industry. Adding surfactants into injected water can
greatly improve the efficiency of drainage, since oil droplets attached on the surface
of hydrophobic rock are easier to be displaced away (Raffa, Broekhuis & Picchioni
2016). Surfactants and wettability of reservoir rocks determine the efficiency of
drainage and the distribution of residual oil in porous media. In the above examples,
water, oil droplets, clothes (rock) and surfactants make up a typical multiphase system
involving the moving contact line (MCL) and surfactants. Therefore, an interesting
and practically important issue arises concerning how surfactants affect the dynamics
of the MCL.

Numerical modelling is taking an increasingly significant position in the investigation
of droplet dynamics on a solid surface with surfactants, as it can provide easier access
to some quantities such as surfactant concentration, pressure and velocity, which are
difficult to measure experimentally (Liu et al. 2018). However, the efficient and
accurate computational modelling of contact line dynamics with surfactants remains a
challenging task. The first challenge comes from the modelling of interfacial dynamics
with surfactants. The presence of surfactants brings some difficulties to simulations
(Booty & Siegel 2010; Zhang et al. 2014; Liu et al. 2018), including the following:
(1) a suitable equation of state is needed to account for the effect of surfactants
in reducing the interfacial tension; (2) in addition to the hydrodynamic equations,
an advection–diffusion equation should be introduced to describe the evolution of
surfactant concentration (Khatri & Tornberg 2014); (3) the non-uniform distribution
of surfactants along the interface creates a Marangoni stress, and this effect should
be considered in the governing system; and (4) for soluble surfactants, adsorption and
desorption of surfactants on the interface further increase the difficulty of modelling
(Cuenot, Magnaudet & Spennato 1997). To address these difficulties, numerous
numerical methods have been developed, such as the level set method (Xu, Yang &
Lowengrub 2012; Xu & Ren 2014; Titta et al. 2018), the volume of fluid method
(James & Lowengrub 2004; Alke & Bothe 2009), the front tracking method (Zhang,
Eckmann & Ayyaswamy 2006; Muradoglu & Tryggvason 2008), the immersed
boundary method (Lai et al. 2010) and the lattice Boltzmann method (Van der Sman
& Van der Graaf 2006; Zhang et al. 2015; Zhao et al. 2018; Wei et al. 2019).
Although these methods have allowed great progress in the simulation of interfacial
flows with surfactants, they still suffer from several drawbacks (Liu et al. 2018),
including the following: (1) the level set and volume of fluid methods require either
non-physical re-initialization processes or complex interface reconstruction algorithms
to represent the interface and surfactant concentration; (2) the front tracking and
immersed boundary methods have difficulty in dealing with large topological changes,
for example droplet breakup and coalescence; and (3) most lattice Boltzmann models
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do not consider the Marangoni stress (Liu et al. 2018), which is unphysical and
could have an important impact on the droplet dynamics. The second challenge is
the MCL problem. It is well known that under the usual hydrodynamic assumptions,
namely the incompressible Navier–Stokes equations and no-slip boundary condition,
non-physical singularities will occur in the vicinity of the MCL, and the velocity
field is multi-valued at the contact line (Wang, Qian & Sheng 2008; Xu, Di & Yu
2018). To remove the singularities at the MCL, various continuous models have been
proposed, and reviews of these models are available (Snoeijer & Andreotti 2013; Sui,
Ding & Spelt 2014). Among these models, the Navier boundary condition (NBC)
is a classical and natural boundary condition (Yang et al. 2017; Alpak, Samardžić
& Frank 2018; Zampogna, Magnaudet & Bottaro 2019), and it has been used in
simulations of contact line dynamics with insoluble surfactants. Lai et al. (2010)
used an immersed boundary method to simulate the MCL problem, and studied the
effect of insoluble surfactants on contact angles. A level set method for two-phase
flows with the MCL and insoluble surfactants was proposed by Xu & Ren (2014).
Zhang et al. (2014) derived a continuous model for the dynamics of two immiscible
fluids with the MCL and insoluble surfactants based on thermodynamic principles.
Their pioneering studies have greatly promoted the development of simulations for
droplet dynamics with the MCL and surfactants. However, the dynamic contact line
condition and soluble surfactants were not considered in these studies.

Recently, the phase-field model has shown great potential for the modelling of
two-phase flows with the MCL and surfactants. In this model, the interface is treated
as a thin diffuse layer between different fluids represented by a phase-field variable
(Shen & Yang 2015; Alpak, Riviere & Frank 2016; Frank et al. 2018; Kou &
Sun 2018a,b). Compared with sharp interface models, the phase-field model has
several obvious advantages: (1) it does not need to track the interface explicitly,
and the interface is captured implicitly and automatically by the evolution of a
phase-field variable (Xu et al. 2018), and thus computations and analysis for the
phase-field model are much easier than for other methods and (2) the phase-field
model has a firm physical basis for multiphase flow (Liu & Zhang 2010; Chen, Sun
& Wang 2014), since the governing system can be derived from an energy-based
variational formalism, and the developed model normally satisfies thermodynamically
consistent energy dissipation law (Shen & Yang 2015; Yang et al. 2017; Zhu et al.
2019a). These advantages mean that the phase-field model is widely used to simulate
interfacial phenomena, e.g. surfactant-driven interfacial flows (Teigen et al. 2011; Yun,
Li & Kim 2014). Laradji et al. (1992) proposed the first phase-field surfactant model.
In their pioneering work, two phase-field variables were introduced in the free energy
functional, which formed the general framework of phase-field surfactant models,
to represent fluid components and surfactant concentration, respectively. Since then,
numerous phase-field surfactant models (Copetti & Elliott 1992; Komura & Kodama
1997; Van der Sman & Van der Graaf 2006) have been proposed and reviews of these
models can be found in Li & Kim (2012), Yang & Ju (2017) and Zhu et al. (2018).
In this study, we adopt a typical representative phase-field surfactant model (free
energy functional) developed by Engblom et al. (2013). In the proposed free energy
functional, the classical Cahn–Hilliard potential determines the dynamics of a diffuse
interface, and the logarithmic Flory–Huggins potential controls the entropy of mixing
surfactants with the bulk phases and restricts the range of concentration variable.
The nonlinearly coupled surface energy potential locally attracts surfactants to the
interface of fluids, while the enthalpic term globally penalizes free surfactants in the
bulk phases and stabilizes the phase-field model. Recently, we coupled this model
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with the hydrodynamic equations to simulate the interfacial flows with surfactants.
Several linear, decoupled and energy-stable schemes were also constructed to solve
this complex system effectively (Zhu et al. 2019b). Our three-dimensional results
successfully demonstrate the effect of surfactants on the interfacial dynamics. To date,
a series of hydrodynamics coupled phase-field surfactant models have been developed
(Pätzold & Dawson 1995; Liu & Zhang 2010; Teigen et al. 2011; Garcke, Lam
& Stinner 2014), but none of them has considered the MCL problem. Hence, it is
necessary to extend our current work to the modelling of the MCL problem.

Although the no-slip velocity boundary condition leads to the well-known contact
line paradox for sharp interface models, it works well for the phase-field model. The
chemical diffusion in a thin interface, arising from the non-equilibrium of chemical
potential, can cause the motion of the contact line. Hence, the singularities at the
MCL can be successfully removed in the phase-field model when a no-slip boundary
condition is imposed. On the other hand, a slip boundary condition also works well for
the phase-field model. Using careful molecular dynamics studies of the slip behaviour
near the MCL (Qian, Wang & Sheng 2004, 2006) and principles of thermodynamics,
Qian, Wang & Sheng (2003) proposed a generalized Navier boundary condition
(GNBC). The GNBC states that the slip velocity at the MCL is proportional to
the sum of viscous stress and unbalanced Young stress; the latter arises from the
deviation of the fluid–fluid interface from its equilibrium configuration (Wang et al.
2008). They further demonstrated that the GNBC can quantitatively reproduce the
MCL slip velocity profiles obtained by molecular dynamics simulations (Qian et al.
2006). The GNBC can reduce to the typical NBC (Fan et al. 2019) in equilibrium,
and the NBC would reduce to the no-slip boundary condition when the slip length
of fluid on a solid substrate is zero (Yu & Yang 2017). For the wetting boundary
condition, the GNBC uses the typical surface-energy approach (Jacqmin 2000; Frank
et al. 2018) to prescribe a dynamic contact angle between diffuse interface and solid
substrate. Note that there are also some other well-known approaches to describe
contact angles in the framework of the phase-field model, for example, the geometric
contact angle approach derived by Ding & Spelt (2007) and the extended geometric
approach developed by Alpak et al. (2016). The GNBC shows great advantages and
prospects for simulating the MCL dynamics, and several attempts have been made to
develop energy-stable schemes for the GNBC-based phase-field models. In this work,
the GNBC is adopted to handle the slip boundary condition and dynamic contact
angle at the fluid–solid interface.

