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A B S T R A C T

Due to the extremely low permeability of shale matrix, a great number of hydraulic fractures are required to
enhance the flow capacity of shale reservoirs to obtain economic productivity. The mechanical interactions
among closely spaced hydraulic fractures could result in fracture curving, intersection and unbalanced growth.
Current hydraulic fracturing models are mainly based on the assumption of 2D or Pseudo-3D, in which the
fractures are vertical with constant or equilibrium height. To better analyze and understand the stress inter-
ference among multiple hydraulic fractures, a fully three-dimensional (3D) model based on the displacement
discontinuity method (DDM) is developed in this paper. The challenges (eq. grid twisting, hyper-singular in-
tegrals) in implementing 3D DDM for fracture growth problems are systematically discussed and solved from
different aspects. Optimization strategies for the 3D model, including adaptive mesh growth, non-crowding
Gaussian points and distance-dependent integrals, are proposed. Using this model, we first compare the strength
of stress interactions with different fracture geometries. The simulation results show that the length of the
shorter edge of the hydraulic fracture dominates the strength of stress shadowing effect. The stress redistribution
due to fracture interference in 3D space is also calculated which delivers a much more complex shape of po-
tentially stress re-orientation region than the 2D results. Then, the simultaneous propagation of multiple hy-
draulic fractures in different in-situ stress fields is analyzed, highlighting the importance of in-situ stress dis-
tribution on fracture geometries and interactions. The limitation on fracture height growth can reduce the
mechanical interactions under the constant net pressure assumption. Besides, the detailed introduction of the
present stable and efficient 3D DDM-based fracture propagation model can be used as a basis for other in-
vestigation purposes.

1. Introduction

The investigations of stress interactions among multiple propa-
gating fractures started from the 1990s when the geologists observed
special patterns of closely spaced joints (echelons, wing-cracks, etc.) in
out-crops (Olson, 1993; Pollard and Aydin, 1988). The importance of
fracture interference grew in early 2000s when multi-stage hydraulic
fracturing technology showed its significant role in enhancing shale gas
production (Miller et al., 2011). The continuous development of
fracking technologies allows smaller cluster spacing (usually taken as
fracture spacing) to extend the fracture surface area, thus higher pro-
duction rate can be achieved. Currently, the cluster spacing can be as
close as 15 ft in Eagle Ford and DJ basins, and even closer spacing is
under test (Xiong, 2017). With the decrease of fracture distance, the
interactions among hydraulic fractures can no longer be ignored (Geyer

and Nemat-Nasser, 1982; Abass et al., 1996; Miller et al., 2011;
Dohmen et al., 2014). The fracture interactions in hydraulic fracturing
process have been extensively studied with emerging methods in the
past decade (Peirce and Bunger, 2013; Wu and Olson, 2016; Li et al.,
2016).
Currently, theoretical and numerical studies on multiple fracture

propagation problems are mainly based on the assumptions of 2D,
Pesudo-3D or Planar-3D. Two dimensional analysis of the unbalanced
growth of middle and side fractures due to stress shadowing effect have
been conducted by Cheng (2012) and Liu et al. (2016) with displace-
ment discontinuity method (DDM) and extended finite element method
(XFEM), respectively. The displacement discontinuity method (DDM) is
an indirect boundary element method which solves the displacement
discontinuities on domain boundaries to get the rest of the variables.
Wu and Olson (2016) investigated the fracture deflection and uneven
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growth due to the combined effect of wellbore flow partitioning and
mechanical interference with a constant height 2D DDMmodel. A series
of Pseudo-3D models, capable of describing the fracture height growth
without increasing unknowns in the vertical direction, have been de-
veloped recently (Weng et al., 2011; Dontsov and Peirce, 2015; Liu and
Valkó, 2018). A stacked height model proposed by Cohen et al. (2017)
could partially solve the limitations of the previous Pseudo-3D models
in handling complex heterogeneity of in-situ stresses, but extra elements
should be placed in locally minimum stress layers. The Planar-3D
models, which constrain the deflection of fracture plane while allowing
two-dimensional flows, provide better description of fluid and proppant
behaviors inside the fractures. The Planar-3D simulation of multiple
fracture propagation with finite element method (FEM) conducted by
Peirce and Bunger (2013) highlights the effectiveness of non-uniform
placement of perforation clusters on increasing fracture surface area.
Bunger (2013) proposed a semi-analytical method based on the energy
equilibrium for describing the propagation of multiple planar fractures.
With this method, they found that the dimensionless cluster space 1.5H
(fracture height) and 2.5H are the optimal spacing for the strong per-
foration losses and zero perforation losses (Bunger et al., 2014). Tang
et al. (2016) investigated the impact of stress interference on proppant
partitioning among multiple fractures with Planar-3D DDM and severe
unbalanced distribution of proppant was observed. One major limita-
tion of the Planar-3D models is that they cannot consider the fracture
curving caused by stress interactions or in-situ stress heterogeneity.
Therefore, to achieve more realistic description of the fracture propa-
gation process, several recent efforts have been made for modeling
multiple fracture propagation in three-dimension (Li et al. 2012, 2016;
Wick et al., 2015; Kumar and Ghassemi, 2015; Haddad and
Sepehrnoori, 2016; Dehghan et al., 2017).
The combination of Extended Finite Element Method (XFEM) and

