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We present a set of new, semi-analytical solutions to simulate three-dimensional contaminant
transport subject to first-order chain-decay reactions. The aquifer is assumed to be areally
semi-infinite, but finite in thickness. The analytical solution can treat the transformation of
contaminants into daughter products, leading to decay chains consisting of multiple
contaminant species and various reaction pathways. The solution in its current form is
capable of accounting for up to seven species and four decay levels. The complex pathways are
represented by means of first-order decay and production terms, while branching ratios
account for decay stoichiometry. Besides advection, dispersion, bio-chemical or radioactive
decay and daughter product formation, the model also accounts for sorption of contaminants
on the aquifer solid phase with each species having a different retardation factor. First-type
contaminant boundary conditions are utilized at the source (x=0 m) and can be either
constant-in-time for each species, or the concentration can be allowed to undergo first-order
decay. The solutions are obtained by exponential Fourier, Fourier cosine and Laplace
transforms. Limiting forms of the solutions can be obtained in closed form, but we evaluate
the general solutions by numerically inverting the analytical solutions in exponential Fourier
and Laplace transform spaces. Various cases are generated and the solutions are verified
against the HydroGeoSphere numerical model.

© 2012 Published by Elsevier B.V.
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1. Introduction

Contaminants released in the subsurface are transported
by various physical processes such as diffusion, advection,
and dispersion. The contaminants may also react and cause
them to transform into other species. In such a case, the
traditional treatment of contaminant transport does not
apply because of sorption and mass loss processes that are
not accounted. However, many contaminants are reactive
with other contaminants within fluids or with the porous
medium, which necessitates that one explicitly accounts for

these processes. In particular, reactive contaminant transport
is a topic of great interest to account for processes involving
denitrification, degradation of pesticides and their products,
radioactive decay, and bioremediation of organic compounds.
Comprehensive numerical models (e.g., Clement, 1997;
Simunek et al., 1994; Therrien et al., 2005; Widdowson
et al., 2002; Yu et al., 2009; Zheng and Wang, 1999) have
been developed to account for these complexities, but
analytical solutions are still necessary to verify these numerical
models and to perform scoping calculations. In addition,
accurate solutions from analytical or semi-analytical models
(e.g., Clement, 2001; Khandelwal and Rabideau, 1999; Lu and
Sun, 2008; Neville et al., 2000; Samper-Calvete and Yang, 2007)
can be computed more efficiently than numerical models. The
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solutions may also be used for predicting contaminant
concentrations and for analyzing laboratory or field data to
determine solute transport parameters. One other important
reason may be that because of their relative simplicity,
analytical solutions still have an important role in screening
studies (Alvarez and Illman, 2006) and to assess the per-
formance of natural attenuation and bioremediation (Illman
and Alvarez, 2009). More recently, such solutions have been
used in the analysis of permeable reactive barriers (e.g., Mieles
and Zhan, 2012; Park and Zhan, 2009; Rabideau et al., 2005).
An additional benefit is that analytical solutions can be readily
used for Monte Carlo probabilistic simulations of contaminant
transport to account for uncertainties in groundwater velocity,
transport parameters, and contaminant source boundary con-
ditions, among other factors (e.g., Eykholt et al., 1999).

Various analytical solutions have been developed to
accommodate chain-decay reactive transport problems. In
particular, Cho (1971) utilized Laplace transforms to derive a
one-dimensional solution for advective-dispersive transport
of ammonium with nitrification and denitrification in
soil assuming a first-order reaction rates. Meanwhile, van
Genuchten (1985) developed a one-dimensional analytical
solution that considers the transport of four species involved
in a consecutive (or serial) first-order decay chain using
Laplace transforms and implemented the solution in a
computer program called CHAIN. Lunn et al. (1996) then
utilized the Fourier sine transform (as opposed to the Laplace
transform) to obtain the one-dimensional solution of Cho
(1971) in a simpler way. One of the key advantages of using
the Fourier sine transform approach was in the flexibility to
introduce new initial and boundary conditions which allows
for developing new solutions for different conditions.

Sun et al. (1999a,b) and Sun and Clement (1999) dev-
eloped a general method to derive analytical solutions of any
number of species with first-order sequential degradation in
multiple dimensions. In particular, they presented a substi-
tution method to transform the multiple species transport
equations into a decoupled set of transport equations for
single species. This implies that any previously derived
analytical solutions for single-species transport with first-
order reactions rate can be directly used for multiple species
transport problems. Sun et al. (1999a) demonstrated the
approach by obtaining an analytical solution for a five species
serial-parallel reactive transport system. Results from the
analytical solution compared very favourably with a previ-
ously developed numerical code. Sun et al. (1999b) then used
the solution for a single radioactive tracer decay solution
from Bear (1979) to obtain a solution for three-species
transport with first-order reactions. More recently, Clement
(2001) presented a generalized approach to derive analytical
solutions to multispecies transport following the approach of
Sun et al. (1999a). Clement's (2001) approach relies on a
similarity transformation method that can handle wider
ranging problems involving serial, parallel, converging,
diverging and/or reversible first-order reaction systems. It is
important to note that the methods developed to this point
are only applicable to all species having identical retardation
factors.

New analytical solutions that consider different retarda-
tion factors for each species have been developed more
recently. For example, Bauer et al. (2001) obtained analytical

solutions for one-, two, and three-dimensional contaminant
transport of decay chains for a homogeneous medium. Their
solution was unique in a sense that variable retardation
coefficients can be included and that their analysis extended
to multiple porosity media. Quezada et al. (2004) extended
the approach developed by Clement (2001) and presented a
generalized method for solving coupled, multi-dimensional,
multi-species reactive transport equations. As in Bauer et al.
(2001), the solutions can handle distinct retardation factors,
but the solution was limited to a three-species system. To
extend the number of species that the solution can handle,
Srinivasan and Clement (2008a,b) then developed closed-
form analytical solutions for the chain decay problemwith an
arbitrary number of species with spatially varying initial
conditions and an exponentially decaying Bateman-type
source condition. One limitation of this approach was that it
was limited to a one-dimensional system. More recently,
Guerrero et al. (2009) developed a one-dimensional analyt-
ical solution for multi-species transport in a finite domain
with constant boundary conditions. Similar to other recent
solutions, the Guerrero et al. (2009) solution allows for
various contaminant species to have different retardation
factors; however, it is one-dimensional and can handle only
sequential chain decay problems. Guerrero et al. (2010) then
extended Guerrero et al. (2009)'s work to handle time-
varying boundary conditions. Most recently, Mieles and Zhan
(2012) published a one-dimensional, steady-state, analytical
solution for serial and parallel degradation pathways with
unique first-order reaction rates as well as retardation
factors.

