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A B S T R A C T

The flash calculation with large capillary pressure often turns out to be time-consuming and unstable.
Consequently, the compositional simulation of unconventional oil/gas reservoirs, where large capillary pressure
exists on the vapor-liquid phase interface due to the narrow pore channel, becomes a challenge to traditional
reservoir simulation techniques. In this work, we try to resolve this issue by combining deep learning technology
with reservoir simulation. We have developed a compositional simulator that is accelerated and stabilized by
stochastically-trained proxy flash calculation.

We first randomly generated 300,000 data samples from a standalone physical flash calculator. We have
constructed a two-step neural network, in which the first step is the classify the phase condition of the system
and the second step is to predict the concentration distribution among the determined phases. Each network
consists of four hidden layers in between the input layer and the output layer. The network is trained by
Stochastic Gradient Descent (SGD) method with 100 epochs.

With given temperature, pressure, feed concentration pore radius, the trained network predicts the phases
and concentration distribution in the system with very low computational cost. Our results show that the ac-
curacy of the network is above 97% in the metric of mean absolute percentage error. The predicted result is used
as the initial guess of the flash calculation module in the reservoir simulator. With the implementation of the
deep learning based flash calculation module, the speed of the simulator has been effectively increased and the
stability (in the manner of the ratio of convergence) has been improved as well.

1. Introduction

The oil and gas stored in unconventional reservoirs has some unique
transport mechanism and phase behavior, including the pore confine
effect [1,2], the large capillary pressure effect [3,4], multiscale pore
structures [5] and gas slippage effect [6–9]. Moreover, the prediction of
the complex phase behaviors in unconventional reservoirs requires
compositional modeling, of which the flash calculation is an essential
yet time-consuming portion. To improve the speed as well as the sta-
bility of the flash calculation, several techniques have been adopted,
including reduction method [10], phase stability test [11] and so on.
Recently, the fast-arising artificial intelligence (AI) techniques have
drawn the attention of researchers. Particularly, the fast development of
the optimization algorithm, as well as hardware infrastructure, have
greatly promoted the advance of stochastic learning techniques. The

rapid development of GPU enables the training of deep learning (DL)
networks (also known as Artificial Neural Network (ANN)) [12]. There
are several trials of combining AI with flash calculation. Gaganis et al.
[13,14] are among the first to propose the application of neural net-
work approach in developing proxy flash calculation. In their work,
support vector classifier (SVC) is used to conduct phase stability test
and a single layer ANN network is used to replace the physical flash
calculation for liquid-vapor phase equilibrium calculation. Kashinath
et al. [15] further improved Gaganis et al.’s model by bringing out a
novel framework to conduct an isothermal flash calculation. In their
work, the relevance vector machine [16] is combined with an single-
layer artificial neural network. The former technique is used to classify
phase condition, while the latter is used to determine the concentration
distribution. All these proxy models have shown sound accuracy and
have been successfully implemented into reservoir simulators,
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improving the speed of compositional simulation. Moreover, El-Se-
bakhy [17] and Rafiee-Taghanaki et al. [18] used the support vector
machine technique [19–22] to predict the PVT properties of crude oil,
including gas oil ratio, oil volume factor, density and so on. Artificial
neural networks have also been used to predict the PVT behavior of
crude oil [23] and gas mixtures [24]. Nikravesh et al. [25] reviewed the
applications of artificial intelligence techniques in the exploration and
development of petroleum reservoirs.

In this work, we further extend the work listed above to the com-
positional simulation of unconventional reservoirs with large capillary
pressure effect. We have developed a deep-learning based flash calcu-
lation module (proxy flash calculation) for the prediction of phase be-
haviors of oil and gas in unconventional reservoirs. This proxy flash
calculation adopts multi-layer fully connected layers to regress the
training data. The input parameters of our model include pressure,
temperature, feed concentration and pore radius. The accuracy of the
network is above 97% in the metric of mean absolute percentage error.
The proxy flash calculation module is used as a preconditioner of the
physical flash calculation and has been implemented in a reservoir si-
mulator. We have also compared the performance of the network with
different number of hidden layers. The novelty of this work lies in the
implementation of the deep learning based flash calculation module as
a preconditioner for both phase condition detection and concentration
determination, which improves the speed as well as the stability of
compositional simulation of unconventional reservoirs while main-
taining the same results as physical flash calculation.