Cohesive Zone Method (CZM) had been adopted to investigate the 3D
hydraulic fracturing problems (Haddad and Sepehrnoori, 2016;
Dehghan et al., 2017), as well as the 3D damage based model (Li et al.,
2012), phase field model (Wick et al., 2015) and pseudo-continua
model (Li et al., 2016). Due to the capability in treating arbitrary
fracture shapes with high efficiency by reducing model dimension, the
boundary element method (BEM) became an attractive tool for fracture
problems. Castonguay et al. (2013) investigated the geometric evolu-
tion of simultaneously propagating fractures in anisotropic stresses
using symmetric Galerkin BEM. Kumar and Ghassemi (2015) proposed
a 3D poroelastic DDM with utilization of quadrilateral elements to
study the impact of stress shadowing effect on simultaneously and se-
quential propagating fractures. The triangular grid based BEM devel-
oped by Maerten et al. (2014) was used to investigate the mixed-mode
fracture propagation, including the mode III fractures, under tensile and
shearing stresses.
Though the advantages of boundary element method in 3D simu-

lation are widely recognized, the difficulties in its implementation have
not been fully resolved. Taken DDM as an example, several challenges
are frequently encountered when conducting 3D simulations, especially
on triangular elements. The first challenge is the calculation of influ-
ence coefficients in mechanical equations. The calculation of the in-
fluence coefficients with hyper, strong and weak-singular integrals on
arbitrarily shaped triangular elements is much more challenging than
2D line segments (Crouch et al., 1983; Shou and Crouch, 1995) or 3D
rectangular elements (Shou et al., 1998). The use of analytical expres-
sions of influence coefficients can effectively accelerate the calculation
(Kuriyama and Mizuta, 1993; Nikolskiy et al., 2013; Cheng et al.,
2015), but their extensions to more complex formulations (e.g. tip
elements (Li et al., 2001)) is quite difficult. Besides, the derived ex-
pressions are often too complex to be used by other researchers and the
analytical solutions could be invalid at certain locations (Shi et al.,
2014). Thus, an effective numerical solution is desired. Various
methods have been developed to evaluate the singular integrals nu-
merically. For example, the singularity-reduced method developed by

Li and Mear (1998), which turns the hyper or strongly singular kernel
functions into weakly-singular integrals, has been applied in a three
dimensional finite element model to solve fracture propagation pro-
blems (Rungamornrat et al., 2005). A method capable of formulating
the boundary integral equations with kernels of any order of singularity
is proposed by Guiggiani et al. (1992), which calculates the singular
integrals directly without solving in the Cauchy principal value or finite
part sense. Zozulya (2007) transformed the singular integrals into the
easily calculated regular contour integrals based on the theory of dis-
tribution and application of the Green theorem. A triangle subdividing
technique, developed from Guiggiani's method, is applied in this work.
For the non-singular integrals, the non-crowding Gaussian integration
points (Hussain et al., 2012) and adaptive adjustment of integral point
number are adopted in this paper to improve model accuracy and ef-
ficiency.
On the other side, when the element-wise propagation strategy is

used, the severe skewness of fracture front may occur (Shi et al., 2014).
To the authors’ knowledge, few research on 3D DDM has dealt with the
grid twisting issues generated from the growing cracks surface after a
few steps of propagation, especially for the case of strong in-situ stress
heterogeneity. The adaptive adjustment of grid geometry has been
applied in several 3D FEM models (Yew and Weng, 2015; Gupta and
Duarte, 2018), in which the re-meshing should be conducted after each
propagating step with grid refined around the fracture tips. However,
due to the cost of influence coefficients computation, globally re-
meshing is not expected in DDM. For this reason, a partial re-meshing
strategy which regenerates grids within a zone surrounding fracture tips
was proposed by Rungamornrat et al. (2005). In this paper, an adaptive
mesh adjustment method with few re-meshing is proposed which ef-
fectively avoid bad-quality grids by conducting a series of operations.
To solve the above issues, we first derive the formulations of three

dimensional DDM for triangular elements. The calculations of singular
and non-singular integrals in influence coefficients are introduced.
Numerical methods including coordinates transformation, non-
crowding Gaussian integration points and distance dependent integrals
are integrated in our model to ensure the accuracy of the integral cal-
culation. Several grid adjustment operations to avoid skewed fracture
front elements are proposed and tested. Using the developed 3D model,
we compare the strength of stress interactions among multiple hy-
draulic fractures with different geometries. Finally, the impact of the
heterogeneity of three dimensional in-situ stresses on multiple fracture
propagation is investigated.

2. Methods

In this work, we seek the solution of the 3D elasticity equations for
propagating hydraulic fractures in a reservoir assumed to be linear
elastic. The coupling between the elasticity and flow equations in the
reservoir or in the fracture is not considered. The fluid pressure applied
on the fracture surfaces is assumed to be constant in each time step.
Under these assumptions, we first derive the integral forms of the in-
fluence coefficients. Then, the methods for the singular and non-sin-
gular integral calculations are provided. Last, the grid quality control
strategies used during fracture propagation process are introduced and
tested.

2.1. 3D DDM formulations

The displacement discontinuity method (DDM) is an indirect
boundary element method, which calculates the displacement dis-
continuities on domain boundaries as indirect variables to derive the
stresses, strains and displacements at any given locations. In our model,
the fracture surface is first divided into a bunch of planar triangles as
shown in Fig. 1. The local coordinate system is defined that the x axis is
parallel to the longest edge and the axis z is normal to the element
plane. Constant element is used in this paper which assumes the

H. Tang, et al. Journal of Petroleum Science and Engineering 179 (2019) 378–393

379



displacement discontinuities to be invariable across each element, and
the unknowns are located in the element center of gravity. Based on
these assumptions, each element has three displacement discontinuities
to be solved in the local coordinate system (x-y-z), which are defines as:

=
=
=

+

+

+
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D u x y u x y
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where u is the displacement, superscripts + and - indicate values on the
positive and negative side of the fracture, Dx and Dy are shearing dis-
placement discontinuities along x and y directions respectively, and Dz
is the normal displacement between lower and upper surfaces, which is
negative when fracture opens.
The stresses induced by each element at source point (x,y,z) can be

calculated with the following expressions (Okada, 1985),
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in which C is a constant calculated from Poisson's ratio v:

=C
v

1
8 (1 ) (3)

Kernel function I in Eq. (2) is a surface integral over each element's
local coordinates,

= + +I x y z x y z d d( , , ) [( ) ( ) ]2 2 2 1/2

(4)

and Ik, Ikl and Iklm are first, second and third order derivatives of co-
ordinate k, l and m. For hydraulic fractures, the force equilibrium for
element i can be written as,

= +in
i
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where the subscript in means the internal boundary stress (i.e. fluid
pressure) calculated from flow equations, induce denotes the stresses
induced by the deformations of all fracture elements and 0 means the
in-situ stresses. The induced shear and normal stresses at the midpoint

of the ith element can be obtained by summing up the contribution of
each set of discontinuity over N elements as:
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The coefficients Aij, usually called the influence coefficients, can be
derived from Eq. (2) with coordinate transformations. The analytical
expressions of Aij of rectangular element have been provided by Shou
et al. (1998) and revisited by Wu (2014). Analytical solutions of tri-
angles can be found in Kuriyama and Mizuta (1993) for constant ele-
ment and Cheng et al. (2015) for linear element. As discussed before,
the focus of this paper is to use numerical ways to solve Aij for its
simplicity and versatility. In the following sections, we'll introduce how
the singular and non-singular integrals can be calculated numerically.

2.2. Numerical calculation of influence coefficients

The numerical evaluation of singular integrals on triangular
boundary elements that arises in the 3D boundary element method
when the source point is on or very close to the element of integration is
always a challenge in simulations. In this section, the methods for
singular and non-singular integral calculations will be introduced se-
parately. The issues related to the choice of the location and the number
of integration points will also be discussed.

2.2.1. Singular-integral calculation
In DDM, if the source point is located on the element's gravity

center, such as the calculation of self-influence coefficient (Aii), dif-
ferent orders of singularities (weakly singular (1/|r|), strongly singular
(1/|r2|) and hypersingular(1/|r3|)) could occur in the derivatives of
kernel function I. Various methods have been developed to deal with
these singular integrals, such as polar coordinate transformation (Rizzo
and Shippy, 1977), non-linear transformation techniques (Lachat and
Watson, 1976), and regularization of boundary integral equation (Li
and Huang, 2010). The above methods require an integration over the
complete surface, resulting in high numerical complexity and time cost.
The integration scheme presented by Guiggiani et al. (1992) can be
used for any order of singularity which transfers the singular surface
integral into a regular line integral, avoiding the use of a large number
of integral points. In this paper, an integration procedure with a two-
step coordinate transformation and integration by parts are adopted,
which could conveniently simplify the singular integrals into regular
line integrals. The calculation of a third order singular integral is taken
as an example and shown in Appendix A. After a series of transforma-
tions, the singular integrals can be written as the summation of line
integrals over each sub-triangle shown in Fig. 21,

A g d2 ( )
i

i i i

3

0

1

(7)

Fig. 1. Schematics of the local (xi-yi-zi) and global (xg-yg-zg) coordinates of 3D fracture elements.
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where Ai is the area of the sub-triangle i, the expression of g ( )i can be
found in Eq. (A.10) in Appendix A.

2.2.2. Non-singular integrals
When the source point moves way from the cell centers, the in-

tegrals become regular and can be directly evaluated with Gaussian
integration algorithms. However, the choice of location and number of
integral points is critical for the model accuracy and efficiency. In this
paper, a new quadrature formula technique proposed by Hussain et al.
(2012) is applied which avoids the crowding of Gaussian points by
using of simple algorithms. The traditional one dimensional n-point
Gaussian quadrature requires n× n integration points and often clus-
tered around the triangle vertex (Fig. 2(a)), while this new technique
generates only n(n+1)/2 points with Gaussian points evenly dis-
tributed in the integral area (Fig. 2(b)).
To verify the effectiveness of this method in our problem, we

compare the numerical evaluations of the integrals in Eq. (2) with the
analytical solutions for rectangular boundary element (Wu, 2014),
where the rectangle is divided into four triangles as shown in Fig. 3. The
source points are perpendicular to or in-plane with the rectangular
surface. The red dots in Fig. 3 denote the source points and the relative
error of numerical integration is defined as:

= =error
I I

I
imax

| |
| |

, 1,2....16num i ana i

ana i

, ,

, (8)

The subscript ana represents the analytical solutions and num de-
notes numerical results. i ranges from 1 to 16 denoting the 16 deriva-
tives of kernal function I in Eq. (2). The number of integral points re-
quired to achieve tolerance 10−3 is calculated and compared.

For a square unit, 9 source points (Fig. 3) are calculated using one
dimensional n-point Gaussian quadrature (resulting in n × n Gaussian
points) and non-crowding formulas (n(n+1)/2 points). The number of
integral points required to get the same accuracy is listed Table 1. As
shown in Table 1, the closer the points are to the element, the more
integral points are needed. For the closer source points, non-crowding
method performs better, while the crowding method performs slightly
better for points that are farther away. When skewing the geometry of
integral domain by doubling the height (b=2a), the non-crowding
method always requires less integrations. Since the shape of fracture
element varies during propagation, this non-crowding method could
provide more stable results compared to the traditional quadrature
formulas.
As shown in Table 1, more points are required when the shape of

element diverts from equilateral triangle, which is also true for the
singular integral calculations. The change of integral points number
with increasing ratio of a/b is displayed in Table 2. With good control of
grid quality, the ratio can be expected to below 3. Thus, the point
number for 1D singular integrals is chosen to be 17×3 in this work.
The effectiveness of non-crowding Gaussian points is further tested

with fracture opening calculation. The analytical solution of the width
of a pressurized radial fracture is (Sneddon 1946),

=w
p v

E
c r

8 (1 )
( )0

2
2 2 1/2

(9)

where E is the Young's modulus, v is the Poisson's ratio, c is the radius of
fracture, p0 is the net pressure and r is the radial distance from fracture
center. In this case, E=20GPa, v=0.25, c=1m and p0= 2MPa.
As demonstrated in Fig. 4, with the same number of integral points,

the non-crowding algorithm can match the analytical solution better,

Fig. 2. (a) Example of n × n Gaussian points; and (b) Example of non-crowding n(n+1)/2 Gaussian points (n = 6 in the above example).