Our review suggests that there is currently a lack of a
multidimensional analytical solution to the chain-decay
reactive transport problem that can handle varying retar-
dation factors for individual species and various reaction
pathways in multiple dimensions. Therefore, the main
objective of this paper is to present a set of new, semi-
analytical solutions to simulate three-dimensional contami-
nant transport subject to first-order chain-decay reactions.
The three dimensional domain considered is semi-infinite in
areal extent and the aquifer is taken to be of finite thickness.
The solutions can treat the transformation of contaminants
into daughter products, leading to decay chains consisting of
multiple contaminant species and various reaction pathways
that can be either straight or branching. The model in its
current form is capable of accounting for up to seven species
and four decay levels. The complex pathways are represented
by means of first-order decay and first-order production
terms, while branching ratios account for decay stoichiome-
try. Besides advection, dispersion, bio-chemical decay and
daughter product formation, the model also accounts for
sorption of contaminants onto the aquifer solid phase with
each species having a different retardation factor. The solu-
tions are obtained by exponential Fourier, Fourier cosine and
Laplace transforms. Similar limiting forms of the solutions
can be obtained analytically, but we obtain almost all
solutions by numerically inverting the analytical solutions
obtained in Laplace and exponential Fourier space. Various
test cases are presented and the solutions are verified against
a previously-derived analytical model and a more sophisti-
cated numerical model. Finally, we discuss the potential
utilities of this solution.
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2. Statement of problem

2.1. Modeling scenarios

A schematic view of a waste disposal facility and con-
taminant migration pathways under consideration is shown
in Fig. 1. Contaminants leaching from the disposal facility are
considered to migrate vertically downward through the un-
saturated zone until they reach the saturated zone. Ground-
water flow in the saturated zone is assumed to be essentially
one-dimensional in the horizontal plane with a constant
groundwater velocity, v. After they enter the saturated zone at
the water table, contaminants migrate by one-dimensional
advectionwith flowing groundwater and by three-dimensional
dispersion. Due tomixing processes, the contaminant plume as
it reaches the edge of the waste facility, will have reached a
thickness H below the water table and will show an
approximately Gaussian distribution in the lateral (y-) direc-
tion. Alternately, we also consider the case where the width of
the souce in the y-direction is a step function rather than
Gaussian in shape.

The new analytical solution can model the transformation
of contaminants into daughter products, leading to decay
chains consisting of multiple contaminant species. Example

of decay chains that can be handled is shown in Fig. 2. Besides
advection, dispersion, bio-chemical decay and daughter
product formation, this new model also accounts for sorption
of contaminants on the the aquifer solid phase with retarda-
tion factors that can be different for each species.

2.2. Governing equations

The governing equation for the ith member of a decay
chain can be written as:

Dx
∂2ci
∂x2

þ Dy
∂2ci
∂y2

þ Dz
∂2ci
∂z2

−v
∂ci
∂x þ λiRici−

Xmi

j¼1

ηijλjRjcj ¼ Ri
∂ci
∂t

ð1Þ

where ci=dissolved concentration in the ith contaminant
species, x, y, z=Cartesian coordinates, t=time, Dx, Dy, Dz=
dispersion coefficients, v=average linear groundwater ve-
locity, λi=first-order decay coefficient of ith species, Ri=
retardation coefficient of ith species, λj=first-order decay
coefficient of parent species j, ηij=fraction of parent j that
transforms into species i, and mi=number of immediate
parents of species i. The dispersion coefficients are related to

Fig. 1. Schematic view of a waste disposal facility and subsurface contaminant migration.
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the groundwater velocity, v, through the dispersivities, αx, αy,
αz, as

Dx ¼ αx vj j þ D⁎
Dy ¼ αy vj j þ D⁎
Dz ¼ αz vj j þ D⁎

ð2Þ

where D* is the effective molecular diffusion coefficient.
Implicit in the way (1) and (2) are written is the assumption
that all members of the decay chain are consider to have
the same mechanical dispersion and molecular diffusion
characteristics. This assumption could be relaxed but is a
reasonable assumption since diffusion coefficients for many
contaminants do not vary markedly. The summation term in
(1) represents the contribution of all immediate parents j to
the production of species i. For straight decay chains, the
number of parent species, mi, and the decay fraction ηij, are
both equal to unity. For branched decay chains on the other
hand, mi, may be greater than one, but the contribution of
each parent, ηij, is typically less than one.

Initial and boundary conditions associated with (1) are

ci x; y; z;0ð Þ ¼ 0 ð3Þ

∂ci
∂t 0; y; z; tð Þ þ γici 0; y; z; tð Þ−

Xmi

j¼1

ηijγjcj ¼ 0 ð4aÞ

ci 0; y; z;0ð Þ ¼ cpi exp − y2

2S2i

 !( )
· H z−H1ð Þ−H z−H2ð Þ½ � ð4bÞ

ci ∞; y; z; tð Þ ¼ 0 ð4cÞ

ci x;�∞; z; tð Þ ¼ 0 ð4dÞ

∂ci
∂z x; y;0; tð Þ ¼ 0 ð4eÞ

∂ci
∂z x; y;B; tð Þ ¼ 0 ð4fÞ

where γi is the source decay constant. Initial condition
(3) specifies an initially contaminant free aquifer. Boundary
conditions (4a) and (4b) describe the decay and production
of contaminant at the source (x=0 m) and the spatial
distribution of concentration along the source plane, respec-
tively. A value of the coefficient γi=0 corresponds to the case
of a constant source concentration. Boundary condition
(4b) describes a source concentration that is vertically uni-
form between elevations H1 and H2 and equal to zero else-
where in the vertical plane where H(z−Hi) is the Heaviside
step function. The source concentration profile in the
y-direction is described by a Gaussian distribution with
standard deviation Si and cpi is the peak concentration value
at the center of the Gaussian distribution. If a rectangular patch
source-zone is desired in the y–z plane, then the right-hand
side of (4b) would be replaced by cpi H yþ y0ð Þ−H y−y0ð Þ½ �⋅
H z−H1ð Þ−H z−H2ð Þ½ �. Eqs. (4c)–(4f) complete the description
of boundary conditions for the aquifer system which is
semi-infinite in the x-direction, infinite in the y-direction and
finite in the z-direction.