This paper is organized as follows. In Chapter 2, we present the
physical flash calculation used to train the network. In Chapter 3, we
describe the structure, training as well as results of our deep-learning
based flash calculation module. In Chapter 4, we describe the im-
plementation of the developed module into an in-house reservoir si-
mulator. In Chapter 5, we present the results of field scale reservoir
simulation. In Chapter 6, we summarize and conclude this work.

2. Forward modeling

In this section, we briefly introduce the governing equations and
flash calculation module used for the forward modeling.

2.1. Flow governing equations

The reservoir simulator used in this work is named as MSFLOW_CO2
[3,26,27]. MSFLOW_CO2 is a general three-dimensional reservoir si-
mulator for the simulation of complex multiphase flow in porous media.
Based on the law of mass conservation, the flow governing equations of
MSFLOW_CO2 describe the transport of hydrocarbon components in a
petroleum reservoir. For a vapor-liquid compositional system with
NCcomponents, the mass conservation equation for component k is as
below
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where is the rock porosity. is the phase index referring to the liquid
(L) or vapor/gas (G) phase. S and are the saturation and density of
phase , respectively. Kr , µ and P are the relative permeability,
viscosity and pressure of phase , respectively. Ka is the apparent per-
meability. While for the liquid phase, Ka is the same as the rock absolute
permeability K∞, for the vapor phase, Ka=K∞(1+ b/p), in which b is
the Klinkenberg parameter is x k the mole concentration of component k
in phase . g is the gravity term and q is the sink/source term. In this
work the pore compressibility is temporally ignored.

In MSFLOW_CO2, Eq. (1) is discretized and solved by the Integrated
Finite Difference (IFD) method, the details of which can be found in Ref.

[28]. The flow between the rock matrix and the fracture system is de-
scribed by the dual-porosity model [29]. The nonlinear system resulted
from the discritization of IFD is solved by Newton-Raphson’s approach.
Within each nonlinear iteration, the resulted linear system is solved by
a multiscale linear solver [30].

2.2. Flash calculation with capillary pressure

In a compositional reservoir simulator, given the pressure (P),
temperature (T) and mole concentration of each component (zi), the
flash calculation module predicts the phase condition as well as the
concentration of each component in each phase.

In this work, we consider a two-phase system with vapor (V) and
liquid (L) phase. The mole concentration of a component in the vapor
(gas) phase and in the oil (liquid) phase is denoted respectively as yi and
xi. Meanwhile, the total mole concentration of the vapor phase and the
oil phase is denoted as nV and nL respectively. We then have the fol-
lowing relationship.

= +z x n y ni i L i V (2)

The phase behavior of fluids stored in unconventional reservoirs is
unlike that in conventional reservoirs. In the narrow pores of un-
conventional reservoirs, the capillary pressurePc between phases can be
no longer ignored [31,32]. For simplicity, in this work, the capillary
pressure, which is the difference between the vapor pressure pV and the
oil phase pressure pL, is calculated as below, assuming the oil phase is
the wetting phase.
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In the above equation, VL is the interfacial tension between the
vapor phase and the liquid phase. is the contact angle and r is the pore
radius.

VL is calculated using the model from the work of Macleod [33] and
Sugden [34], as follows
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where L and V is the molar density of the liquid phase and the vapor
phase respectively. Pa

L and Pa
V is the parachor for the liquid phase and

the vapor phase respectively. Pa i, is the parachor of component i, the
value of which is listed in Table A.2. is a parameter that is by default
set to be 3.6 [35].