As a first attempt, we present a derivation of the phase-field MCL model with
soluble surfactants through the first law of thermodynamics, associated thermodynamic
relations and the Onsager variational principle. The derived thermodynamically
consistent model consists of two Cahn–Hilliard type of equations governing the
evolution of interface and surfactant concentration, the incompressible Navier–Stokes
equations and the GNBC for the MCL. With chemical potentials derived from the free
energy functional, we analytically obtain certain equilibrium properties of surfactant
adsorption, including equilibrium profiles for phase-field variables, the Langmuir
isotherm and the equilibrium equation of state. A classical droplet spread case is
used to numerically validate the MCL model and equilibrium properties of surfactant
adsorption. Using the proposed model, we investigate the droplet dynamics with
soluble surfactants on a chemically patterned surface.

2. Derivation of MCL hydrodynamics with surfactants
In this section, we present a derivation of the phase-field MCL model with soluble

surfactants. The governing equation is derived through three key steps: (1) the first
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law of thermodynamics and associated thermodynamic relations are used to derive an
entropy equation; (2) the momentum equation and the slip boundary condition are
obtained through the Galilean invariance; and (3) the Onsager variational principle
is used to obtain diffusive fluxes and the stress tensor. The derived model consists
of two Cahn–Hilliard type of equations for phase-field variables, the incompressible
Navier–Stokes equations and the GNBC for the MCL.

2.1. Free energy functional and entropy equation
In an immiscible two-phase system with soluble surfactants, there are three types of
free energy. These are the mixing energy, free energies associated with surfactants and
the surface energy at the fluid–solid interface.

Mixing energy. In the phase-field model, a phase-field variable is introduced to
distinguish two phases, and the interface is treated as a thin and continuous layer,
inside which the two phases are mixed and store the mixing energy. The classical
Cahn–Hilliard free energy functional (Gao & Wang 2012; Engblom et al. 2013) is
used to represent the mixing energy,

Fmix(φ)=

∫ [
−

A
2
φ2
+

B
4
φ4
+

A
4
+
κ

2
|∇φ|2

]
dΩ, (2.1)

where φ is the phase-field variable measuring the local composition of fluids.
Parameters A, B and κ can be determined from the two equilibrium phases
φ± = ±

√
A/B, and the interfacial thickness parameter ε =

√
κ/A. The polynomial

part −Aφ2/2 + Bφ4/4 + A/4 in Fmix prefers the total separation of two phases and
produces the classical sharp-interface picture (Yue et al. 2004). The square gradient
term κ|∇φ|2/2 represents weakly non-local interactions between fluids that prefers
the complete mixing of phases. Competition between the two terms leads to a diffuse
interface in equilibrium (Shen & Yang 2015), where Fmix reaches a minimum.

Free energies associated with surfactants. The presence of surfactants would greatly
affect the dynamics of fluid mixtures. To account for the effect of surfactants,
additional energy terms are introduced to the Cahn–Hilliard free energy functional,
including a logarithmic free energy, a nonlinearly coupled surface energy and an
energy term measuring the cost of free surfactants.

Free energy F1 is a typical logarithmic free energy (Yang & Ju 2017) governing the
entropy of mixing surfactants with the bulk phases

F1(ψ)=

∫
[kbTeG(ψ)] dΩ,

G(ψ)=ψ lnψ + (1−ψ) ln(1−ψ),

 (2.2)

where ψ is a phase-field variable representing the surfactant concentration, kb is the
Boltzmann constant and Te denotes the temperature. The constant kbTe takes the
role of a diffusion coefficient for ψ at a given temperature. The first term ψ ln ψ
in the Flory–Huggins potential G(ψ) models the ideal mixing of surfactants in the
bulk phases and guarantees the value of ψ being positive, and the second term
(1−ψ) log(1−ψ) restricts ψ < 1. Thus, the surfactant concentration ψ varies within
the range of 0 to 1 in this study.
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Surfactants can automatically adsorb onto the interface and form a buffer zone to
reduce the system energy. A surface energy F2 (Engblom et al. 2013) is adopted to
account for the high surfactant concentration near the interface

F2(φ, ψ)=

∫ [
−
ζ

4
ψ(1− φ2)2

]
dΩ. (2.3)

Here we set ζ = A to reduce unnecessary free parameters (Engblom et al. 2013).
Theoretically, the surface energy F2 is inactive in the bulk phases and reaches a
minimum on the interface. The energy term F3 is used to penalize free surfactants in
the bulk phases:

F3(φ, ψ)=

∫ [
W
2
ψφ2

]
dΩ, (2.4)

where W is a positive parameter. Surface energy F3 also plays a significant role in
stabilizing the phase-field model (Liu & Zhang 2010). It is obvious that F3 is inactive
on the interface where φ ≈ 0 and reaches a maximum in the bulk phases. To some
extent, F2 and F3 are complementary; F2 locally attracts surfactants to the interface
while F3 globally counteracts the occurrence of free surfactants (Engblom et al. 2013).

Surface energy at the fluid–solid interface. When the diffuse interface touches a solid
surface, the MCL problem arises. The interfacial free energy per unit area M(φ) at
the fluid–solid interface is determined by the interfacial tension σ between fluids,
the contact angle θs between the diffuse interface and solid surface, and the local
composition of fluids on the solid surface. The typical free energy at the fluid–solid
surface (Gao & Wang 2014) reads

Fwf (φ)=

∫
M(φ) dS=

∫ [
−
σ

2
cos θs sin

(π

2
φ
)]

dS. (2.5)

The total free energy F of a two-phase system with soluble surfactants can be
written as the sum of the mixing energy, free energies associated with surfactants and
the free energy at the fluid–solid interface:

F(φ, ψ)= Fmix(φ)+ F1(ψ)+ F2(φ, ψ)+ F3(φ, ψ)+ Fwf (φ). (2.6)

The three quantities wφ , wψ and L can be variationally derived from the total free
energy F as

δF(φ, ψ)=
∫
[wφδφ] dΩ +

∫
[wψ δψ] dΩ +

∫
[L δφ] dS, (2.7)

where wφ is the chemical potential determining the composition diffusion as follows:

wφ =−Aφ + Bφ3
− κ1φ +Wψφ − ζψφ(φ2

− 1). (2.8)

Equation (2.8) indicates that the surfactant concentration may greatly affect the
composition diffusion, and change the equilibrium profile of the phase-field variable
φ. A detailed discussion of this issue will be presented in § 3. The variable wψ is
the chemical potential governing the diffusion of surfactants,

wψ = kbTe ln
(

ψ

1−ψ

)
+

W
2
φ2
−
ζ

4
(φ2
− 1)2, (2.9)
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and L is the chemical potential at the solid surface,

L= κ∂nφ +M′(φ). (2.10)

By minimizing the total free energy F with respect to phase-field variables φ and
ψ , we can obtain equilibrium conditions, where chemical potentials are constants
throughout the whole system. Deviations from equilibrium conditions, measured
by the chemical potential gradients ∇wφ and ∇wψ in the bulk phases and L at
the fluid–solid interface (Qian et al. 2006), will lead to composition diffusion,
surfactant diffusion in the bulk phases and relaxation at the fluid–solid interface.
The conservation of φ and ψ requires that diffusive fluxes and material derivatives
of phase-field variables satisfy the continuity equation, namely

φ̇ = φt + u · ∇φ =−∇ · Jφ (2.11)

and
ψ̇ =ψt + u · ∇ψ =−∇ · Jψ , (2.12)

where Jφ and Jψ are diffusive fluxes resulting from the composition diffusion and
surfactant diffusion, respectively. The variable u is the flow velocity field. The
relaxation arising from L can be described by the material derivative φ at the solid
surface, i.e.
φ̇ = φt + uτ∂τφ, where uτ is the tangential velocity of fluid on the solid surface.
The mass conservation of system requires that

ρ̇ = ρt + u · ∇ρ =−∇ · J, (2.13)

where ρ is the fluid density and J is the diffusive mass flux, which is determined by
the diffusive flux Jφ and density difference between fluids.

Now we will combine the first law of thermodynamics and classical thermodynamic
relations to derive the entropy balance equation. Then, we can obtain the momentum
equation and the slip boundary condition using the Galilean invariance.