Fig. 3. (a) Source points (red dot) in x-y planes with x varies from 1.3 to 2.5 and y=0; and (b) Out of plane integration points with x=0, y=0, z=0.1, 0.3, 0.5,
1.0, 1.5. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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especially in the central parts where the length of the element edges
differs the most (Fig. 4(b)), which is consistent with the conclusion we
have drawn from Table 1. To further increase the computing efficiency,
a distance-based adjustment of the number of integration points is
adopted with the following equations:

=
= + < <
=

=
n e
n e e
n e

e D
L

21, , 0.5
8 , 0.5 3
8 , 3

,2.5
21 8 max

(10)

In which, D is the distance between source points and element
center, Lmax is the longest edge of current element and the actual
number of integration points is n(n+1)/2 when using the non-
crowding algorithm. The variable e represents how close the source
point and element are and the smaller e is, more integration points are
needed.

2.3. Fracture propagation modeling

In our model, the maximum principal stress criterion proposed by
Schöllmann et al. (2002) is adopted to determine the fracture propa-
gation directions, which is able to predict both kink and twisted angles
so that the mixed mode I/II/III fractures can be modelled. The max-
imum principal stress ahead of the fracture tip can be calculated in the
local polar coordinates (Fig. 5) with the equation below,

= + + +
2

1
2

( ) 4z
z z1

2 2
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where the tangential stress , vertical stress zand shear stress zcan be
evaluated with stress intensity factors KI, KII and KIII (Safari and
Ghassemi 2016) as,
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in which r is the distance from source point to fracture front, is the
kink angle as defined in Fig. 5, and the stress intensity factors can be
calculated with the displacement discontinuities Di of the tip elements
as follows:

= =K E
v r

D i x y z0.806
4(1 ) 2

, , ,i i2 (13)

The constant 0.806 was originally determined empirically by Olson
(1991) in 2D problems who found the stress intensity factors calculated
using DDM is generally larger than analytical solutions. The value of

0.806 was then used by McClure et al. (2016) for rectangular elements
which matches well with the PKN and KGD fracture analytical solu-
tions. Kumar and Ghassemi (2015) takes r=0.87L for rectangular
element where L is the full length of the tip element and the equivalent
coefficient equals to 0.7581. In the paper of Shi et al. (2014), the
constant 1 was used for the triangular elements. However, we can find
in their results that the numerically calculated displacement at the
fracture tip (1.1016) is greater than the analytical solution (0.9758)
with coefficient close to 0.88. As can be seen in our later calculations,
using the value of 0.806, the calculated stress intensity factors can
match with the analytical solutions well for inclined cracks. A more
rigorous choice of the constant will be investigated in our future work.
The direction 0 in which the principal stress is maximized should

satisfy the following conditions:

= <= =| 0, | 01
2

1
20 0 (14)

Since the out-of-plane propagation (mode III fracture) is not con-
sidered in this paper, the twisting angle 0 (Fig. 5) is assumed to be 0.
The search for kinking angle 0 is realized with the dichotomy which
can find the target value quite efficiently.
After the growth direction is determined, the equivalent stress in-

tensity factor Keq presented by Schöllmann et al. (2002) for mixed-mode
fracture propagation is used to judge when the propagation starts:
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The fracture growth rate is calculated with the following relations
(Lazarus, 2003),

=d d
K
K

eq

IC

m

max
(16)

where dmax is the user-defined maximum propagation distance in a
single step andKICis the mode-I fracture toughness. Currently, the
fracture toughness is assumed to be constant during the fracturing
process. However, the loading rate or loading strain may change the
magnitude of fracture toughness in gas shales (Mahanta et al., 2017).
Thus, the dynamic change of mechanical properties should also be
considered if further improvement of model reliability is expected.
Generally, hydraulic fracture propagation is assumed to be quasi-

static, that the maximum equivalent stress intensity factor Keq
max should

be equal toKIC at every time step. To simulate the propagation of hy-
draulic fractures driven by injected fluid, an iterative algorithm is de-
veloped in our model to automatically adjust the injection pressure and

Table 1
Number of integration points required to satisfy the error tolerance.

Algorithm Number of integral points required at location (x,y,z)
x=1.3 x=1.5 x=2 x=2.5 x=0 x=0 x=0 x=0 x=0
y=0 y=0 y=0 y=0 y=0 y=0 y=0 y=0 y=0
z=0 z=0 z=0 z=0 z=0.1 z=0.3 z=0.5 z=1.0 z=1.5

Geometry: a= b
n×n points 324 121 25 16 529 144 36 25 16
n(n+1)/2 points 170 77 54 54 324 65 44 35 27
Geometry: b= 2a
n×n points 841 196 100 49 36 1225 441 100 49
n(n+1)/2 points 464 119 65 35 35 629 230 65 54

Table 2
Number of integration points required to satisfy the error tolerance.