At the equilibrium condition, the fugacity of component i in the
vapor phase fi

v and in the liquid phase fi
l should be equal, as

=f fi
v

i
l

We introduce the fugacity coefficient of component i in the vapor
phase and the liquid phase, as
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Moreover, the equilibrium ratio is defined as
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By combining Eqs. (5) and (8) and considering the constraints that
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In this work, Peng-Robin equation of state (PR-EOS) [36] without
volume factor correction is used for the calculation of the PVT prop-
erties of oil and gas. PR-EOS is a widely adopted cubic equation of state.
For phase (vapor or liquid), the compressibility can be formulated as
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where the term A and B are defined as follows
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In the above equations, Z is the compressibility of phase . the
terms am and bm are defined as follows as
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where R is the gas constant. is the acentric factor. kij is the binary
interaction coefficient between component i and the component j. TC
and PC is the critical temperature and critical pressure respectively. The
critical properties for the hydrocarbon used in this work are from NIST
data [37]. The lartest root of the cubic equation is assigned to the
compressibility of the vapor phase, while the smallest root is assigned to
the compressibility of the liquid phase. Based on the assumption of
isothermal flash calculation, in PR-EOS, the fugacity coefficients are
calculated as
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In the above equation, the term i is

= x a a k(1 )i
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The initial guess of the equilibrium ratio Ki
0 is calculated by

Wilson’s equation
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Initially, the capillary pressure is set to be 0.
Prior to the flash calculation, a Gibbs energy based phase stability

test is performed to preliminarily determine the single phase region.
The approach used here follows the work of Sherafati and Jessen [35].
The tangent plane distance (TPD) based on Michelsen’s formulation
[38] is as follows
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where z and zT refers to the mole concentration of the feed and a trial
phase, respectively. µi

T and µi
z is the fugacity of component i in the trial

phase and the feed respectively. PT and Pz is the trial phase pressure
and the reference pressure respectively. By switching the variable

=Z z kln lni
T

i
T where k is the reduced value of the tangent plane

distance at the stational points of Eq. (23), the above equation can be
expressed as
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where i and i

T denotes the fugacity coefficient of component i in the
feed and the trial phase, respectively. Finding the stationary points of
TPD is equivalent to solving the below equation

+ + + + =Z P z Pln ln ln (ln ln ln ) 0Ti i
T T

i i
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The above equation is iteratively solved by an accelerated direct
substitution approach based on dominant eigenvalue method, as de-
scribed by Orbach and Crowe [39]. It should be noticed that, unlike the
phase stability test without capillary pressure, the solution of Eq. (25)
should take the pressure difference between the trial phase and the feed
into consideration, as = ±P P PT Z

C . The sign before the capillary
pressure is positive if the trial phase is the non-wetting (vapor) phase
and the feed is the wetting (liquid) phase. The sign is negative if the
trial phase and the feed is wetting phase and non-wetting phase re-
spectively.

Based on the solution of the Rachford-Rich equation and the ca-
pillary pressure equation, the fugacities, as well as densities of the
fluids, are obtained. The algorithm iteratively tunes the solution to
minimize the residual of the equilibrium ratio as well as the capillary
pressure until certain criteria are satisfied. In this work, the criterion of
the convergence of the equilibrium ratio is set as

K
K

e1 1.0
i

i

i

4
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where K i is the equilibrium ratio solved at the previous iteration step.
A flowchart of the K-value based flash calculation with capillary pres-
sure effect is shown in Fig. 1. The parameters, including binary inter-
action factor and parachor values, for the physical flash calculation are
listed in Appendix A. As an example, the phase envelops of n-Decane-
CO2 binary mixture with and without the capillary pressure are shown
in Fig. 2. Our results match well with experimental results [40].

3. Proxy flash calculator

3.1. General information

In this work, we have developed a data-driven flash calculation
module based on deep learning techniques to improve the speed and
convergence performance of the flash calculation in the unconventional
reservoirs. In the new framework, the initial guess of the flash calcu-
lation is obtained from a stochastically trained neural network instead
of Wilson’s equation. We use deep-learning based stochastic training
technique to develop the proxy simulator. We have trained a neural
network, which has an input layer, an output layer, and four hidden
layers. Within each layer, there are several neurons (elements). All
neurons belonged to two neighboring layers are fully connected, as
shown in Fig. 3.