Similar to the variation of the total free energy F, the rate of change of F can be
written as

Ḟ=
∫
[wφφt] dΩ +

∫
[wψψt] dΩ +

∫
[Lφt] dS. (2.14)

Substituting (2.11), (2.12) and φt = φ̇ − uτ∂τφ into (2.14), we obtain

Ḟ =
∫
[−wφ∇ · Jφ −wφu · ∇φ] dΩ +

∫
[−wψ∇ · Jψ −wψu · ∇ψ] dΩ

+

∫
[L(φ̇ − uτ∂τφ)] dS. (2.15)

Considering the fact that normal diffusion fluxes disappear at the solid surface because
of the impermeability condition, specifically Jφ · n|S = 0 and Jψ · n|S = 0, we obtain
identities

−

∫
[wφ∇ · Jφ] dΩ =−

∫
[wφJφ · n]dS+

∫
[∇wφ · Jφ] dΩ =

∫
[∇wφ · Jφ] dΩ (2.16)

and −
∫
[wψ∇ · Jψ ] dΩ =

∫
[∇wψ · Jψ ] dΩ . Similarly, we can obtain −

∫
[wφu ·

∇φ] dΩ =
∫
[φu · ∇wφ] dΩ and −

∫
[wψu · ∇ψ] dΩ =

∫
[ψu · ∇wψ ] dΩ using the
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boundary condition u · n|S = 0, where n is the unit vector orthogonal to boundaries.
Then (2.15) can be rewritten as

Ḟ=
∫
[∇wφ ·Jφ+∇wψ ·Jψ ] dΩ+

∫
[φu ·∇wφ+ψu ·∇wψ ] dΩ+

∫
[Lφ̇−Luτ∂τφ] dS.

(2.17)
The first law of thermodynamics states that

(U̇ + Ėk)= Ẇ + Q̇, (2.18)

where U is the internal energy, W is the work done by the face force Ft and Q
denotes the heat from the surroundings that keeps the system temperature constant.
The variable Ek is the kinetic energy, and it is defined as Ek =

1
2

∫
[ρ|u|2] dΩ . The

total entropy S is contributed by two components, namely the entropy of the system
Ssys and the entropy of the surroundings Ssurr, the latter of which is related to Q as
Ṡsurr =−Q̇/T . Using the thermodynamic relation U̇ = Ḟ+ TṠsys, we have

Ṡ= Ṡsys + Ṡsurr = Ṡsys −
Q̇
T
=−

1
T
(Ḟ+ Ėk)+

1
T

Ẇ. (2.19)

Applying the Reynolds transport theorem and the Gauss divergence theorem, we can
derive that

Ėk =
1
2

∫ [
∂(ρu · u)

∂t

]
dΩ +

1
2

∫
[∇ · ([ρu · u]u)] dΩ

=

∫ [
ρu · ut +

1
2

u · uρt

]
dΩ

+
1
2

∫
[(ρu · u)∇ · u+ (u · u)u · ∇ρ + ρu · ∇(u · u)] dΩ

=

∫
[u · (ρut + ρu · ∇u)] dΩ +

1
2

∫
[(u · u)(ρt + u · ∇ρ)] dΩ. (2.20)

Substituting (2.13) into (2.20), and using integration by parts, we have

Ėk =

∫
[u · (ρut + ρu · ∇u+ J · ∇u)] dΩ. (2.21)

The work done by the stress σ and the fraction force f s at the fluid–solid interface is
expressed as

Ẇ =−
∫
[σ T
: ∇u+ u · (∇ · σ )] dΩ +

∫
[(σ · n) · us] dS+

∫
[ f τ · us] dS, (2.22)

where us is the slip velocity of fluids relative to the solid wall. Note that us is equal
to uτ when the solid wall is static.

Substituting (2.17), (2.21) and (2.22) into (2.19), we can obtain the entropy balance
equation

TṠ = −
∫
[u · (ρut + ρu · ∇u+ J · ∇u+∇ · σ + φ∇wφ +ψ∇wψ)] dΩ
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−

∫
[σ T
: ∇u− Jφ · ∇wφ − Jψ · ∇wψ ] dΩ −

∫
[Lφ̇] dS

+

∫
uτ · [σ · n+ f s + L∂τφ] dS. (2.23)

The Galilean invariance yields from (2.23)

ρut + ρu · ∇u+ J · ∇u+∇ · σ + φ∇wφ +ψ∇wψ = 0 (2.24)

in the bulk phases and
(σ · n+ f s + L∂τφ) · τ = 0 (2.25)

at the fluid–solid interface. Equation (2.24) is the Navier–Stokes equation for two-
phase flows with soluble surfactants and equation (2.25) is the slip boundary condition.
The total stress tensor can be split into σ = pI + σirrev, where p is the reversible part,
i.e. the pressure, and σirrev is the irreversible part. With the incompressibility constraint
∇ · u= 0, we can derive that

σ T
: ∇u= p∇ · u+ σ T

irrev : ∇u= σ T
irrev : ∇u, (2.26)

and (2.25) can reduce to

(σirrev · n+ f s + L∂τφ) · τ = 0. (2.27)

Thus, the entropy balance equation (2.23) is simplified as

− TṠ=
∫
[σ T

irrev : ∇u+ Jφ · ∇wφ + Jψ · ∇wψ ] dΩ +
∫
[Lφ̇] dS. (2.28)

Next, we will use the entropy balance equation (2.28) and the dissipation function to
obtain diffusive fluxes and the irreversible stress tensor.

2.2. Onsager’s variational principle
An irreversible process (e.g. diffusion) taking place in a thermodynamic system leads
to dissipation, and the principle of minimum energy dissipation produces the most
probable course of an irreversible process when deviations from equilibrium conditions
are small. For a multiphase system with MCL and soluble surfactants, there are several
physically distinct sources of dissipations, and now we will discuss them in detail. The
work done by a fluid on adjacent layers due to the action of shear force is transformed
into heat, and this irreversible process is called viscous dissipation. The rate of viscous
dissipation in the bulk phases Rv can be written as

Rv(u)=
∫ [

σ 2
irrev

η

]
dΩ, (2.29)

where η is the fluid viscosity. Obviously, Rv is positive definite and quadratic in the
rate σirrev.

As we mentioned before, chemical potential gradients in the bulk phases and
L at the fluid–solid interface measure deviations from equilibrium conditions. The
diffusive flux Jφ arising from ∇wφ , the diffusive flux Jψ resulting from ∇wψ and the
composition relaxation φ̇ at the solid surface coming from L are sources of additional
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energy dissipation. According to the general rule governing entropy production in a
thermodynamic process, the addition rate of dissipation Rt should be positive definite
and quadratic in the rates {Jφ, φ̇ and Jψ}, e.g. Rt = Rd + Rds + Rr, where

Rd(φ)=

∫ [
J2
φ

Mφ

]
dΩ, Rds(ψ)=

∫ [
J2
ψ

Mψ

]
dΩ, Rr(φ)=

∫ [
φ̇2

Γ

]
dS. (2.30a−c)

Here Rd comes from the composition diffusion, Rds arises from the diffusion associated
with surfactants and Rr is attributed to the composition relaxation at the solid surface.
Parameters Mφ , Mψ and Γ are phenomenological parameters. Now we can obtain
the free energy dissipation for a two-phase system with MCL and soluble surfactants
R= Rv + Rd + Rds + Rr.

The Onsager variation principle (Onsager 1931a,b; Qian et al. 2006) states that for
an open system, the state evolution equation can be obtained by minimizing Φ − TṠ
with respect to the rates {Jφ , Jψ , φ̇ and σirrev}. Here Φ is the dissipation functional,
which equals half the free energy dissipation R:

Φ =

∫ [
σ 2

irrev

2η
+

J2
φ

2Mφ

+
J2
ψ

2Mψ

]
dΩ +

∫ [
φ̇2

2Γ

]
dS. (2.31)

Adding (2.28) and (2.31) together, we have

Φ − TṠ =
∫ [

σ 2
irrev

2η
+

J2
φ

2Mφ

+
J2
ψ

2Mψ

+ σ T
irrev : ∇u+ Jφ · ∇wφ + Jψ · ∇wψ

]
dΩ

+

∫ [
φ̇2

2Γ
+ Lφ̇

]
dS. (2.32)

By minimizing Φ −TṠ with respect to the rates
{

Jφ , Jψ , φ̇ and σirrev
}

, we can obtain
the phase-field MCL model with soluble surfactants.

The Euler–Lagrange equation for minimizing Φ − TṠ with respect to Jφ is

Jφ =−Mφ∇wφ, (2.33)

where the phenomenological parameter Mφ can be viewed as a mobility coefficient,
and is usually taken as a constant. Equation (2.33) indicates that the diffusive flux Jφ
and the chemical potential wφ satisfy the classical Fick’s first law. Substituting (2.33)
into the continuity equation (2.11) yields the desired Cahn–Hilliard type of equation
for φ:

φ̇ = φt + u · ∇φ =−∇ · Jφ,=∇ ·Mφ∇wφ. (2.34)

Similarly, we can obtain the Cahn–Hilliard type of equation for ψ :

ψ̇ =ψt + u · ∇ψ =−∇ · Jψ ,=∇ ·Mψ∇wψ . (2.35)

To combine with the logarithmic chemical potential wψ , the mobility coefficient Mψ

for ψ usually takes the form of mψψ(1 − ψ), where mψ is a constant. Coefficient
Mψ vanishes at the extreme points ψ = 0 and ψ = 1. Substituting Mψ into (2.35), and
using (2.9), we have

ψt + u · ∇ψ = ∇ ·
(

Mψ

∂wψ

∂ψ
∇ψ

)
=∇ ·

(
Mψ

kbTe

ψ(1−ψ)
∇ψ

)
= ∇ · (mψkbTe∇ψ)=∇ · (Dψ∇ψ), (2.36)
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where Dψ can be seen as the surfactant diffusive coefficient in the bulk phases. Then
(2.35) is translated into the widely used bulk surfactant transport equation in sharp
interface models.