Ratio: a/b 1 1.5 2 2.5 3 3.5 4 5

1D Gaussian points 6× 3 9×3 12×3 15×3 17×3 20×3 23×3 39×3

H. Tang, et al. Journal of Petroleum Science and Engineering 179 (2019) 378–393

382



time steps such that the mass balance condition and the quasi-static
propagation assumption are simultaneously satisfied (Fig. 6). This
routine contains two loops: the inner loop is for injection pressure de-
termination, and the outer loop is used for time step calculation. The
mass balance requirement can be met by adjusting the injection pres-
sure, and the quasi-static propagation condition is satisfied by changing
the time steps. In this model, the quasi-static propagation condition is
defined such that the maximum equivalent stress intensity factor at
current time step n is within the range of [(1- , 1+ )], where is a
small constant close to 0 and is taken to be 0.1 in this paper. The di-
chotomy is used to update both the injection pressure and time step
length.
For the triangular element based DDM, the propagation vector with

length d and angle 0 originates from the center of the front edge. The
mesh growth method used by Meng et al. (2013) (Fig. 7(a)) connects
the ends of all propagation vectors to construct the new fracture front
and these ends become the vertexes of the new front elements. This
strategy is reasonable when the propagation velocities of all fracture
tips at each time step are approximately the same. Otherwise, the new
fracture front can be zigzagged and the element will be distorted. To
optimize the fracture geometries, a new mesh growth routine is pro-
posed here (Fig. 7(b)).
As demonstrated in Fig. 7(b), the new fracture front is firstly

smoothed using the 3rd order Savitzky-Golay filter (Savitzky and Golay,
1964) to eliminate obvious outliers. Then a new propagation vector
originated from the tip element's vertex is reconstructed with the pro-
pagating direction being closely perpendicular to the old front by
equally dividing the angle between the connected edges. Then, new
fracture elements are added with three types of operations including

splitting, merging and extending to optimize the element's geometric
quality, as illustrated in Fig. 8.
The splitting operation is conducted when the length of the propa-

gation vector d is significantly smaller than the length of the element
edgeLnew(Fig. 8(a)). To avoid the skewness of element, a new vertex will
be added on the new edge to subdivide the element. For the case when
two vector ends become quite close, the merging operation is used to
merge the two ends into one (Fig. 8(b)). The extending operation is
specially designed for stopping fracture front. If the growth rate of the
element is quite slow, there is no need to add extremely small elements
to rebuild the new fracture front. An extension of the current tip ele-
ment can describe the new front effectively as well as reducing the
computation cost (Fig. 8(c)). To avoid over stretching of the tip ele-
ments, a re-splitting operation is also implemented (Figs. 8(c-2)). The
criteria used in this paper to trigger the above operations are defined as:

<
<
<

splitting d L
merging L d
extending d d

, 0.5
, 0.5

, 0.3

new

new

max (17)

Here, three examples are provided to illustrate the effectiveness of
our model to capture complex fracture geometries (Fig. 9). All fractures
are assumed to be perpendicular to the minimum horizontal stress and
propagating in a homogeneous stress field thus no deflection would
occur. As shown in Fig. 9(a), a fracture propagating radially is observed
when the minimum horizontal stress distributes homogeneously. If
stress barriers exist along the vertical direction, the growth of fracture
height will be impeded, resulting in the shrinkage of grid size. When the
stress barriers are penetrated, the grids in vertical direction are ex-
panded again, representing the acceleration of height growth
(Fig. 9(b)). However, if strong stress bounds are applied above and
below the perforation layer, the growth of fracture height will stop and
a PKN-shaped fracture is formed (Fig. 9(c)). Through the adaptive de-
formation of grid shapes, we're able to build a robust fracture propa-
gation model to properly predict the fracture geometries under complex
and heterogeneous stress conditions.

3. Results and discussions

3.1. Model validation

The calculation of stresses induced by fracture deformation and
stress intensity factors (SIFs) will be validated first. Based on the theory
of linear elastic fracture mechanics (LEFM), the normal stress induced
by a pressurized radial fracture near the fracture tip satisfies the

Fig. 4. (a) Triangular grid of the radial fracture with 108 elements; and (b) Comparison of fracture opening between numerical and analytical solutions with different
choices of integration points (with the same number of 36).

Fig. 5. Schematic of fracture tip coordinates and propagation directions.
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following expressions (Sneddon 1946):

=
p

x c x c
2

sin 1 1
( ) 1

n
0 1

2 (18)

where x is the radial distance between the source point and fracture

center. Same grid with Fig. 4(a) is used and the net pressure (fluid
pressure minus the in-situ normal stress) is assumed to be 2MPa. The
rock mechanical properties of Jiaoshiba gas shale reservoir listed in
Table 3 (Xiao et al., 2016) are used for case studies, where the elastic
properties (i.e. Young's Modulus, Poisson's Ratio) are measure with the

Fig. 6. Schematics of the fracture propagation algorithm (grid, injection pressure iteration and time step iteration are numbered with subscript i, k, j, respectively.
Time step is denoted with superscript n and q is the volumetric injection rate).