The neural network adopts fully connected (dense) layers and is
trained as a standalone module. Once trained, the neural network
predicts the phase condition, capillary pressure as well as concentration
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distribution by simple interpolations. As will be shown in the later
chapters, the accuracy of the developed network is above 97%.
Therefore, a much more accurate initial guess for the flash calculation
can be obtained. The fully connected layers are an imitation of human’s
neural system. Each element within the network has one weight value
and one bias value, indicating the ‘contribution’ of the element. In the
fully connected layers, each element is connected to all elements be-
longed to its neighboring layers. Activation functions are used between

Fig. 1. Flowchart of the K-value based flash calculation with capillary pressure
effect.

Fig. 2. Phase envelop of n-Decane-CO2 binary mixture at 71 °C.

Fig. 3. Conceptual model of the fully connected neural network.

Fig. 4. Conceptual framework of the prediction step.
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layers. For a given set of input parameters, the network predicts the
output results by interpolating from the weight values and the bias
values. During the training process, the weight and the bias of the
elements are optimized by certain optimization algorithms to achieve
the best prediction. Then in the prediction step as shown in Fig. 4, the
simulator only needs to load the trained weight and bias values into the
memory and conduct simple interpolation, which is very cheap in terms
of computational time.

In this work, the training process consists of two steps. The first step,
which is named the phase classification step, determines the phase
condition of the system under the given condition. In the second step,
which is named the concentration determination step, the phase ratio,
component concentration, and capillary pressure are determined. The
input parameters for both steps include pressure, temperature, feed
concentration and pore radius. The input parameters are all normalized
to [0,1] scale before being substituted into the network.

3.2. Phase classification

The network for the phase classification step consists of six layers,
including the input layer (layer 1), the output layer (layer 6) and four
hidden layers (layer 2–5). The number of input parameters is +N 3c .
The input parameters X include the feed concentration, pressure,
temperature, and pore radius. All input parameters are normalized to
[0,1] scale. The dimension of layer 1 to layer 4 is 64, and the dimension
of the output layer is 3. Therefore, the network classifies the phase
condition into three types, namely pure vapor phase (V), pure oil phase
(L), and double phases (V + L).

Fig. 5. Structure of the fully connected neural network for the phase classifi-
cation step. The numbers refer to the dimension of the layers.

Fig. 6. Structure of the neural network for the concentration determination
step. The numbers refer to the dimension of the layers.

Table 1
Range of the parameters of the training samples.

Unit Minimum Maximum

Pressure MPa 1 80
Temperature °C 40 100
Pore radius nm 30 100
Feed concentration dimensionless 0 1

Fig. 7. Variation of the loss function of the phase classification step during the
training process of Case 4.
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The activation function for layer 1–4 is ReLU function, as follows

= <x x
x xReLU( ) 0 for 0

for 0 (28)

The activation function for the output layer is Softmax function, as
follows
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where K is the total number of parameters and ex is the exponential
function. A detailed structure of the network is as shown in Fig. 5.

Table 2
Summary of errors of the fully connected network.

Phase Classification Concentration Determination Overall Accuracy
Case index Feed component Mean Absolute Percentage Error Mean Absolute Percentage Error Mean Absolute Percentage Accuracy

1 C1 + C2 + C3 0.01% 0.46% 99.53%
2 C1 + C2 + C3 + C6 0.02% 0.73% 99.25%
3 C1 + C2 + C3 + C4 + C5 0.02% 1.02% 98.96%
4 C1 + C2 + C3 + C5 + C7 + C9 0.04% 1.86% 98.10%
5 C1 + C2 + C3 + C4 + C5 C8 + C9 + C10 0.06% 2.24% 97.83%

Fig. 8. Comparison of the accuracy with different number of hidden layers for
Case 4.

Fig. 9. Comparison of the performance of different activation functions for the
hidden layers in Case 4.

Fig. 10. Flowchart of the proxy flash calculation in a reservoir simulator.

Fig. 11. Flowchart of the deep leaning based flash calculator.
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3.3. Concentration determination

The network for the concentration determination step consists of six
layers, including the input layer (layer 1), the output layer (layer 6) and
four hidden layers (layer 2–5). The dimension, as well as physical
meanings of the input parameters of this step, are the same as those of
the phase classification step. The dimension of layer 1 to layer 4 is 64,
and the dimension of the output layer is +N2 3c , including the capillary
pressure PC, the vapor phase ratio nV , the oil phase ratio nL, and the
component concentration in the vapor phase =y i N, 1, ...,i c and oil
phase =x i N, 1, ...,i c. The activation function for layer 1–4 is ReLU
function, as shown in Eq. (28). The activation function for the output
layer is Sigmoid equation, as shown in Eq. (30).