By minimizing Φ − TṠ with respect to φ̇ at the fluid–solid interface, we have

φ̇ = φt + uτ∂τφ =−Γ L. (2.37)

Equation (2.37) is the dynamic contact line condition. It can be observed that the
relaxation dynamics for φ at the fluid–solid interface is proportional to the deviation
of L from its equilibrium value zero.

Considering the variation of Φ − TṠ with respect to σirrev, we have

σirrev =−η∇u. (2.38)

Substituting (2.38) into (2.24), we obtain the desired Navier–Stokes equation for two-
phase flows with soluble surfactants

ρut + ρu · ∇u+ J · ∇u− η1u+ φ∇wφ +ψ∇wψ = 0. (2.39)

Note that the viscous term η1u can be readily generalized to ∇ · ηD(u) if σirrev
is symmetric, where D(u) = ∇u + ∇Tu. For two phases with variable densities and
viscosities, the density ρ and viscosity η usually have the following linear relations:

ρ =
ρ1 − ρ2

2
φ +

ρ1 + ρ2

2
, η=

η1 − η2

2
φ +

η1 + η2

2
. (2.40a,b)

Substituting the density equation in (2.40) into the Cahn–Hilliard type of equation for
φ, and using the incompressibility constraint ∇ · u= 0, we get

J=
ρ2 − ρ1

2
Mφ∇wφ =

ρ1 − ρ2

2
Jφ. (2.41)

We naturally assume that the fraction force is linear to the slip velocity of fluids us,
i.e. f s=−βus, where β is the slip coefficient and it can be used to define a slip length
ls = η/β. Substituting (2.38) into (2.27), we obtain

βus =−η∂nuτ + L∂τφ (2.42)

at the fluid–solid interface. The unbalanced Young stress L∂τφ and η∂nuτ in (2.42)
are manifestations of the interfacial tension and the viscous stress at the solid surface,
respectively. In general, we denote the dynamic contact line condition (2.37) and the
slip boundary condition (2.42) together as the GNBC.

When the relaxation parameter Γ in (2.37) tends to infinity, the dynamic contact
line condition reduces to the static contact line condition as

L= κ∂nφ +M′(φ)= 0, (2.43)

and the slip boundary condition (2.42) becomes βus = −η∂nuτ , which is the well-
known NBC. The contact line effect disappears if we further set M′(φ)= 0 in (2.43).
As the slip length ls (ls = η/β) approaches zero, the NBC reduces to the traditional
no-slip boundary condition. In the other limit, ls approaches infinity, the tangential
viscous stress on the boundary disappears. Thus the NBC interpolates between the
no-slip limit and the limit of zero tangential viscous stress (Qian et al. 2006).

Two Cahn–Hilliard type of equations for phase-field variables, the incompressible
Navier–Stokes equation and the GNBC for the MCL form the phase-field MCL model
with soluble surfactants.
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2.3. Dimensionless governing equation and numerical scheme
We use a global characteristic length scale Lc, a characteristic velocity Uc and
properties (density ρ1 and viscosity η1) of fluid I to define some dimensionless
parameters. With defined parameters, we obtain dimensionless Cahn–Hilliard type of
equations:

ψt +∇ · (uψ)=
1

Peψ
∇ ·Md∇wψ , (2.44)

wψ = Pi ln
(

ψ

1−ψ

)
+

1
2Ex

φ2
−
(φ2
− 1)2

4
, (2.45)

φt +∇ · (uφ)=
1

Peφ
1wφ, (2.46)

wφ =−φ + φ
3
−Cn21φ +

1
Ex
ψφ −ψφ(φ2

− 1), (2.47)

where Md =ψ(1−ψ). The dimensionless Navier–Stokes equations are

ρut + ρu · ∇u+ J · ∇u−
1

Re
∇ · ηD(u)+∇p+

1
ReCaCn

(φ∇wφ +ψ∇wψ)= 0, (2.48)

∇ · u= 0, (2.49)

where

J=
λρ − 1
2Peφ

∇wφ, ρ =
1− λρ

2
φ +

1+ λρ
2

, η=
1− λη

2
φ +

1+ λη
2

. (2.50a−c)

The impermeability boundary condition of the solid surface is

∂nψ = 0, ∂nwφ = 0, ∂nwψ = 0, u · n= 0, on S. (2.51a−c)

The dimensionless dynamic contact line condition for φ at the solid surface is

φt + uτ · ∂τφ =−
1

Pes
L, on S, (2.52)

where L= Cn∂nφ +M′(φ) and M(φ)=−(
√

2/3) cos θs sin(πφ/2). The slip boundary
condition can be written as

Caη
Ls

us =−Caη∂nuτ + L∂τφ, on S. (2.53)

Several dimensionless parameters are used in the above governing equation. These
are (1) the Reynolds number Re = ρ1LcUc/η1, (2) the capillary number Ca =
2
√

2η1Uc/3σ , (3) the Cahn number Cn= ε/Lc, (4) Péclet numbers Peφ = LcUc/(MφA)
and Peψ = LcUc/(mψA), (5) Pes = UcCn/(κΓ ), (6) Ex = κ/(Wε2), which determines
the bulk solubility, (7) Pi = kbTe/(Aφ2

±
), which is a temperature-dependent constant,

(8) the slip length Ls = η/(βLc) and (9) the density ratio λρ = ρ2/ρ1 and viscosity
ratio λη = η2/η1.
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If we consider the extra body force in the momentum equation, e.g. the gravitational
force, (2.48) can be modified into

ρut + ρu · ∇u+ J · ∇u−
1

Re
∇ · ηD(u)+∇p+

1
BoCn

(φ∇wφ +ψ∇wψ)− ρg= 0,
(2.54)

where Bo is the Bond number and g is the unit vector denoting the direction of body
force.

The governing system (2.44)–(2.53) satisfies the following energy dissipation law:

Ḟtot(u, φ, ψ) = −
1

Peφ
‖∇wφ‖

2
−

1
Peψ
‖
√

mψ∇wψ‖
2
−

CaCn
2
‖
√
ηD(u)‖2

−
Cn
Pes
‖L‖2

S −
CaCn

Ls
‖
√
ηus‖

2
S 6 0, (2.55)

where Ftot is the dimensionless total energy, which is the sum of the kinetic energy
and the total free energy F:

Ftot(u, φ, ψ) =
∫
Ω

(
ReCaCn

2
ρ|u|2 +

Cn2

2
|∇φ|2 +

(φ2
− 1)2

4
+ PiG(ψ)

−
ψ(φ2

− 1)2

4
+
ψφ2

2Ex

)
dΩ +Cn

∫
S

M(φ) dS. (2.56)

Physically, the energy dissipation law (2.55) states that the total energy of a two-
phase system with MCL and soluble surfactants will decrease from internal dissipation.
Note that the energy dissipation law in (2.55) is actually guaranteed as a part of the
thermodynamic consistency by the Onsager variational principle.

The nonlinearly coupled governing system (2.44)–(2.53) can be transformed
into an equivalent one by introducing appropriate scalar auxiliary variables, and
nonlinear potentials, e.g. the double-well potential and the logarithmic Flory–Huggins
potential, are then treated semi-explicitly (Kou, Sun & Wang 2018; Shen, Xu & Yang
2018; Zhu et al. 2018). For the stress and convection terms, which come from the
nonlinear couplings between phase-field variables and velocity, we use some subtle
implicit–explicit treatments of them (Yu & Yang 2017). For the Navier–Stokes
equation, a splitting method based on pressure stabilization is implemented to
decouple the computation of velocity from pressure (Guermond & Salgado 2009;
Shen & Yang 2015). A stabilization term is artificially added to balance the explicit
nonlinear term associated with the surface energy at the fluid–solid interface (Shen,
Yang & Yu 2015). We use a finite difference method on staggered grids to complete
the spatial discretization (Chen, Sun & Zhang 2018; Aniszewski et al. 2019; Malan
et al. 2019). Note that advection terms in the Cahn–Hilliard and Navier–Stokes
equations are discretized by the MINMOD scheme (Li et al. 2015; Moukalled,
Mangani & Darwish 2016; Liu et al. 2019), which is a combination of the central
difference, first-order and second-order upwind schemes. The MINMOD scheme
not only achieves second-order accuracy in space, but also preserves the physical
properties of convection. Other spatial derivatives are discretized using the standard
central difference schemes. A preconditioned biconjugate gradient stabilized method
(BICGSTAB) is used to solve the above variables (Zhu et al. 2016; Yan et al. 2019;
Zeng, Yao & Shao 2019).
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3. Equilibrium properties of surfactant adsorption
In equilibrium, chemical potentials throughout the whole system are constants.