The solution to (1)–(4) for each species is given in
Appendix A. The solution is obtained through application of
Fourier transforms to treat the y- and z-coordinates and use
of the Laplace transform to remove the time dependence of
the transport equation. The final solution is obtained by
numerical inversion of the Laplace-transformed solutions,
using the algorithm developed by de Hoog et al. (1982), and
by integrating the exponential Fourier transform by Gauss
quadrature.

The general three-dimensional transport Eq. (1) can be
readily simplified to describe the cases of one- or two-
dimensional transport, as well as the steady-state solutions

Parent

Daughter

Granddaughter

Great Granddaughter

Parent

Daughters

Parents

Daughter

Parent

Daughter

Granddaughters

Parent

Daughters

Granddaughters

a)

b)

c)

d)

e)

Fig. 2. Example decay chains representing contaminant transformation and daughter product formation: (a) straight decay chain; (b) diverging decay chain;
(c) converging decay chain; (d) four-member branched decay chain; and (e) seven-member branched decay chain.
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for cases involving a constant source by applying the final-
value theorem to the Laplace-transformed solutions as shown
in Appendix A.

3. Verification tests

In this section, the results for a number of verification
problems are presented. The tests were designed to test the
accuracy of the multi-species transport solution and the
correctness of the computer code Chain-decay Multispecies
Model (CMM)used to compute the various solutions presented
here. The developed code was also tested against various
published computer codes for a range of problems which test
different aspects of the transport solution.

3.1. One-dimensional transport of three-member radionuclide
decay chain

The first problem analyzed is that of the three-member
radionuclide decay chain:

U234→Th230→Ra226

This problem involves one-dimensional transport with a
constant source. Model parameters for this problem are listed
in Table 1. Our solution is verified with HydroGeoSphere
(Therrien et al., 2005), a fully-integrated surface–subsurface
flow and transport simulator. The results for this verification
problem are presented in Fig. 3. Depicted are the concentra-
tion profiles of the three radionuclides at time t=10,000
years. The CMM results are represented by the solid lines,
while the symbols represent the solution obtained with
HydroGeoSphere. The agreement between the two solutions
is excellent for all three species. Fig. 3 shows that at distances
greater than about 220 m from the source, the concentrations
of both U234 and Th230 become very small. At large distances,
the dominant species is Ra226. The different behaviour of

Ra226 compared to U234 and Th230 reflects the fact that Ra226

is weakly sorbed compared to U234 and Th230 because of its
lower retardation factor. This example illustrates the impor-
tance of a model being able to account for different retardation
factors for different contaminant species.

3.2. One-dimensional transport of a 4-member, branched decay
chain

The second test problemwas designed to verify the ability
of our solution to correctly handle the case of a branching

Table 1
Transport parameters for one-dimensional radionuclide transport problem.

Parameter Units Value

Groundwater velocity, v m/year 100
Dispersion coefficient, Dx m2/year 1,000
Dispersion coefficient, Dy m2/year 0.0
Dispersion coefficient, Dz m2/year 0
Retardation factor, R

U234 1.43×104

Th230 5.0×104

Ra226 5.0×102

Decay coefficient, λ
U234 year−1 2.83×10−6

Th230 year−1 9.00×10−6

Ra226 year−1 4.33×10−6

Source decay coefficient, γ
U234 year−1 0.0
Th230 year−1 0.0
Ra226 year−1 0.0

Initial source concentration, cp
U234 1.0
Th230 0.0
Ra226 0.0

Fig. 3. Comparison between CMM (curves) and HydroGeoSphere (symbols)
for one-dimensional transport of radionuclide decay chain.

Table 2
Transport parameters for one-dimensional, branched decay chain problem.

Parameter Units Value

Groundwater velocity, v m/year 0.3
Dispersion coefficient, Dx m2/year 3.0
Dispersion coefficient, Dy m2/year 0.0
Dispersion coefficient, Dz m2/year 0.0
Retardation factor, R

Species 1 1.50
Species 2 2.0
Species 3 1.0
Species 4 1.0

Decay coefficient, λ
Species 1 year−1 6.93×10−3

Species 2 year−1 3.47×10−3

Species 3 year−1 1.16×10−3

Species 4 year−1 1.00×10−3

Source decay coefficient, γ
Species 1 year−1 0.0
Species 2 year−1 0.0
Species 3 year−1 0.0
Species 4 year−1 0.0

Initial source concentration, cp
Species 1 1.0
Species 2 0.0
Species 3 0.0
Species 4 0.0
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decay chain. This problem involves the one-dimensional
transport of the following hypothetical branched decay chain
(Fig. 2d):

In other words, the parent component Species 1 transforms
completely into daughter component Species 2; Species 2, in
turn, transforms into two granddaughter components, Species
3 and Species 4, with equal decay fractions η32=η42=0.5. The
model parameters for this problem are listed in Table 2. In
contrast to the first problem, the second test problem includes
a decaying source boundary condition. Our solution for this test

problem was again compared against HydroGeoSphere. For
the numerical simulations using HydroGeoSphere, a one-
dimensional homogeneous domain of size 120 m is used and
the domain is discretized using a 1 m nodal spacing. For the
flow problem, boundary conditions and medium properties
were assigned values to obtain a uniform linear groundwater
velocity equal to 0.3 m/year. For transport, a specified concen-
tration (Csp.1=1.0) was assigned at x=0m. The comparison is
presented in Fig. 4which shows concentration profiles for the 4
members of the decay chain at a time of t=600 years. The solid
and dashed lines again represent the CMM solution, while the
HydroGeoSphere solution is represented by the symbols.
Agreement between the two solutions is very good, except
that the concentration values obtained with HydroGeoSphere
for Species 1, 2, 3 and 4 are very slightly lower than the CMM
results at the end of the simulation domain. The maximum
difference between two models is 2.3×10−2. The results that
are displayed in Fig. 4 again illustrate the potential significance
of incorporating hazardous daughter production formation in
contaminant fate and transport analyses. While the concentra-
tion of the original product, Species 1, decreases exponentially,

Fig. 4. Comparison between CMM (curves) and HydroGeoSphere (symbols)
for 1D transport of a 4-member branched decay chain.