=
+

x
e

sigmoid( ) 1
1 x (30)

A detailed structure of the network is as shown in Fig. 6.

3.4. Training

We have investigated five cases with different combinations of hy-
drocarbon components. For each case, we use 300,000 training samples
generated from the standalone flash calculation module described in
Chapter 2. The samples are generated randomly using Latin Hypercube
Sampling [41,42] technique. The range of the input parameters is listed
in Table 1.

We use stochastic gradient descent (SGD) algorithm [43] to train the
network on Keras [44] with a GTX 1080Ti GPU of 11 GB in memory.
The algorithm of SGD can be briefly described as follows (Bottou 2012).
For an object function Q with the primary variable w of n dimensions,

=
=

w
n

w( ) 1 ( )
i

n

i i
1 (31)

Instead of optimizing all n dimensions at the same time, SGD ran-
domly optimizes a randomly chosen group (batch) of the variables
using gradient descent optimization, as below

=+w w w( )t t j t1 (32)

where t is the number of iteration steps. j is the index of a batch. is the
learning rate. After the completion of one epoch, all the training sam-
ples are shuffled. Hence, the optimization of one high-dimensional
problem is effectively converted to the optimization of numerous low-

dimensional problems. In this work, we have compared the choice of
the learning rate. The optimal value is found to be 0.001. The neural
network for the phase classification step and the concentration de-
termination step is trained with 100 epochs, respectively. We use the
mean absolute percentage error (MAPE) as a metric (loss function)
during the training, which is defined as follows.

=
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A F
A

MAPE 100%

i

N
i i

i1 (33)

In the above equation, N refers to the number of testing samples. A
and F refer to actual value and predicted (forecast) value, respectively.
The accuracy of the training sample is cross validated by K-folds ap-
proach. The training samples are randomly divided into ten groups. For
every ten epochs of the training, one group is chosen for testing and the
rest of the nine groups are used for training. The variation of the loss
function during the training process for Case 5 is shown in Fig. 7. The
error metric for each of the five cases is listed in Table 2. According to
the results, the accuracy of our neural network is above 97% for the
cases we run. We have compared the accuracy of the network with
different number of hidden layers and found out network with four
hidden layers achieves optimal performance (see Fig. 8). Generally
speaking, more hidden layers (with more degree of freedom) result in
deeper network and better accuracy. However, beyond a certain level
the addition of more layers cannot contribute to accuracy and may even
cause over-fitting issue [12]. We have also compared the performance
of different activation functions for the hidden layers, including sig-
moid function (as defined in Eq. (30)), tanh function [12] and ReLU
function (as defined in Eq. (28)) for Case 4. The results are listed in
Fig. 9, which shows that ReLU function achieves the highest accuracy.
However till today the choice of activation function as well as the
number of layers is still like an art. Moreover, as expected when the
number of hydrocarbon components increases, the accuracy decreases
accordingly, due to the increase of the dimensions in the parameter
space. In general, the proxy flash calculator based on deep learning
techniques is much more accurate than any other existing techniques.

4. Deep learning based flash calculator

The trained deep learning (DL) network is implemented in our flash
calculation module. The proxy flash calculator provides the initial guess
of the equilibrium ratio as well as the capillary pressure, replacing
Wilson’s equation. Since the phase classification step is of very high
accuracy, the phase condition predicted by that step is adopted as the
‘final’ result. Therefore, if the phase classification step predicts that only
one phase exists in the system, the DL proxy calculator directly outputs
the results. If, however, the phase classification step predicts that two
phases exist in the system, the flash calculator will start the K-value
based iteration using the predicted equilibrium ratio and capillary
pressure, until global convergence. A simplified and a detailed flow-
chart of the deep leaning based flash calculator are shown in Figs. 10
and 11 respectively.