Using this fact, we can obtain certain equilibrium properties and adsorption isotherm
relations, including equilibrium profiles for phase-field variables, the Langmuir
isotherm and the equilibrium equation of state. We first consider the equilibrium
profile for φ at constant surfactant concentration. For a two-phase system without
surfactants, the chemical potential wφ reads

wφ =−φ + φ
3
−Cn21φ, (3.1)

and the equilibrium profile for φ can be written as

φ(x)= tanh(x/[
√

2Cn]). (3.2)

We denote ψb and φb as the surfactant bulk concentration and phase bulk value,
respectively. Here ψb is far smaller than 1 (ψb � 1). Considering the fact that the
chemical potential wφ is equal throughout the system, we have

wφ =−φ + φ
3
−Cn21φ +

1
Ex
ψbφ −ψbφ(φ

2
− 1)= 0. (3.3)

Equation (3.3) can be rewritten as

wφ = −

(
1+

1
Ex
−

1
Ex(1−ψb)

)
φ + φ3

−
Cn2

1−ψb
1φ

= −

(
1+

1
Ex
−

1
Ex(1−ψb)

)
φ3

bφ
−2
b (φ−1

b φ)+ φ3
b(φ
−1
b φ)3

−φ3
b

Cn2

φ2
b(1−ψb)

1(φ−1
b φ). (3.4)

We can further reformulate (3.4) as

wφ = φ
3
b[−(φ

−1
b φ)+ (φ−1

b φ)3 −Cn2
ψ1(φ

−1
b φ)] (3.5)

by using

φ2
b : = 1+

1
Ex
−

1
Ex(1−ψb)

, Cn2
ψ : =

Cn2

φ2
b(1−ψb)

. (3.6a,b)

Equation (3.5) has a similar form to (3.1). Referring to (3.2), the equilibrium profile
for the scaled variable φ−1

b φ can be written as φ−1
b φ= tanh(x/

√
2Cnψ). Replacing Cnψ

with Cn, we obtain

φ(x)= φb tanh
(
φb

√
1−ψb

x
√

2Cn

)
, (3.7)

with
φ2

b = 1+
1

Ex
−

1
Ex(1−ψb)

. (3.8)

Using (3.7) and (3.8), we can derive the gradient at the interface (x= 0):

∂xφ|x=0 =
φ2

b

√
1−ψb
√

2Cn
=

√
1−ψb
√

2Cn

(
1−

ψb

Ex(1−ψb)

)
<

1
√

2Cn
. (3.9)
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It can be observed from (3.9) that the introduction of surfactants increases the
interface thickness, which is determined by the Cahn number Cn, the surfactant bulk
concentration ψb and the parameter Ex. The decrease in Ex or increase in ψb will
further decrease the gradient of φ on the interface, leading to a more diffuse interface.
Since the surfactant bulk concentration ψb is far smaller than unity (ψb � 1), the
variation of the interface thickness is small even at high surfactant bulk concentration.
Thus, to some extent, it is reasonable to assume that the interface thickness is
unchanged when we analytically derive some equilibrium properties of surfactant
adsorption, especially at low surfactant bulk concentration. This simplification will
greatly facilitate our derivations. Then (3.9) can be reduced to

∂xφ|x=0 = 1/(
√

2Cn). (3.10)

Now we analyse the equilibrium properties of surfactant adsorption (Liu & Zhang
2010; Engblom et al. 2013). The chemical potential wψ at any position can be written
as

wψ = Pi ln
(

ψ

1−ψ

)
+

1
2Ex

φ2
−
(φ2
− 1)2

4
(3.11)

and wψ in the pure phases reads

wψb = Pi ln
(

ψb

1−ψb

)
+

1
2Ex

φ2
b −

(φ2
b − 1)2

4
. (3.12)

Since wψ is constant at equilibrium, subtracting (3.12) from (3.11), and introducing
the intermediate variable ψc, we get the relation

Pi lnψc =−
1

2Ex
(φ2

b − φ
2)−

1
4
[(φ2
− φ2

b)(φ
2
b + φ

2
− 2)]. (3.13)

Then the equilibrium profile for ψ can be obtained as

ψ =
ψb

ψb +ψc(1−ψb)
. (3.14)

Considering the fact that φ = 0 on the interface of fluids, phase bulk value φb =±1
and ψb� 1, (3.14) and (3.13) can be simplified as

ψ0 =
ψb

ψb +ψc
, (3.15)

Pi lnψc =−
1
4

(
1+

2
Ex

)
, (3.16)

where ψ0 is the equilibrium surfactant concentration on the interface. Equation (3.15)
is the typical Langmuir isotherm and the intermediate variable ψc can be viewed as
the Langmuir adsorption constant. Given specific Pi (temperature-dependent constant)
and ψc, the parameter Ex can be obtained from (3.16). The adsorption isotherm is
important for the following simulations.

Shape interface models simulate interfacial flows with surfactants using an
equilibrium equation of state, which relates the dynamic interfacial tension to the
surfactant concentration on the interface, and the equilibrium equation of state can
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be derived by integration of the Gibbs equation dσ =−ψ0 dwψ,0 (isothermal system),
where wψ,0 is the chemical potential on the interface. However, for the phase-field
model, the excess amount of surfactants has to be obtained via integration over the
whole diffuse interface, and thus there exists no analytical solution for the equilibrium
equation of state. Following the idea in Van der Sman & Van der Graaf (2006), we
assume that the excess amount of surfactants is proportional to ψ0, so that the
interfacial lowering dσ is proportional to that of the sharp interface with a coefficient
k, i.e.

dσ =−kψ0 dwψ,0, (3.17)

where the coefficient k should be independent of ψ0. We know that k= 1 for the sharp
interface model, while k 6= 1 for the diffuse interface model due to the finite interface
thickness. As we mentioned above, k depends on the excess amount of surfactants.
Considering the fact that the Langmuir isotherm determines the equilibrium profile of
surfactants (diffuse interface), we can infer from (3.15) and (3.16) that, for the given
Langmuir adsorption constant ψc, the excess surfactant concentration is a function of
the interfacial thickness Cn, ψ0 and Ex (Pi can be determined by Ex and ψc). As
k is independent of ψ0, k only depends on Ex once the interfacial thickness Cn is
specified.

Substituting (3.11) into (3.17), and integrating on both sides of (3.17), we obtain
the equation of state

1σ = σ − σ0 = kPi ln(1−ψ0). (3.18)

Equation (3.18) will be validated in § 4.1.

4. Numerical results
In this section, we first use the classical droplet spread case to validate the MCL

model and the analytically derived equilibrium properties. Then we investigate the
droplet dynamics with soluble surfactants on a chemically patterned surface.

4.1. Numerical validation
Most previous studies of two-phase flows with MCL utilized sharp interface models
with an equilibrium equation of state, and their models only considered insoluble
surfactants on the interface, which are quite different from the diffuse interface model
with soluble surfactants in this study. Thus, it is difficult to find an appropriate
benchmark to validate our model. If the surfactant concentration is set to zero (clean
droplet), then the derived model reduces to the phase-field MCL model, which can
be easily validated. We first use a classical benchmark to verify the phase-field
MCL model, as shown in figure 1. The rectangular computational domain Ω is set as
[0, 1]× [0, 2], and periodic boundary conditions are applied in the horizontal direction.
Initially, a semicircular droplet with radius R0 = 0.5 and contact angle θ0 = 90◦ is
placed on the bottom surface (figure 1a). The gravitational effect is neglected in
this case. The Reynolds number Re, the capillary number Ca and the Péclet number
Peφ are taken as 10, 0.1 and 10, respectively. The Cahn number Cn, measuring the
thickness of the diffuse interface, is 0.01. The relaxation parameter Pes and slip length
Ls are set to 0.005 and 0.0038, respectively. Both density ratio λρ and viscosity ratio
λν of the droplet to the surrounding fluid are 1.1. We use a grid size of 300× 150
and time step size δt= 2.5× 10−4 in all simulations.