Fig. 7. Fracture mesh growth proposed by (a) Meng et al. (2013) and (b) this paper.
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tri-axial compressional experiments under field conditions, fracture
toughness is obtained with the three-point bending experiments and the
typical fluid injection rate is taken from the field treatment data.
Fig. 10(a) shows that the numerical results match well with the

analytical solutions, except a slight diversion at the locations that are
very close to the tip. According to our observations from hundreds of
simulations with a broad range of parameters, when the distance be-
tween the source point and fracture tip is within 1/2 length of element
size, the numerically evaluated stresses can be significantly larger than
the theoretical solutions. The accuracy of near-tip stress calculation can
be improved with the utilization of nearly-singular integral calculation
technologies (Johnston et al., 2013) which will not be further discussed
here.
Validation of the stress intensity factor of a slanted fracture under

pure tensile load is also presented. The analytical solutions of SIFs
around an inclined pressurized penny-shaped fracture can be found in
(Aliabadi, 2002) as:

=

=

=

K c

K c

K c

cos

sin cos cos

sin cos sin

I

II v

III
v
v

2 2

4
(2 )

4(1 )
(2 ) (19)

where is the applied tensile stress, the angle and are defined in
Fig. 11. Same mechanical properties and grid with the above case are
used with applied tensile stress equals to 2MPa. The simulation results
of a slanted crack inclined at 30° is depicted in Fig. 10(b). As can be
seen from this figure, a good agreement is obtained between our model
and the analytical solutions.
The fracture propagation algorithm proposed in Fig. 6 is verified

with the classical three-dimensional quasi-static evolution of a penny-
shaped crack under Mode I conditions. Under the assumption of con-
stant inner pressure, the net pressure and injected fluid volume required
for radial fracture propagation follows (Abe et al., 1997):

=

=

p c K

V c c

( )

( )

IC c
K
E

4
8
3

5IC
(20)

where E’=E/(1-v2). The material properties in Table 3 and fracture
propagation routine in Fig. 6 are adopted. Fig. 12 shows the evolution
of net pressure and fracture radius as a function of injected fluid vo-
lume. Also, a good match between numerical and analytical solutions
can be achieved, which proves the reliability of our propagation stra-
tegies.

3.2. Stress interaction analysis for stationary fractures

The stress interactions among multiple stationary fractures with
different geometries will be investigated in this section. Parameters
listed in Table 3 are used.
Four sets of fractures, one set of radial fractures and three sets of

PKN fractures are considered. The fractures in each set are equally
spaced to represent three clusters in one fracturing stage. The radius of
the radial fracture is 40m, and the length and height of the PKN frac-
tures are 100m, 100m, 200m and 30m, 60m, 30m respectively. All
fractures are equally pressurized with net pressure 2MPa. The opening
of fractures with spacing 30m is calculated (Fig. 13). Note that, the
color scale of each figure is different since the range of fracture width in
each set is quite different. As can be seen from these figures, the inner
fractures have smaller width compared to the outer fractures. The

Fig. 8. Schematics of (a) splitting, (b) merging and (c) extending operations: (c-1) direct extending; (c-2) extending with re-splitting.

Fig. 9. Fracture propagation with different distribution of minimum horizontal stress: (a) homogeneous; (b) two stress barriers; (c) strong upper and lower stress
bounds.

Table 3
Input parameters for case studies.

Parameter Unit Value Parameter Unit Value

Young's Modulus GPa 35 Poisson's Ratio – 0.23
Mode I toughness MPa·(m)1/2 1.2 Initial radius m 10
Fluid injection rate m3/min 13 dmax M 3
m – 1 – 0.1
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difference between middle and side fracture is largest for radial-shaped
fractures because the radial fractures have the smallest averaged dis-
tance between each element (Fig. 13(a)). In addition, the larger the
PKN fractures are, the stronger the stress shadowing effect is. For the
PKN fractures, the strength of stress interaction is more sensitive to
fracture height than fracture length as show in Fig. 13(b)–13(d).
The change of fracture width difference (the ratio of outer fracture

central width to inner fracture central width) with cluster spacing is
plotted on Fig. 14 with additional results calculated with 2D model (the
black dashed line). As expected, the width difference decreases with the
increasing spacing. In addition, the 2D model would over-estimate the

stress interactions due to its infinite height assumption. It is clear in
Fig. 14 that the difference of fracture openings does not change sig-
nificantly when decreasing fracture length from 200m to 100m (from
green curve to red curve), but a significant reduction of stress interac-
tions can be observed when the fracture height becomes half of the
original size (from blue curve to red curve). Thus, for PKN fractures,
when designing the fracture spacing with consideration of mechanical
interactions, the fracture height would be a more important factor to be
considered than fracture length.
The stresses induced by three equally sized PKN fractures with

L=200m, H=30m are also calculated. The distribution of stresses in
x and y direction is shown in Fig. 15(a) and Fig. 15(b) (the sign con-
vention is that tensile stress is positive). A region of greater compres-
sional stress (color in blue) is observed between the fracture surfaces. In
addition, the induced compressional stress along x direction (Sxx) is
greater than stress Syy which implies a potential stress reorientation
zone close to the fractures. Fig. 15(c) draws the field of stress difference
dS= Sxx - Syy and the regions of value below zero might experience
stress reorientation due to the stress interference among fractures. The
iso-surfaces in Fig. 15(d) show that the potential stress-reorientation
regions extend further in the vertical and x directions than ahead of the
fracture length. The areas where tensile stresses are induced (color in
red) will enlarge the stress difference (regions around fracture tips),
prohibiting stress-reorientation and the generation of complex fracture
networks as analyzed in the literature (Gu and Weng, 2010).

Fig. 10. (a) Comparison of near-tip normal stress between numerical and analytical solutions and (b) SIFs variation along the penny-shaped crack inclined at 30° of
exact solution (solid line) and numerical solutions (triangle) ( =K c0 ).

Fig. 11. Schematic of inclined radial fracture under tensile loading.