The comparison between the average number of iterations of the
flash calculation with and without DL preconditioning is shown in
Table 3. According to the comparison of the numerical performance,
the number of iterations has been cut by above 50%. According to the

Table 3
Comparison of the number of iterations with and without the number of deep-
learning based preconditioner.

Case
index

Feed component Iterations
without DL
preconditioner

Iterations with
DL
preconditioner

1 C1 + C2 + C3 3.7 1.3
2 C1 + C2 + C3 + C6 8.6 2.0
3 C1 + C2 + C3 + C4 + C5 14.3 2.2
4 C1 + C2 + C3 + C5 + C7 + C9 17.0 3.6
5 C1 + C2 + C3 + C4 + C5

C8 + C9 + C10
25.8 4.5

Table 4
Comparison of the ratio of convergence with and without the number of deep-learning based preconditioner.

Case index Feed component Ratio of convergence without DL preconditioner Ratio of convergence with DL preconditioner

1 C1 + C2 + C3 96.1% 99.4%
2 C1 + C2 + C3 + C6 94.9% 99.1%
3 C1 + C2 + C3 + C4 + C5 93.4% 98.8%
4 C1 + C2 + C3 + C5 + C7 + C9 92.7% 98.5%
5 C1 + C2 + C3 + C4 + C5 C8 + C9 + C10 91.3% 98.3%
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results, DL based proxy calculation effectively reduces the number of
iterations of flash calculation and, thus accelerates the reservoir simu-
lation.

Moreover, we have observed that DL based preconditioner effec-
tively improves the stability (convergence) of flash calculation. The
large capillary effect causes the flash calculation with Wilson’s initial
guess to be difficult to get converged, which prohibits its applications.
As shown in Table 4, with the implementation of the DL based pre-
conditioner, the ratio of the converged flash calculations among the
300,000 data sets (parameters shown in Table 1) increases from 90% to
above 98%. This is also because that the DL based preconditioner
provides a much more accurate initial guess to the flash calculation,
making it close enough to the real solution for the Newton-based

algorithm to converge.

5. Case study

We have implemented the deep-learning based flash calculator into
our simulator MSFLOW_CO2 and have conducted several case studies to
investigate the performance of the deep learning based compositional
simulator. In this chapter, all numerical cases are executed by an Intel
i7-6700 processor with 3.40 GHz. We have investigated the composi-
tional simulation of a fractured reservoir. The reservoir is naturally
fractured. A horizontal well is drilled through the reservoir, and a hy-
draulic fracture is engineered within the reservoir, creating a stimu-
lated reservoir volume (SRV) in the vicinity of the hydraulic fracture.
The conceptual model of the problem is shown in Fig. 12, in which the
green and the orange part indicates the area within and outside the
SRV, respectively.

The natural fractured reservoir part and the SRV are both modeled
as dual-porosity systems. In the dual-porosity system, the fracture
network provides flow channel while the matrix rock stores the hy-
drocarbon. A ‘shape-factor’ [45–47] is used to quantify the flow be-
tween the matrix rock and the fracture network. Wu and Pruess [48]
incorporated the shape factor into the integrated finite difference (IFD)
framework. Therefore, in this work the single-continuum and dual-
porosity model are both discretized using the same IFD approach, as
suggested by Wu and Qin [49]. The length of the entire reservoir along
x- and y- direction is 540 m and the 400 m, respectively, while the
length of the SRV along x- and y-direction is 120 m and 160 m, re-
spectively. The conceptual model of the case is shown in Fig. 12. The
relative permeability of the gas phase and the oil phase is modeled by
the classic Brooks-Corey model [50], as shown in Eqs. (34) and (35),
where Sor and Sgr refers to the residual saturation of the oil and gas
phase, respectively. kro max, and krg max, refer to the maximum relative
permeability of the oil and gas phase, respectively. no and ng are two
constants.

=k k S S
S S1ro ro max

o or

or gr

n

,

o

(34)

=k k
S S

S S1rg rg max
g gr

or gr

n

,

g

(35)

The initial distribution of components of this case is shown in
Table 5. The geomechanical impact is not considered in this case. The
input parameters, including the rock properties, are listed in Table 6.
We run this case with three different grid block sizes, namely
10 m * 10 m, 8 m * 8 m and 4 m * 4 m for 8 years. As the results, the oil
pressure fields of the fracture system and the matrix rock at the end of

Fig. 12. Conceptual model of the case study with the DL based reservoir simulator.