Fig. 5. Schematic of simulation domain: contaminant source is assigned to
the gray rectangular patch zone with a dimension of−10 m≤y≤10 m and 9
m≤z≤10 m at x=0 m.

Table 3
Transport parameters for three-dimensional, seven-member decay chain
simulation problem.

Parameter Units Value

Groundwater velocity, v m/year 20.0
Dispersion coefficient, Dx m2/year 20.0
Dispersion coefficient, Dy m2/year 2.0
Dispersion coefficient, Dz m2/year 1.0
Source width (=2y0) m 20.0
Aquifer thickness, B m 10.0
Source elevation, H1 m 9.0
Source elevation, H2 m 10.0
Source standard deviation, S m 0.0
Retardation factor, R

Species 1 1.0
Species 2 2.0
Species 3 3.0
Species 4 4.0
Species 5 5.0
Species 6 6.0
Species 7 7.0

Decay coefficient, λ year−1

Species 1 0.07
Species 2 0.06
Species 3 0.05
Species 4 0.04
Species 5 0.03
Species 6 0.02
Species 7 0.00

Source decay coefficient, γ year−1

Species 1 0.0
Species 2 0.0
Species 3 0.0
Species 4 0.0
Species 5 0.0
Species 6 0.0
Species 7 0.0

Initial source concentration, cp
Species 1 1.0
Species 2 0.0
Species 3 0.0
Species 4 0.0
Species 5 0.0
Species 6 0.0
Species 7 0.0
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its daughter, Species 2, and granddaughters, Species 3 and 4,
products increasewith distance from the source zone (x=0m)
until they reach amaximum concentration. The granddaughter
products are produced at the same rate and also have similar
decay and sorption coefficients, with the decay rate coeffi-
cient of Species 3 being slightly higher. Both the CMM and
HydroGeoSphere codes produce the expected results that
the concentration profiles of Species 3 and 4 are similar with
Species 4 having somewhat higher concentrations.

3.3. Three dimensional transport of a 7-member decay chain

The third verification problem was designed to test a
number of remaining features of our solution, including three-
dimensional transport of a complex decay chain. The results
from our solution are again compared to HydroGeoSphere. This
problem involves a 7-member branched decay chain (Fig. 2e).

The parent component Species 1 transforms equally into
two daughter products, Species 2 and 3, each of which
subsequently transform into two granddaughter products,
Species, 4, 5 and Species 6, 7, respectively, with

η42 ¼ η52 ¼ η63 ¼ η73 ¼ 0:5

A schematic view of the modeling scenario is shown in
Fig. 5. The problem involves a 1 m thick source at the top of
the aquifer a total saturated zone thickness of B=10 m. The
width of the patch source is 20 m and it is centered at y=
0 m. The transport parameters for this problem are listed in
Table 3. In the HydroGeoSphere model, the problem is
simulated in a domain of size 200 m×40 m×10 m and the
domain is discretized using 1 m×1 m×0.5 m hexahedral
elements. A specified concentration boundary condition
(Csp.1=1.0) is assigned to the nodes located in the rec-
tangular patch source at x=0 m. The simulation results

Fig. 6. Comparison between CMM (solid curves) and HydroGeoSphere (dashed curves) solutions for a seven-member decay chain problem at 5 years.
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obtained using the CMM model are compared to those of
HydroGeoSphere. A three-dimensional view of the simula-
tion results obtained using CMM and HydroGeoSphere is
shown in Fig. 6. The concentration distributions for the
simulations are symmetric with respect to y=0 m because
the flow field of the simulation is steady state and uni-
form. The CMM results (solid curves) each of the seven
species at t=5 years match well with those obtained with
HydroGeoSphere (dashed curves), although there is a small
difference for species 1 and 2 on the y–z plane at x=0m. This
slight discrepancy is mainly due to difficulties in the Fourier
transform inversions in the vicinity of the patch source.

4. Summary and conclusions

We presented a set of new, semi-analytical solutions to
simulate three-dimensional contaminant transport subject to

first-order chain-decay reactions and equilibrium sorption. The
analytical solutions can treat the transformation of contami-
nants into daughter products by first-order decay and the
increasing concentrations of transformation species, leading to
decay chains consisting of multiple contaminant species and
various reaction pathways. The solutions in their current forms
are capable of accounting for up to seven species and four
decay levels. Complex branching transformation pathways can
be accomodated using branching ratios to account for decay
stoichiometry. Besides advection, dispersion, bio-chemical or
radioactive decay and daughter product formation, the model
also accounts for sorption of contaminants on the aquifer solid
phase with each species being allowed to have a different
retardation factor. The solutions are obtained by exponential
Fourier, finite Fourier cosine and Laplace transforms. Limiting
forms of the solutions, such as steady state cases, can be
obtained analytically, but we evaluate most of the solutions by

Fig. 6 (continued).
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numerically inverting the analytical solutions in Laplace space
and by integrating the exponential Fourier transforms byGauss
quadrature.

The semi-analytical solutions were verified by comparing
the results from three different test cases to those generated
by the HydroGeoSphere numerical model. In general, we
conclude that the agreement between the two approaches is
very good suggesting the high accuracy of the semi-analytical
model. While the comparison was very good, minor discrep-
ancies between the semi-analytical and HydroGeoSphere
models arose in certain situations. We note that to improve
the accuracy of the numerical solutions, we took the
following steps: (1) reducing grid sizes based on the Peclet
number, (2) assigning upstream weighting and fully implicit
conditions, and (3) setting small transport solver conver-
gence criteria (i.e. 10−10). Therefore, we attribute the minor
discrepancies to slight difficulties in evaluating the semi-
analytical solutions near the contaminant source.