Fig. 12. Evolution of (a) net pressure and (b) radius of the crack as a function of the injected fluid volume.
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3.3. Multiple fracture propagation

The above section has analyzed the influence of mechanical inter-
actions among multiple stationary hydraulic fractures on fracture
opening and stress redistribution. In fact, not only the opening, but also
the shape of fractures could be affected. The impact of fracture spacing,
stress heterogeneity and fracture inclination on multiple propagating
hydraulic fractures are going to be investigated in this section. The
input parameters for the following cases are provided in Table 3 and the
injection time is 15 s in total (If the pressure loss caused by fluid visc-
osity is considered, longer injection time will be required for fractures
to propagate the same distance).
In the first case, the role of fracture spacing in multiple fracture

propagation is analyzed. The initial fractures are assumed to be radial
with radius equals to 10m. The in-situ stresses in x, y and z directions
are homogeneous in the whole domain with constant value 20MPa. The
crack surfaces after injecting fluid for 15 s are shown in Fig. 16(a) and
Fig. 16(b) with spacing 30m and 10m, respectively. The curving of
outer fractures and the growth prohibition of inner fractures are clearly
observed. As the fractures approach, strong curving occurs and the
growth of the inner fracture gets harder. The side fractures are pushed
away from the central part by the induced stresses, resulting in bowl-
shaped geometry which has been observed in the thermal shock ex-
periments (Fig. 16(c)) (Wu et al., 2016). The impact of fracture spacing
can be seen more quantitatively in Fig. 18. With the decrease of fracture
space, smaller amount of injecting fluid enters the middle fracture
(Fig. 18(a)), resulting in greater difference in fracture surface area be-
tween the inner and outer fractures (Fig. 18(b)).
The changes of fracture shape with vertical in-situ stress

heterogeneity are shown in Fig. 17. Different from the homogeneous
cases, strong and weak stress barriers exist for the cases in Fig. 17(a)
and (b) respectively. In the stress barriers, the in-situ stresses in all di-
rections are increased with the same value. Since the propagation in
vertical direction is limited by these barriers, the fracture length starts
to grow faster than the height. In Fig. 17(a), all fractures are contained
in the perforation layer and the resultant geometries are PKN-shaped. If
the stress barriers are weak, there is a chance for the fractures to pe-
netrate the high stress layers and regain the ability of height growth as
shown in Fig. 17(b). Comparing Figs. 17 and 18, we can find that the
fracture opening difference in homogeneous in-situ stress field is greater
than the height contained cases, which is consistent with the conclu-
sions drawn for stationary fractures.
As shown in Fig. 18, before crossing the stress barriers, the fluid

partitioning and surface area evolution of the multi-layered case in
Fig. 18(b) (empty triangles) is quite close to the PKN-shaped fractures
in Fig. 18(a) (dashed dot lines). However, after breaking through the
stress constraints, the effect of stress barriers on fracture propagation
vanishes and the behaviors of fractures become more similar with the
radial cases in Fig. 18(a) (solid lines). In addition, as shown in Fig. 18,
the fractures propagating in homogeneous in-situ stress field experience
the strongest unbalance distribution of injection fluid and growth of
hydraulic fractures while the PKN-shaped fractures have the most
evenly distribution of both fluid and fracture surface area. The above
four cases highlight the importance of vertical heterogeneity of in-situ
stresses on fracture propagation and interactions. In the following part,
we will discuss a more complex situation.
One advantage of the 3D model is its capacity to describe strong

curving of hydraulic fractures in the near well regions when the initial
mini-fracture is not perpendicular to the minimum horizontal stress.
The following case is designed to show how the fracture will propagate
when the normal direction of initial fracture plane deviates from x axis
under complex stress states as shown in Fig. 20(a)∼(d). An inclination
angle of 30° is preset and same as above, the fractures are equally
spaced with 30m (Fig. 19(a)).
In the previous cases, the in-situ stresses in all directions are the

same in each layer. However, in reality, the variation of each principal
stress may be different vertically for the reasons such as the change of
rock properties and tectonic strains. In the following case, we assume
the increase of over-burden stress is faster than the other principal
stresses (Fig. 19). The stress regimes change from reverse
( < <zz xx yy) to normal ( < <xx yy zz) along the vertical depth h.
Fig. 20 shows the evolution of fracture geometry and opening dis-

tribution with time. As the fractures start to propagate, the fracture
surfaces turn and propagate from the initial plane to be perpendicular
to the minimum horizontal stress (Fig. 20(b)), as described in the lit-
erature (Yew, 2007). Once entering layers L2 and L4, the growth of
fracture height slows down due to the greater in-situ stresses in-place
(Fig. 20(c)). The fracture surfaces tend to bend to be parallel to the
horizontal plane since the minimum principal stress becomes vertical in
this zone. On the other hand, for the downward moving fracture parts,

Fig. 13. Fracture opening of (a) 3 radial fractures with radius of 40m, (b) 3 PKN fractures with H=30m, L=100m, (c) PKN fracture with H=60m, L=100m,
and (d)PKN fractures with H=30m, L=200m when fracture space equals to 30m.

Fig. 14. The relation between fracture spacing d and width ratio between outer
and inner fractures.
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they tend to rotate perpendicular to x direction when entering the
normal stress regime (Fig. 20(d)). What's more, the initial fracture
planes are obviously narrower compared to their surroundings because
of the greater normal stress applied, which could potentially result in
proppant bridging in the near well regions. The purpose of this case is to
demonstrate the significance of three in-situ principal stresses compared
to the often discussed two horizontal stresses in predicting fracture
propagation. With the consideration of all three in-situ stresses, a more
accurate and comprehensive understanding of fracture geometry can be
achieved.

4. Conclusions

In this study, a three-dimensional displacement discontinuity pro-
gram based on the theory of LEFM, is developed and employed for
stress and fracture propagation analysis. The numerical solutions for
singular and non-singular integrals in influence coefficients on trian-
gular elements are systematically introduced. Optimization strategies,
such as non-crowding and distance-dependent integrals, adaptive grid
adjustment operations, are proposed to improve the model accuracy
and efficiency. Numerical simulations of mechanical interactions of
closely spaced hydraulic fractures using this model concluded the

Fig. 15. Stress fields: (a) Sxx, (b) Syy, (c) dS = (Sxx-Syy) and (d) iso-surfaces of dS induced by three PKN fractures (L=200m, H=30m). In consideration of
symmetry, only 1/8 region is displayed (theses rectangle frames represent the hydraulic fractures).