Table 5
Initial distribution of components for deep learning based compositional re-
servoir simulation case.

Component Formula Mole fraction

Methane CH4 0.40
Ethane C2H6 0.15
Propane C3H8 0.15
Butane C4H10 0.05
n-Pentane C5H12 0.05
n-Heptane C7H16 0.20

Table 6
Input parameters for fractured reservoir case.

Property Value Unit

Permeability of the matrix rock 0.1 μd
Porosity of the matrix rock 0.01 dimensionless
Permeability of the hydraulic fracture 100 md
Porosity of the hydraulic fracture 0.2 dimensionless
Permeability of the fractures in SRV 50 md
Porosity of the fractures in SRV 0.1 dimensionless
Permeability of the fractures outside SRV 20 md
Porosity of the fractures outside SRV 0.05 dimensionless
Rock compressibility 0.0 dimensionless
Initial pressure 21.2 MPa
Initial temperature 120 °C
Production pressure 10.2 MPa
Pore radius 50 nm
Residual gas saturation (Sgr) 0.1 dimensionless
Residual oil saturation (Sor) 0.1 dimensionless
Maximum gas relative permeability (krg max, ) 0.7 dimensionless
Maximum gas relative permeability (kro max, ) 0.9 dimensionless
ng 2.0 dimensionless
no 2.0 dimensionless
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the production are shown in Fig. 13. The comparison of the oil sa-
turation fields of the matrix rock system at the end of the first year of
production and at the end of the eighth year of production is shown in
Fig. 14. According to the results, the fractures in the vicinity of the
hydraulic fracture get quickly drained by the production, while the
pressure inside the matrix rock system declines much slower. As the
pressure decreases, the gas phase expands and the oil saturation de-
creases.

We compare three types of initialization strategy of the flash cal-
culation, namely initializing by Wilson’s equation, initializing by the
primary variable from the previous NR iteration step, and initializing by
the DL preconditioner. In the second type, the initial guess of the
equilibrium ration of the flash calculation is calculated by the primary
variable of the last Newton-Raphson iteration step of the same grid
block. In the second, the equilibrium ratio is obtained from the deep
learning based proxy flash calculation module. The comparison of the
CPU time of the three types with different grid block sizes is shown in
Fig. 15. According to Fig. 15, the DL preconditioner effectively reduces
the CPU time by about 10%–12%, compared to initializing by the
equilibrium ratio from the previous iteration step. The results presented
in this case show that DL preconditioner is capable of accelerating the
performance of large scale compositional simulation for unconventional
reservoirs.

6. Summary and conclusion

To sum up, we have developed a data-based proxy flash calculator
to speed up the time-consuming flash calculation. The proxy flash cal-
culator adopts an initial guess obtained from the deep neural network,
the accuracy of which is above 95%. With the implementation of the
proxy calculator, the number of iterations of the flash calculation has
been effectively reduced by about 50%. Moreover, the stability of the
flash calculation has been improved by the DL based preconditioner,
with the ratio of convergence increased from 90% to above 98%

Fig. 13. Comparison of the oil pressure fields of the matrix rock system and the fracture system at the end of the 8-years production. Left: matrix rock system. Right:
fracture system.

Fig. 14. Comparison of the oil saturation fields of the matrix rock system at the end of the first year of production and at the end of the eighth year of production.
Left: end of the first year. Right: end of the eighth year.

Fig. 15. Comparison of the CPU time of the compositional reservoir simulation
cases initialized with different initial guesses.
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percent. This work is among the first trials in this area.
In the present work, the fully-connected neural network is used for

the proxy flash calculator. In the future, other structures can also be
tried and compared, for instance, the convolutional neural network and
the recurrent neural network. Moreover, other portions of the simulator
may also be accelerated by the deep learning techniques. For example,
the wellbore flow part, which is a very time-consuming simulation of

multiphase flow, can also be replaced by a DL based proxy calculator.
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Appendix A. Parameters for flash calculation

Tables A.1 and A.2.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fuel.2019.05.023.
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