The advent of numerical models (e.g., Clement, 1997;
Simunek et al., 1994; Therrien et al., 2005; Widdowson et al.,
2002; Yu et al., 2009; Zheng and Wang, 1999) and the
development of user-friendly interfaces have accelerated the
use of these models to capture contaminant transport
behavior and once captured, utilized in predictive modes.
Numerical models are considered to be more flexible than
analytical solutions such as those presented here because
they can handle complexities associated with natural sys-
tems such as the space- and time-varying nature of forcing
functions and subsurface heterogeneity. However, while
there are a number of comprehensive numerical models

that account for such complexities, analytical solutions are
still necessary to verify these numerical models. In addition,
accurate solutions from analytical models that can be
computed efficiently are thus useful as screening tools for
the assessment of contaminant plume behaviour (e.g., Illman
and Alvarez, 2009), and the analysis of permeable reactive
barriers (e.g., Mieles and Zhan, 2012; Park and Zhan, 2009;
Rabideau et al., 2005). In particular, the ability of this model
to consider decay chains consisting of multiple contaminant
species, various reaction pathways, unique branching ratios,
and retardation factors for different members makes it ideal
for use in these screening studies.
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Fig. A.1. Problem geometry for the analytical solution for three-dimensional transport of straight and branching chains of decaying solutes in groundwater.

Appendix A. Analytical solution for 3-D transport of a straight and branching chain of decaying solutes in groundwater

Consider the straight decay chain 1→2→3→4 →, … and the following problem geometry (Fig. A.1), where cpi is the source
peak concentration, Si is the source standard deviation in y-direction for a Gaussian-shaped source in the y-direction, v is the
average linear groundwater velocity, n is porosity, Dx, Dy, Dz are the dispersion coefficients in the x, y, and z directions, Ri is the
retardation factor, λi is the decay constant, γi is the source decay constant (can equal λi or 0). Note that the subscript i in the above
definitions refer to the ith member of the chain and assume that

Dxi
¼ Dx

Dyi
¼ Dy

Dzi
¼ Dz
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That is, all species have the same dispersion coefficient, which implies the samemechanical dispersion andmolecular diffusion
coefficient.

Species 1

The boundary value problem governing the reactive transport of species 1 is:

R1
∂c1
∂t þ v

∂c1
∂x −Dx

∂2c1
∂x2

−Dy
∂2c1
∂y2

−Dz
∂2c1
∂z2

−λ1R1c1 ¼ 0 ðA1Þ

c1 x; y; z;0ð Þ ¼ 0 ðA2aÞ

∂c1
∂t 0; y; z; tð Þ þ γ1c1 0; y; z; tð Þ ¼ 0 ðA2bÞ

c1 0; y; z;0ð Þ ¼ cp1ϖ1 yð Þ H z−H1ð Þ−H z−H2ð Þ½ � ðA2cÞ

where

ϖ1 yð Þ ¼ exp − y2

2S21

 !
Gaussian type

H yþ y0ð Þ−H y−y0ð Þ½ � Rectangular patch type

8><
>:

H y−y0ð Þ ¼ 0 yby0
1 y > y0

�

H z−Hið Þ ¼ 0 zbHi
1 z > Hi

�

c1 ∞; y; z; tð Þ ¼ 0 ðA2dÞ

c1 x;�∞; z; tð Þ ¼ 0 ðA2eÞ

∂c1
∂z x; y;0; tð Þ ¼ 0 ðA2fÞ

∂c1
∂z x; y;B; tð Þ ¼ 0 ðA2gÞ

Define the Fourier transform in y as

F c1 x; y; z; tð Þ½ � ¼ �c1 x;α; z; tð Þ ¼ ∫
∞

−∞
e−iαyc1dy ðA3Þ

and apply it to (A1), and associated conditions (A2), to get

R1∂�c1
∂t þ v

∂�c1
∂x −Dx

∂2�c1
∂x2

þ α2Dy�c−Dz
∂2�c1
∂z2

−λ1R1�c1 ¼ 0 ðA4Þ

subject to

�c1 x;α; z;0ð Þ ¼ 0 ðA5aÞ

∂�c1
∂t 0;α; z; tð Þ þ γ1�c1 0;α; z; tð Þ ¼ 0 ðA5bÞ

�c1 0;α; z;0ð Þ ¼ cp1ζ1 αð Þ· H z−H1ð Þ−H z−H2ð Þ½ � ðA5cÞ

�c1 ∞;α; z; tð Þ ¼ 0 ðA5dÞ

∂�c1
∂z x;α;0; tð Þ ¼ 0 ðA5eÞ

∂�c1
∂z z;α;B; tð Þ ¼ 0 ðA5fÞ
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where ζ(α) is the Fourier transform of the source type function (ϖ(y)). ζ(α) can be expressed according to the source type:
Gaussian-type can be transformed using (Churchill, 1972, p.472):

F exp − y2

2S21

 !" #
¼ 2πð Þ1=2 S1exp − S21α

2

2

 !
ðA6aÞ

The rectangular patch type, which is the boxcar function, in y is defined as:

F H yþ y0ð Þ−H y−y0ð Þ½ � ¼ 2
α
sin αy0ð Þ ðA6bÞ

Now apply the finite Fourier cosine transform in z, defined as:

Fc �c1 x;α; z; tð Þ½ � ¼ ��c1 x;α;n; tð Þ ¼ ∫
B

0

�c1cos
nπz
B

� �
dz ðA7Þ

To get:

R1
∂��c1
∂t þ v

∂��c1
∂x −Dx

∂2��c1
∂x2

þ α2Dy þ
n2π2

B2 Dz þ λ1R1

 !
��c1 ¼ 0 ðA8Þ

��c1 x;α;n;0ð Þ ¼ 0 ðA9aÞ

∂��c1
∂t 0;α;n; tð Þ þ γ1

��c1 0;α;n; tð Þ ¼ 0 ðA9bÞ

��c1 0;α;n;0ð Þ ¼ cp1ζ1 αð Þ �
H2−H1ð Þ n ¼ 0
B
nπ

sin
nπH2

B

� �
−sin

nπH1

B

� �� �
n > 0

8<
: ðA9cÞ

where:

ζ1 αð Þ ¼
2πð Þ1=2S1exp − S21α

2

2

 !
Gaussian type

2
α
sin αy0ð Þ Rectangular patch type

8>>><
>>>:

ðA9dÞ

��c1 ∞;α;n; tð Þ ¼ 0 ðA9eÞ

Finally, apply the Laplace transform in t defined as:

L ��c1 x;α;n; tð Þ	 
 ¼ ���c1 x;α;n;pð Þ ¼ ∫
∞

0

��c1e
−ptdt ðA10Þ

to obtain:

d2���c1
dx2

− v
Dx

d���c1
∂x − 1

Dx
R1 pþ λ1ð Þ þ α2Dy þ

n2π2Dz

B2

" #
���c1 ¼ 0

or

d2���c1
dx2

−ϕ
d���c1
dx

−ω1 α;n;pð Þ���c1 ¼ 0 ðA11Þ

���c1 0;α;n;pð Þ ¼ cp1ζ1 αð Þκ1 nð Þ· 1
pþ γ1

ðA12aÞ

���c1 ∞;α;n;pð Þ ¼ 0 ðA12bÞ
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where

ϕ ¼ v
Dx

ω1 α;n; pð Þ ¼ 1
Dx

R1 pþ λ1ð Þ þ α2Dy þ
n2π2Dz

B2

" #

κ1 nð Þ ¼
H2−H1ð Þ n ¼ 0
B
nπ

sin
nπH2

B

� �
−sin

nπH1

B

� �� �
n > 0

8<
:

ðA12cÞ

The general solution to (A11), subject to (A12a, b) is easily shown to be

���c1 ¼ cp1ζ1 αð Þκ1 nð Þ
pþ γ1

exp b−1 α;n;pð Þxf g ðA13Þ

where

b−1 α;n; pð Þ ¼ ϕ
2

1− 1þ 4ω1 α;n; pð Þ
ϕ2

� �1=2� �

The task that remains is the inversion of the transforms. Analytical inversion steps and the form of c1(x, y, z, t) is given in
Appendix B. However, here we will follow a different approach to yield a solution for the Laplace-transformed solution �ci x; y; z; pð Þ
that will be inverted numerically. We do this because it facilitates the determination of ci(x, y, z, t) for i>1. First, we define the
inverse Fourier cosine transform:

F
−1
c

���c1 x;α;n; pð Þ
h i

¼ ��c1 x;α; z; pð Þ

¼
���c1 x;α;n ¼ 0;pð Þ

B
þ 2
B

X∞
n¼1

���c1 x;α;n; pð Þcos nπz
B

� � ðA14Þ

Now let's invert the exponential Fourier transform using the general formula:

F
−1 �f αð Þ	 
 ¼ 1

2π
∫
∞

−∞
eiαy�f αð Þdα ¼ f yð Þ

¼ 1
2π

∫
∞

−∞
cos αyð Þ þ i sin αyð Þ½ � �f αð Þdα

ðA15Þ

If f(y) is an even function in y then (A15) reduces to:

f yð Þ ¼ 1
π
∫
∞

0

cos αyð Þ�f αð Þdα ðA16Þ

since sin(αy) is odd and cos(−αy)=cos(αy). Given that ci(x, y, z, t) is even (i.e., ci(x, −y, z, t)=ci(x, y, z, t)), we obtain, by
applying (A16) to (A14)

�c1 x; y; z;pð Þ ¼ 1
πB

∫
∞

0

���c1 x;α;n ¼ 0;pð Þ þ 2
X∞
n¼1

���c1 x;α;n;pð Þcos nπz
B

� �" #
cos αyð Þdα ðA17Þ

with ���c1 x;α;n;pð Þ given by (A13). Caution should be taken to ensure that the appropriate form of κ(α,n,p) given by (A12c) is used
since its form for n=0 is different from that for n>0. Finally, denoting L

−1 as the inverse Laplace transform operator, we can
write

c1 x; y; z; tð Þ ¼ L
−1 �c1 x; y; z; pð Þ½ � ðA18Þ

This step can be efficiently and accurately performed using the de Hoog et al. (1982) numerical algorithm.

Species 2

R2
∂c2
∂t þ v

∂c2
∂x −Dx

∂2c2
∂x2

−Dy
∂2c2
∂y2

−Dz
∂2c2
∂z2

þ λ2R2c2−λ1R1c1 ¼ 0 ðA19Þ

c2 x; y; z;0ð Þ ¼ 0 ðA20aÞ
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∂c2
∂t 0; y; z; tð Þ þ γ2c2 0; y; z; tð Þ−γ1c1 0; y; z; tð Þ ¼ 0 ðA20bÞ

c2 0; y; z;0ð Þ ¼ cp2ϖ2 yð Þ· H z−H1ð Þ−H z−H2ð Þ½ � ðA20cÞ

c2 ∞; y; z; tð Þ ¼ 0 ðA20dÞ

c2 x;�∞; z; tð Þ ¼ 0 ðA20eÞ

∂c2
∂z x; y;0; tð Þ ¼ 0 ðA20fÞ

∂c2
∂z x; y;B; tð Þ ¼ 0 ðA20gÞ

Similar to species 1, the source type function can be expressed as:

ϖ2 yð Þ ¼ exp − y2

2S22

 !
Gaussian type

H yþ y0ð Þ−H y−y0ð Þ½ � Rectangular patch type

8><
>: ðA20hÞ

In solving for c2, we will follow exactly the same steps as we did for c1. The only difference is the nonhomogeneous term
involving λ1R1c1 in (A19) which is easily accommodated. Wemust also take care of the integral transformations of (A20b) subject
to initial condition (A20c). After applications of the Fourier transforms F and Fc, they become:

∂��c2
∂t 0;α;n; tð Þ þ γ2

��c 2 0;α;n; tð Þ−γ1
��c 1 0;α;n; tð Þ ¼ 0 ðA21Þ

subject to:

��c2 0;α;n;0ð Þ ¼ cp2ζ2 αð Þκ2 nð Þ

where:

ζ2 αð Þ ¼
2πð Þ1=2S2exp − S22α

2

2

 !
Gaussian type

2
α
sin αy0ð Þ Rectangular patch type

8>>><
>>>:

ðA22aÞ

κ2 nð Þ ¼
H2−H1ð Þ n ¼ 0
B
nπ

sin
nπH2

B

� �
−sin

nπH1

B

� �� �
n > 0

8<
: ðA22bÞ

Application of the Laplace transform to (A21) gives:

���c2 0;α;n; pð Þ ¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2

���c1 0;α;n; pð Þ

¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
·
cp1ζ1 αð Þκ1 nð Þ

pþ γ1

ðA23Þ

where (A12a) has been substituted for ���c1 0;α;n; pð Þ.
We obtain the following ordinary differential equation describing ���c2 x;α;n; pð Þ:

d2���c2
dx2

−ϕ
d���c2
dx

−ω2 α;n;pð Þ���c2 ¼ β1
���c1 ðA24Þ

���c2 0;α;n;pð Þ ¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ cp1γ1ζ1 αð Þκ1 nð Þ
pþ γ2ð Þ pþ γ1ð Þ ðA25aÞ

���c2 ∞;α;n;pð Þ ¼ 0 ðA25bÞ
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where ϕ=v/Dx as before and

ω2 α;n;pð Þ ¼ 1
Dx

R2 pþ λ2ð Þ þ α2Dy þ
n2π2Dz

B2

" #

β1 ¼ −λ1R1

Dx

Upon substituting (A13) for ���c1 into (A21) and using the result given in Appendix C, the general solution to (A21) is

���c 2 ¼ Aexp b−2 α;n; pð Þxf g þ Bexp bþ2 α;n; pð Þx
n o

þ β1cp1ζ1 αð Þκ1 nð Þ
pþ γ1

·
1

ω1−ω2
exp b−1 α;n; pð Þxf g

¼ Aexp b−2 xf g þ Bexp bþ2 x
n o

þ β1

ω1−ω2
·���c1 x;α;n;pð Þ ðA26Þ

b�2 ¼ ϕ
2

1� 4ω2

ϕ2

� �1=2� �

provided that

ω1 ≠ ω2 i:e:;R1λ1≠R2λ2ð Þ

Requiring that the solution be bounded according to (A25b) implies that B=0. Making use of (A25a) yields:

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ cp1γ1ζ1 αð Þκ1 nð Þ
pþ γ1ð Þ pþ γ2ð Þ ¼ Aþ β1cp1ζ1 αð Þκ1 nð Þ

pþ γ1
·

1
ω1−ω2

or

A ¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ cp1γ1ζ1 αð Þκ1 nð Þ
pþ γ1ð Þ pþ γ2ð Þ−

cp1β1ζ1 αð Þκ1 nð Þ
pþ γ1

·
1

ω1−ω2
ðA27Þ

Thus, substituting for A and B in (A26) gives

���c2 ¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ cp1γ1ζ1 αð Þκ1 nð Þ
pþ γ2ð Þ pþ γ1ð Þ

� �
exp b−2 α;n;p; xð Þf g

þ cp1ζ1 αð Þκ1 nð Þ
pþ γ1

·β1·
1

ω1−ω2
exp b−1 α;n; pð Þxf g−exp b−2 α;n; pð Þxf g½ �

ðA28Þ

or

���c2 ¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n;pð Þ

� �
exp b−2 xf g

þ β1

ω1−ω2

���c1 x;α;n; pð Þ

ðA28aÞ

provided that

ω1 ≠ω2 i:e:;R1λ1 ≠ R2λ2ð Þ

It can be seen that the first term on the right-hand side of (A25) involving cp2 is of the same form as (A13) for ���c1. If we have the
special case that ω1=ω2 (i. e., R1λ1=R2λ2), then a modified general solution must be used (Appendix C, Eq. C8), which yields:

���c2 ¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ cp1γ1ζ1 αð Þκ1 nð Þ
pþ γ2ð Þ pþ γ1ð Þ

� �
exp b−2 α;n;pð Þxf g

þ xcp1β1ζ1 αð Þκ1 nð Þ
pþ γ1ð Þ bþ2−b−2

� 
 exp b−2 α;n; pð Þxf g

ðA29Þ
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for the case ω1=ω2 or

���c2 ¼ cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2

���c1 0;α;n;pð Þ
� �

exp b−2 xf g

− β1x
bþ2−b−2

���c1 x;α;n;pð Þ

ðA29aÞ

Finally, making use of the inversion results (A17) and (A18), we can write:

c2 x; y; z; tð Þ ¼ L
−1 1

πB
∫
∞

0

���c2 x;α;n ¼ 0;pð Þ þ 2
X∞
n¼1

���c1 x;α;n;pð Þcos nπz
B

� �" #
cos αyð Þdα

" #
ðA30Þ

where either (A28a) or (A29a) is substituted.

Species 3

R3
∂c3
∂t þ v

∂c3
∂x −Dx

∂2c3
∂x2

−Dy
∂2c3
∂y2

−Dz
∂2c3
∂z2

þ λ3R3c3−λ2R2c2 ¼ 0 ðA31Þ

c3 x; y; z;0ð Þ ¼ 0 ðA32aÞ

∂c3
∂t 0; y; z; tð Þ þ γ3c3 0; y; z; tð Þ−γ2c2 0; y; z; tð Þ ¼ 0 ðA32bÞ

c3 0; y; z;0ð Þ ¼ cp3ϖ yð Þ· H z−H1ð Þ−H z−H2ð Þ½ � ðA32cÞ

c3 ∞; y; z; tð Þ ¼ 0 ðA32dÞ

c3 x;�∞; z; tð Þ ¼ 0 ðA32eÞ

∂c3
∂z x; y;0; tð Þ ¼ 0 ðA32fÞ

∂c3
∂z x; y;B; tð Þ ¼ 0 ðA32gÞ

Application of the Fourier transformsF andFc and the Laplace transform transformsL to the system (A31) and (A32) leads to

d2���c3
dx2

−ϕ
d���c3
dx

−ω3 α;n; pð Þ���c3 ¼ β2
���c2 ðA33Þ

pþ γ3ð Þ���c3 0;α;n; pð Þ ¼ cp3ζ3 αð Þκ3 nð Þ þ γ2
���c2 0;α;n;pð Þ ðA34Þ

���c3 0;α;n;pð Þ ¼ cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ cp1γ1ζ1 αð Þκ1 nð Þ
pþ γ2ð Þ pþ γ1ð Þ