Fig. 16. Geometries of hydraulic fractures with spacing (a) 30m and (b) 10m in homogeneous in-situ stress field after injection for 15 s and (c) is the morphology of
cracks generated from cryogenic thermal shock at the borehole geometry (Wu et al., 2016) (green arrows: vertical circumferential tensile crack due to circumferential
thermal contraction; orange arrows: horizontal radial planar cracks caused from longitudinal thermal contraction; blue arrows: exclusion distance). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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following remarks:

1. The strength of stress interference not only depends on the cluster
spacing, but also on the fracture shapes. According to the 3D si-
mulations, the shorter edge of PKN fracture dominates the stress
shadowing effect and the radial fractures experience the strongest
interactions compared to other fracture shapes.

2. A reasonable evaluation of fracture induced stresses can be achieved

with the proposed model and the potential stress-reorientation re-
gions in three-dimensional space is much more complex than 2D.

3. The geometry of multiple propagating hydraulic fractures is sig-
nificantly affected by the in-situ stress layers. The limitation on
fracture height growth can reduce the mechanical interactions due
to the decrease of induced opening and stresses.

4. Fracture curving due to near-well tortuosity can also be effectively
modelled with our model. In such situations, all three in-situ stresses

Fig. 17. Distribution of fracture opening for the case of (a) strong (b) weak stress barriers.

Fig. 18. Comparison of the evolution of (a) injecting fluid partitioning and (b) half fracture surface area with injection time for the cases in Fig. 17 and 18 (d
represents the fracture spacing, ‘R’ represents radial fractures, ‘Layered’ denotes the case in Figure18(b) with multiple stress layers and PKN corresponds to the
fracture geometry in Figure18(a)).

Fig. 19. (a) Schematics of stress layers (Li, i=1,2,..,5) and initial fractures; (b)–(d) Distribution of in-situ stress xx, yy and zzin each layer respectively.
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should be carefully considered to deliver proper prediction of frac-
ture geometries.

The numerical model proposed in this paper is capable of treating
strong heterogeneity of in-situ stresses by its self-adjustment in grid

shapes. This model can be used to predict the complexity of hydraulic
fractures in the vicinity of wellbores since curving propagation of
fractures in real 3D space is considered reasonably and the corre-
sponding stress perturbation and evolution can be captured accurately.
Thus, it can serve as a useful tool for the optimization of perforation

Fig. 20. Evolution of fracture geometry and opening with inclined initial surfaces in in-situ stress field Fig. 20(b) at time (a) 2.5 s, (b) 3.2 s, (c) 5.9 s and (d)10 s
respectively. The red arrows highlight the current growth trend of fracture fronts. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 21. (a)Schematics of triangle subdivision and multiple coordinate systems; (b)Transformation between radial and areal coordinates.
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design. The conclusions drawn above are based on the assumption of
constant net pressure in each time step which will be more reliable
when more mechanisms are considered. Currently, only mechanical
part is included in this model. The fluid flow in wellbores, hydraulic
fractures and transport of proppant have been considered in our Planar-
3D models (Tang et al., 2016) and will be added in the fully 3D fra-
mework in a future work. Though the efficiency of the fully 3D model
can be improved with the methods suggested in this paper, its cost in
storage and computing time is still much more than the lower dimen-
sional models. A proper choice of model dimension requires compre-
hensive comparison and understanding of the limitations of each model

which also needs to be aided by the fully 3D models.
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APPENDIX A. Calculation of singular integrals in influence coefficients

The integral of a third order derivative I,xxx in Eq. (2) reads:
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When the source point x,y,z is located in the cell center, i.e. = = =x x y y z, , 0c c , a polar coordinate transformation centered at the source point is
applied first (Fig. 21),
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The integral then becomes,
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which is of third order of singularity. Though the polar transformation has already reduced the order by one, this transformed integral still cannot be
solved with regular integration methods. A subdivision of the triangular element is applied before further calculations.
As displayed in Fig. 21(a), originating from the gravity center, the triangle ijk is divided into three sub-regions i, jand k. The integral over the

whole domain becomes a summation of the integrals in each small triangle and the integral on ican be written as:
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The hyper singular part r dr(1/ )
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3 can be obtained in the sense of Hadamard's finite part with:
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Then the integrals are transformed from the polar coordinates to areal coordinates as shown in Fig. 21(b):
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The rest variables in Eq. (A.4) are transformed into

= = = +

= + = +

R x y

x x x y y y

sin , cos , ( ) ,

(1 ) , (1 )

y
R

x
R m m

m i j i k m i j i k

( ) ( )
2 2m m

(A.7)

in the new coordinate system.
Taking Eqs. (A.5)-(A.7) into Eq. (A.3), we can get
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where Ai is the area of the sub-triangle i. At this point, all integrals in the presented methodology are regular, which can be evaluated accurately and
efficiently using one dimensional Gaussian integrals. This routine can also been used for strongly and weakly singular integrals with changes ing ( )i .
The expressions of g ( )i for each integral is shown below:
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The derivative of kernel function I can be written as:
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where the items to be integrated in Eq (A.9) are:
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where

= + +r x y z[( ) ( ) ]2 2 2 1/2

The expressions of integrated singular parts in the sense of Hadamard's finite part after coordinate transformation can be written as in Eq (A.11).
The expressions of xm, ymandR ( ) can be found in the main text andAiis the area of sub-triangle i.
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Then, the singular integrals in each sub-triangle can be calculated according to Eq. (A.8).
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