The droplet driven by the unbalanced Young stress will spread or recoil to the
equilibrium shape with the prescribed static contact angle θs (θs is equal to the
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R0

(a) (b)

L

H

œ0 œe

FIGURE 1. (Colour online) Illustration of (a) initial shape of the droplet with a radius of
R0 released on the bottom surface and (b) equilibrium shape of the droplet. The size of the
computational domain is [0, Lx] × [0, Ly]. In (a), the droplet centre is located at (Lx/2, 0).
In (b), L is the spreading length and H is the droplet height. The gravitational effect
is neglected in this case. Angle θ0 is the initial contact angle and θe is the equilibrium
contact angle. Note that θe is equal to the static contact angle θs for a clean droplet.

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

40 60 80 100
Static contact angle

L 
an

d 
H

120 140

Analytical L
Analytical H
Numerical L
Numerical H

FIGURE 2. (Colour online) Comparison of analytical and numerical values of spreading
length L and droplet height H at different static contact angles θs. Here θs ranges from
45◦ to 135◦ with an interval 15◦.

equilibrium contact angle θe for a clean droplet). In equilibrium, the spreading length
L and droplet height H in figure 1(b) can be analytically obtained by the law of mass
conservation (Cai et al. 2014):

L= 2R0

√
π

2(θs − sin θs cos θs)
sin θs, H = R0

√
π

2(θs − sin θs cos θs)
(1− cos θs).

(4.1a,b)
We conduct several simulations in a wide range of surface wettability for both
hydrophilic and hydrophobic cases (θs varies from 45◦ to 135◦). Analytical and
numerical values of L and H are compared in figure 2, and a good agreement is
observed for all values of θs.

To clearly demonstrate the effect of surfactants on the MCL, we compare the
dynamics of clean and contaminated (with surfactants) droplets. The Langmuir
adsorption constant ψc and the parameter Ex take values of 0.017 and 1, respectively,
with the value of Pi determined from (3.16). Other parameters are taken as before.
Both hydrophilic (θs = 60◦) and hydrophobic (θs = 120◦) cases are considered in this
study. For the contaminated droplet, the initialization of surfactant concentration is
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0.2

0.4

0.6

0.8

(a) (b)

0.2

0.4

0.6

0.8 Clean droplet
t = 0.5
t = 1
t = 1.5
t = 2.5
t = 10

Contaminated droplet

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

FIGURE 3. (Colour online) Profiles of (a) contaminated droplet at different times
and (b) clean and contaminated droplets in equilibrium on a hydrophilic surface with
static contact angle θs = 60◦. For the contaminated droplet, the initial surfactant bulk
concentration ψb is 1.5 × 10−2. In (b), equilibrium contact angles θe for clean and
contaminated droplets are 60◦ and 52◦, respectively.

(a) (b)

0.2

0.4

0.6

0.8 Clean droplet
t = 0.5
t = 1
t = 1.5
t = 2.5
t = 10

Contaminated droplet

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

FIGURE 4. (Colour online) Profiles of (a) contaminated droplet at different times and
(b) clean and contaminated droplets in equilibrium on a hydrophobic surface with
static contact angle θs = 120◦. For the contaminated droplet, the initial surfactant
bulk concentration ψb is 1.5 × 10−2. In (b), equilibrium contact angles for clean and
contaminated droplets are 120◦ and 129◦, respectively.

performed using the analytical prediction in (3.15) for ψ with the initial surfactant
bulk concentration ψb = 1.5× 10−2.

Figure 3(a) gives the evolution of a contaminated droplet on a hydrophilic surface
at different times (t ranges from 0 to 10). The contaminated droplet constantly
spreads until the steady state is reached. Equilibrium contact angles θe for clean and
contaminated droplets in figure 3(b) are 60◦ and 52◦, respectively. Obviously, the
presence of surfactants makes the droplet more hydrophilic on a hydrophilic surface.
In contrast to the hydrophilic surface, surfactants make the droplet more hydrophobic
on a hydrophobic surface by increasing the equilibrium contact angle θe from 120◦ to
129◦, as shown in figure 4. Results in figures 3 and 4 are consistent with the results
obtained for sharp interface models (Lai et al. 2010; Xu & Ren 2014; Zhang et al.
2014). We further calculate the spreading length L, the droplet height H and θe for
the contaminated droplet (ψb = 1.5× 10−2) in a wide range of surface wettability (θs

varies from 45◦ to 135◦). Analytical L and H for the clean droplet in figure 5 serve
as a comparison. It is observed from figure 5 that the effect of surfactants is more
obvious on the strong hydrophilic or hydrophobic surface. The inset gives θe of the
contaminated droplet. The blue line in the inset represents static contact angles θs

of the clean droplet (the slope of this line is 1), and it serves as a reference. We
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FIGURE 5. (Colour online) Numerical spreading length L (points) and droplet height H
(points) for the contaminated droplet, and analytical values (lines) calculated from static
contact angles serve as a comparison. For the contaminated droplet, the initial surfactant
bulk concentration ψb is 1.5× 10−2. The inset gives θe of the contaminated droplet. It can
be observed that θe can be approximately predicted by θs through a linear relationship:
θe = 1.3θs − 25.7.

found that θe can be approximately predicted by θs through a linear relationship:
θe = 1.3θs − 25.7.

We also extend our work to a three-dimensional computational domain [0, 0.8]2 ×
[0, 0.4]. A grid size of 1102

× 55 and time step size δt = 8 × 10−4 are used in
simulations. For the contaminated droplet, the initial surfactant bulk concentration ψb

is 2.5× 10−2. Results in figure 6 clearly demonstrate the effect of surfactants on the
contact line dynamics. The presence of surfactants reduces θe from 60◦ to 42◦ on the
hydrophilic surface, and increases θe from 120◦ to 139◦ on the hydrophobic surface.

The Young equation can well explain the effect of surfactants on the droplet
dynamics on the solid surface. As in Wang et al. (2008), we can derive that∫

int
[L∂τφ] dτ =

∫
int
[Cn∂nφ∂τφ +M′(φ)∂τφ] dτ = σe cos θe +1σfs, (4.2)

where
∫

int dτ denotes the integration across the fluid–fluid interface along the
τ -direction, 1σfs is a function of the local composition at the solid surface measuring
the fluid–solid interfacial free energy per unit area and σe is the interfacial tension of
a contaminated droplet in equilibrium. Equation (4.2) indicates that the unbalanced
Young stress dominates the evolution of contact angle. It drives the droplet at two
contact points to spread on a hydrophilic surface or to recoil on a hydrophobic
surface. In equilibrium, the unbalanced Young stress decreases to zero (figure 7),
namely L= 0, and (4.2) reduces to the classical Young equation

σe cos θe +1σfs = 0. (4.3)

The boundary condition ∂nψ = 0 allows the presence of free surfactants on the fluid–
solid interface, but these surfactants do not affect the fluid–solid interfacial tension
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(a) (b)

FIGURE 6. (Colour online) Profiles of clean and contaminated droplets on (a) hydrophilic
(θs = 60◦) and (b) hydrophobic (θs = 120◦) surfaces. For the contaminated droplet,
the initial surfactant bulk concentration ψb is 2.5 × 10−2. The computation domain is
[0, 0.8]2 × [0, 0.4]. We use a grid size of 1102

× 55 and time step size δt= 8× 10−4 in
simulations. In (a), equilibrium contact angles θe of clean and contaminated droplets are
60◦ and 42◦, respectively. In (b), equilibrium contact angles θe of clean and contaminated
droplets are 120◦ and 139◦, respectively.
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FIGURE 7. (Colour online) Evolutions of unbalanced Young stresses at right contact points
of clean and contaminated droplets (ψb = 1.5× 10−2). The static contact angle θs of the
hydrophilic surface is 60◦.

through adsorption or the like, so clean and contaminated droplets have the same 1σfs.
Then we have

σe cos θe = σ0 cos θs, (4.4)

where σ0 is the interfacial tension of a clean droplet. The addition of surfactants
greatly reduces the interfacial tension between fluids, resulting in σe < σ0. We can
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R2  = 0.9953

Îß  = 0.1942 ln(1 - ¥0) 
R2  = 0.9947

FIGURE 8. (Colour online) The linear relationship between the interfacial tension lowering
1σ/σ0 and ln(1− ψ0). Fitted formulas of green and blue lines can be approximated as
1σ/σ0 = 0.3396 ln(1 − ψ0) and 1σ/σ0 = 0.1942 ln(1 − ψ0), respectively. These results
directly validate the equilibrium equation of state (3.18).

derive that cos θe > cos θs from (4.4). Thus, θe is smaller than θs in the hydrophilic
case (the contaminated droplet becomes more hydrophilic), and θe is larger than θs in
the hydrophobic case (the contaminated droplet becomes more hydrophobic).

We denote the unbalanced Young stresses at right contact points of clean and
contaminated droplets as FRc and FRs, respectively. Figure 7 gives evolutions of FRc
and FRs, and the whole process can be divided into three stages. In the first stage,
the contaminated droplet spreads faster than the clean droplet since FRs is larger
than FRc. During the droplet spreading process, the unbalanced Young stress always
drags the right contact point forward to reduce the contact angle, and it decreases
as the contact angle changes until equilibrium. Thus, to some extent, the unbalanced
Young stress can be reflected in the contact angle. Obviously, at the same moment,
the contaminated droplet has a smaller contact angle than the clean droplet, which
explains why the change in FRs is more dramatic in the second stage. It can be
observed that FRs is larger than FRc in the third stage, and this fact may account for
a smaller equilibrium contact angle of the contaminated droplet.

The interfacial tension lowering 1σ of a contaminated droplet in equilibrium can
be calculated from

1σ = σe − σ0 = σ0

(
cos θs − cos θe

cos θe

)
. (4.5)

Now we perform a series of numerical experiments to verify the linear relationship
between 1σ and ln(1–ψ0) analytically obtained in (3.18). Two different scenarios
are considered in this study: Ex = 0.5 and Ex = 1. In each scenario, we conduct
simulations with different surfactant bulk concentrations, e.g. ψb=1×10−2, 1.5×10−2

and 2 × 10−2. The static contact angle θs of the bottom surface is taken to be 60◦.
From the resulting profile of surfactant concentration in equilibrium, the surfactant
loading of interface ψ0 can be directly obtained. The equilibrium contact angle θe
can be easily calculated when the contaminated droplet reaches the steady state,
and then we get the interfacial tension lowering 1σ from (4.5). Obviously, there
is a linear relationship between 1σ and ln(1 − ψ0), as plotted in figure 8, which
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FIGURE 9. (Colour online) The relative interfacial tension σe/σ0 at different surfactant
bulk concentrations ψb. The Langmuir adsorption constant ψc is 0.017. The analytical
equation (4.6) fits the simulated values very well.

directly validates the equilibrium equation of state (3.18). We use linear formulas
to fit simulated values at different Ex, and fitted equations of green and blue lines
can be approximated as 1σ/σ0 = 0.3396 ln(1− ψ0) and 1σ/σ0 = 0.1942 ln(1− ψ0),
respectively. It worth noting that Ex plays an important role in reducing the interfacial
tension, and its effect is more obvious at higher interfacial surfactant concentration.
We infer, in the last part of § 3, that the coefficient k is determined by Ex for
the given Langmuir adsorption constant ψc and interfacial thickness Cn. It can be
observed that the slopes (kPi) of two fitted curves in figure 8 equal 0.1942 (Ex= 1)
and 0.3396 (Ex= 0.5), respectively. The dimensionless parameter Pi can be calculated
from (3.16). Then we can obtain that k equals 1.05 and 1.11 for the cases of Ex= 1
and Ex= 0.5, respectively. This result verifies our inference that k depends on Ex.

Using the Langmuir isotherm in (3.15) and equilibrium equation of state (3.18), we
obtain the relationship between the relative interfacial tension σe/σ0 and surfactant
bulk concentration ψb:

σe

σ0
=−

kPi
σ0

ln(ψb +ψc)+
kPi
σ0

lnψc + 1, (4.6)

where the Langmuir adsorption constant ψc is 0.017 in this study. It can be observed
that (4.6) fits the simulated values very well in figure 9, indicating the correctness of
the Langmuir isotherm and the equilibrium equation of state to some extent. Again,
we can see that the coefficient k is determined by Ex.

4.2. Droplet dynamics on a chemically patterned surface
4.2.1. Phase diagram of flow states

Having validated the MCL model, we investigate the droplet dynamics with
soluble surfactants on a chemically patterned surface. The computational domain
is Ω = [0, 4] × [0, 1] with periodic boundary conditions applied on the horizontal
direction, as shown in figure 10. Initially, a semicircular droplet with a radius of
0.5 is placed on the bottom surface with static contact angles θ1 (θ1 < 90◦) for
the hydrophilic A-type stripe and θ2 (θ2 > 90◦) for the hydrophobic B-type stripe.
The droplet centre is located at (1, 0). A constant body force along the horizontal
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L/4

œ1 œ2

H
R

L

FIGURE 10. (Colour online) Schematic of computation domain Ω = [0, L] × [0, H].
A semicircular droplet with a radius of L/8 is placed on a chemically patterned surface
with static contact angles θ1 (θ1< 90◦) for the hydrophilic A-type stripe (black stripe) and
θ2 (θ2> 90◦) for the hydrophobic B-type stripe (green stripe). The droplet centre is located
at (L/4, 0). The droplet is pushed along the horizontal direction by a constant body force.

direction is applied on the droplet. A grid size of 600 × 150 and time step size
δt = 5 × 10−4 are used in all simulations. The Reynolds number Re and Péclet
numbers Peφ and Peψ are taken as 20, 100 and 10, respectively. The value of Cahn
number Cn is 0.01. The relaxation parameter Pes and slip length Ls are set to 0.005
and 0.0038, respectively. Both density ratio λρ and viscosity ratio λν of the droplet to
the surrounding fluid are 2. The initial surfactant bulk concentration ψb is 1.5× 10−2.
To clearly demonstrate the effect of surfactants, we compare the dynamics of clean
and contaminated droplets.

Figure 11 gives the evolution of droplets on a chemically patterned surface. At
first, both clean and contaminated droplets spread out over the hydrophilic surface
due to the unbalanced Young stress, and then move forward under the action of a
constant body force (figure 11b). After crossing the junction of wettability transition,
both droplets suffer from large deformation and break up into daughter droplets.
Obviously, compared with the clean droplet, the contaminated droplet has a larger
advancing angle on the hydrophobic B-type stripe and a smaller receding angle
on the hydrophilic A-type stripe (figure 11c). We also note that the break-up of
the contaminated droplet occurs earlier than that of the clean droplet (figure 11d).
After the break-up, the spreading droplets left on the hydrophobic stripe begin to
contract (figure 11e). Subsequently, daughter droplets detached from the solid surface
move towards daughter droplets in contact with the B-type stripe (figure 11f ). As
two clean daughter droplets approach each other, the film between them becomes
very thin, and then they merge together due to the effect of interfacial tension. The
merging droplet continues to slide on the hydrophilic A-type stripe (figure 11j).
While the thin film between two contaminated daughter droplets is always maintained
at a certain thickness until they slide over each other (figure 11h). Note that both
contaminated daughter droplets eventually detach from the bottom surface. Figure 12
shows the evolution of surfactant concentration. The surfactant concentration around
the interface is much larger than that for other regions, and the distribution of
surfactants is non-uniform along the interface. In fact, the different behaviour between
contaminated and clean droplets is caused by (1) the uniform reduction of interfacial
tension and (2) the non-uniform effects from the non-uniform interfacial tension and
the Marangoni stress along the interface. We also see that surfactants are swept into
the bulk phases when concentration reaches a maximum at the droplet tip (figure 12e).
Figure 13 presents the evolutions of pressure field and surfactant concentration during
the collision of two contaminated droplets. It can be observed that the pressure in the
gap between two contaminated droplets increases significantly as they approach each
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FIGURE 11. (Colour online) Dynamics of clean (blue) and contaminated (red) droplets
on a chemically patterned surface with static contact angles θ1= 60◦ for the A-type stripe
(black stripe) and θ2= 120◦ for the B-type stripe (green stripe). Droplets are pushed by a
constant body force along the horizontal direction.
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FIGURE 12. (Colour online) Evolution of the surfactant concentration for a
contaminated droplet. The initial surfactant bulk concentration ψb is 1.5× 10−2.
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FIGURE 13. (Colour online) Evolutions of (a) pressure field (background colour),
(b) surfactant concentration and (c) pressure during the separation of two contaminated
droplets. The initial surfactant bulk concentration ψb is 1.5× 10−2.

other (point A to point C). The increasing pressure pushes surfactants away from the
near-contact region, and the resulting Marangoni force acts as a repulsive force to
prevent droplet coalescence (Liu & Zhang 2010; Wodlei et al. 2018). The pressure
in the gap decreases (point D to point E) as two contaminated droplets slide over
each other.

There are several parameters that potentially influence the dynamics of a contami-
nated droplet on a chemically patterned surface, e.g. the surfactant bulk concentration
ψb, the defect strength 1θe = θ2 − θ1, the Reynolds number Re, etc. In this work,
we only consider the effect of ψb and 1θe on the behaviour of a contaminated
droplet. A series of numerical simulations, with ψb ranging from 1 × 10−3 to
1.5 × 10−2 and 1θe ranging from 20◦ to 100◦, are conducted to obtain a clear
understanding of the droplet dynamics. Other parameters and boundary conditions
remain unchanged. Results demonstrate that all contaminated droplets at various
conditions suffer from large deformation and break-up, just as in figure 11(c,d). After
droplet break-up, we observe three typical flow states, specifically the coalescence
mode, the non-coalescence mode and the detachment mode, as shown in figure 14.
At low ψb and medium 1θe (ψb = 1× 10−3 and 1θe = 70◦), the coalescence occurs
as two contaminated droplets move towards each other because of the interfacial
tension. At high ψb and low 1θe (ψb = 1.5 × 10−2 and 1θe = 50◦), the repulsive
Marangoni force together with the low interfacial tension leads to the separation of
two daughter droplets, and the droplet in contact with the bottom wall will continue to
slide on the hydrophilic A-type stripe. This phenomenon is called ‘non-coalescence’.
If we increase 1θe on the basis of the non-coalescence event (ψb = 1.5 × 10−2 and
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Coalescence
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¥b = 1 ÷ 10-3

Non-coalescence
Îœe = 50°

¥b = 1.5 ÷ 10-2

Detachment
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(a) (b) (c) (d)
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FIGURE 14. (Colour online) Three typical flow states of contaminated droplets at various
surfactant bulk concentrations ψb and defect strengths 1θe: coalescence, non-coalescence
and detachment. The A-type stripe (black stripe) with static contact angle θ1 is hydrophilic
and the B-type stripe (green stripe) with static contact angle θ2 is hydrophobic. We define
the defect strength 1θe as the difference of θ1 and θ2, namely 1θe = θ2 − θ1.

1θe = 70◦), the detachment event will occur, when the droplet sliding on the bottom
wall (green stripe) leaves the patterned surface. Note that the droplet can only detach
from the solid surface on the hydrophobic B-type stripe (green stripe).

A phase diagram of flow states for contaminated droplets at different ψb and 1θe

is further shown in figure 15. A black star identifies a coalescence event, a red
diamond marks a non-coalescence event and a blue circle represents a detachment
event. As we can see, only non-coalescence occurs for all ψb when 1θe is less
than 60◦. The surfactant bulk concentration ψb begins to affect the flow state of a
droplet as the defect strength 1θe increases to 60◦. Detachment events occur at high
ψb since surfactants reduce the adsorption effect of the B-type stripe by increasing
advancing contact angles of droplets. With a decrease of ψb, droplets cannot detach
from the B-type stripe due to the weak effect of surfactants, and non-coalescence
phenomena appear. If we further reduce ψb, a large interfacial tension will lead to the
coalescence of two contaminated droplets. It can be observed that non-coalescence
events occur on a narrower range of ψb at 1θe= 70◦ and completely disappear when
1θe is larger than 70◦. Detachment and coalescence events dominate flow states
of droplets at 1θe = 80◦. Coalescence events only occur at specific surfactant bulk
concentrations when 1θe is larger than 80◦. Overall, the non-coalescence event is
the only flow state of contaminated droplets at low defect strength (1θe 6 50◦) and
completely disappears at high defect strength (1θe > 80◦). All three flow states occur
at medium defect strength (50◦ < 1θe < 80◦). The detachment event dominates the
flow behaviour of droplets at high defect strength.
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FIGURE 15. (Colour online) A phase diagram of flow states for contaminated droplets at
different surfactant bulk concentrations ψb and defect strengths 1θe. A black star identifies
a coalescence event, a red diamond marks a non-coalescence event and a blue circle
represents a detachment event.

FR FAœR œAR A

+

FIGURE 16. (Colour online) Illustration of unbalanced Young stresses FA and FR at the
triple-phase contact points A and R. Angle θA is the advancing contact angle and θR is
the receding contact angle.

4.2.2. Unbalanced Young stress at the MCL
In this section, we focus on the evolution of the unbalanced Young stress L∂τφ

when a contaminated droplet moves across the junction of wettability transition. As
a contaminated droplet moves along the x direction, the advancing contact angle
and receding contact angle are denoted as θA and θR, respectively. Stresses FA and
FR are unbalanced Young stresses acting on the triple-phase contact points A and
R, respectively. As shown in figure 16, the unbalanced Young stress is defined as
positive when it points from left to right; otherwise, it is defined as negative. We
calculate unbalanced Young stresses FA and FR within the time range 0–2.8, and
details of droplet dynamics in this period are depicted in figure 11(a–c). During the
process, the triple-phase contact point A moves from the hydrophilic A-type stripe to
the hydrophobic B-type stripe, while the point R never crosses the junction.

The chemical potential L in the unbalanced Young stress measures the deviation
from the equilibrium condition (L = 0) at the solid surface, and the main role of
the unbalanced Young stress is to adjust the droplet to its equilibrium condition
(equilibrium contact angle θe). Figure 17 gives the evolutions of unbalanced Young
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FIGURE 17. (Colour online) Evolutions of unbalanced Young stresses (a) FR and
(b) FA at different defect strengths 1θe. The initial surfactant bulk concentration ψb is
1.5× 10−2.

stresses FR and FA. Initially, the static droplet (θ0 = 90◦) spreads on the hydrophilic
surface under the action of FR and FA. Stress FR points to the left (negative) and
FA points in the opposite direction (positive). Both FR and FA decrease dramatically
as θR and θA approach the equilibrium contact angle θe (θe < θs on a hydrophilic
surface). Meanwhile, the droplet keeps deforming as a constant body force drives
it forward. The receding contact angle θR decreases with the deformation of the
droplet, and FR becomes zero when θR decreases to θe, as shown in figure 17(a).
The continuous deformation of the droplet causes the receding contact angle θR to
continue to decrease (θR<θe). In order to adjust the contact point R to the equilibrium
condition, FR changes its direction (now it points to the right, positive) and pushes
the contact point R to move forward. During the whole process, the contact point R
never moves across the junction of wettability transition.

The evolution of FA is more complicated than that of FR. Before θA decreases to the
equilibrium contact angle θe, droplet deformation leads to an increase of θA, which is
contrary to the expectation of FA. Thus, FA begins to increase (point M in figure 17b)
and drags the contact point A forward to reduce θA. As the contact point A meets
the junction, FA experiences a dramatic decrease (point N). According to the GNBC,
the dectrease of FA must be accompanied by the decrease of fraction force due to
the contact line slip. Thus, the classical phenomenon of the contact line sticking to
the solid surface is expected to occur at the point N, and this is actually observed in
figure 18.

In figure 17(b), we can see that the defect strength 1θe has a significant impact on
the behaviour of FA. When the defect strength 1θe is less than 80◦, θA immediately
arrives at the equilibrium contact angle θe of the hydrophobic B-type stripe. With
droplet deformation, θA continues to increase and exceeds θe, and correspondingly FA

increases to reduce θA. Throughout the whole process, FA never changes direction, and
always drags the contact point A forward. The behaviour of FA becomes complicated
when 1θe is larger than 80◦. As the droplet moves across the junction, θA (θA< 90◦) is
less than θe (θe> 90◦ on a hydrophobic surface). In order to adjust θA, the unbalanced
Young stress FA, acting as the drag force before (positive), decreases dramatically and
changes its direction (negative). Stress FA decreases to zero when θA arrives at θe, and
it becomes the drag force again as θA exceeds θe with droplet deformation. Based
on the above analysis, we can conclude that the unbalanced Young stress could be
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FIGURE 18. (Colour online) Profiles of phase-field variable φ at different times. The
initial surfactant bulk concentration ψb is 1.5× 10−2.

a driving or resistance force, which is determined by the critical defect strength 1θe,
and 1θe is between 60◦ and 80◦.

5. Conclusions
In this work, we present a derivation of the phase-field MCL model with soluble

surfactants through the first law of thermodynamics, associated thermodynamic
relations and the Onsager variational principle. The derived thermodynamically
consistent model consists of two Cahn–Hilliard type of equations governing the
evolution of interface and surfactant concentration, the incompressible Navier–Stokes
equations and the GNBC for the MCL. With chemical potentials derived from the free
energy functional, we analytically obtain certain equilibrium properties of surfactant
adsorption, including equilibrium profiles for phase-field variables, the Langmuir
isotherm and the equilibrium equation of state. A classical droplet spread case is
used to numerically validate the MCL model and equilibrium properties of surfactant
adsorption. The influence of surfactants on the contact line dynamics observed
in our simulations is consistent with the results obtained using sharp interface
models. Numerical results also demonstrate that the equilibrium contact angle of a
contaminated droplet can be approximately predicted by the static contact angle of a
clean droplet through a linear relationship. Using the proposed model, we investigate
the droplet dynamics with soluble surfactants on a chemically patterned surface. It
is observed that droplets will form three typical flow states as a result of different
surfactant bulk concentrations and defect strengths, specifically the coalescence mode,
the non-coalescence mode and the detachment mode. In addition, a phase diagram
for the three flow states is presented. Finally, we study the unbalanced Young stress
acting on triple-phase contact points. The unbalanced Young stress could be a driving
or resistance force, which is determined by the critical defect strength.
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