� �
ðA35aÞ

���c3 ∞;α;n;pð Þ ¼ 0 ðA35bÞ

where:

ω3 α;n;pð Þ ¼ 1
Dx

R3 pþ λ3ð Þ þ α2Dy þ
n2π2Dz

B2

" #

β2 ¼ −λ2R2

Dx

ζ3 αð Þ ¼
2πð Þ1=2S3exp − S23α

2

2

 !
Gaussian type

2
α
sin αy0ð Þ Rectangular patch type

8>>><
>>>:

κ3 nð Þ ¼
H2−H1ð Þ n ¼ 0

B
nπ

sin
nπH2

B

� �
−sin

nπH1

B

� �� �
n > 0

8><
>:
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The general solution of (A33) after substituting for ���c2 using (A28a) is (again using the results of Appendix B):

���c3 ¼ Aexp b−3 α;n;pð Þxf g þ Bexp bþ3 α;n;pð Þx
n o

þ β2

ω2−ω3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n;pð Þ

� �
exp b−2 α;n;pð Þxf g

þ β1β2

ω1−ω2ð Þ ω1−ω3ð Þ
���c 1 x;α;n; pð Þ ðA36Þ

provided that

ω1≠ω2;ω1≠ω3;ω2≠ω3

The parameters b3
− and b3

+ are defined analogously to those for species 1 or 2 defined earlier except that λ3 and R3 are
substituted. Boundary condition (A35b) gives B=0 and (A35a) yields:

A ¼ cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

− β2

ω2−ω3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n;pð Þ

� �

− β1β2

ω1−ω2ð Þ ω1−ω3ð Þ
���c1 0;α;n; pð Þ

ðA37Þ

Now, substitute (A37) into (A36) to get

���c 3 ¼

cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

− β2

ω2−ω3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n; pð Þ

� �

− β1β2

ω1−ω2ð Þ ω1−ω3ð Þ
���c1 0;α;n;pð Þ

2
666666664

3
777777775
exp b−3 xf g

þ β2

ω2−ω3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c 1 0;α;n;pð Þ

� �
exp b−2 xf g

þ β1β2

ω1−ω2ð Þ ω1−ω3ð Þ
���c 1 x;α;n; pð Þ

ðA38Þ

ω1≠ω2;ω1≠ω3;ω2≠ω3

If on the other hand ω2=ω3 (i.e., R2λ2=R3λ3) but then we have ω2≠ω3 using (B8) in Appendix B:

���c3 ¼ Aexp b−3 xf g þ Bexp b−3 xf g

−β2
cp2ζ2 αð Þκ2 nð Þ

pþ γ2
þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n; pð Þ

� �

⋅ 1
bþ3−b−3

þ x
� �

1
bþ3−b−3

exp b−3 xð Þ

þ β1β2

ω3−ω1ð Þ ω2−ω1ð Þ
���c1 x;α;n; pð Þ

ðA39Þ

ω1≠ω2;ω1≠ω3;ω2≠ω3

Application of the boundary conditions (A34 or A35a) and (A35b) gives B=0 and

A ¼ cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

þ β2
cp2ζ2 αð Þκ2 nð Þ

pþ γ2
þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n; pð Þ⋅ 1

bþ3−b−3
� 
2

" #

− β1β2

ω3−ω1ð Þ ω2−ω1ð Þ
���c1 0;α;n;pð Þ

ðA40Þ

35E.A. Sudicky et al. / Journal of Contaminant Hydrology 144 (2013) 20–45



Author's personal copy

Substituting (A40) into (A39) for A and letting B=0 gives:

���c3 ¼
cp3ζ3 αð Þκ3 nð Þ

pþ γ3
þ γ2

pþ γ3

���c 2 0;α;n; pð Þ

− β1β2

ω3−ω1ð Þ ω2−ω1ð Þ
���c1 0;α;n; pð Þ

2
664

3
775exp b−3 xf g

− β2x
bþ3−b−3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n; pð Þ

� �
exp b−3 xf g

þ β1β2

ω3−ω1ð Þ ω2−ω1ð Þ
���c1 x;α;n;pð Þ

ðA41aÞ

or

���c3 ¼

cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n; pð Þ

− β1β2

ω3−ω1ð Þ ω2−ω1ð Þ
���c1 0;α;n;pð Þ

2
666664

3
777775exp b−3 xf g

− β2x
bþ3−b−3

���c2 x;α;n;pð Þ− β1

ω1−ω2

���c1 x;α;n;pð Þ
� �

þ β1β2

ω3−ω1ð Þ ω2−ω1ð Þ
���c1 x;α;n;pð Þ

ðA41bÞ

where

ω3 ¼ ω2;ω2≠ω1;ω3≠ω1

and (A28a) is used to express the second term in (A41a).
If we have ω3≠ω1,then using (A29a) for ���c 3 in (A33) leads to:

���c3 ¼ Aexp b−3 xf g þ Bexp bþ3 x
n o

þ β2

ω2−ω3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2

���c1 0;α;n;pð Þ
� �

exp b−2 xf g

− β1β2

ω1−ω3
·

1
bþ2−b−2

x− 1
b−2 −bþ3

� �
���c1 x;α;n;pð Þ

¼ Aexp b−3 xf g þ Bexp bþ3 x
n o

þ β2

ω2−ω3

���c2 x;α;n;pð Þ þ β1
���c1 0;α;n; pð Þ

bþ2−b−2
� 


b−2 −bþ3
� 


" #

ðA42Þ

ω2 ¼ ω1;ω3 ≠ω1;ω2≠ω3

where use has been made of the result (B11) in Appendix B and also (A29a). Application of the boundary conditions yields B=0 and

A ¼ cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

− β2

ω2−ω3

���c2 0;α;n;pð Þ þ β1
���c1 0;α;n;pð Þ

bþ2−b−2
� 


b−2 −bþ3
� 


" #
ðA43Þ

Using (A43) in (A442) gives

���c3 ¼

cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3
− β2

ω2−ω3

� �
���c2 0;α;n;pð Þ

− β2β1

ω2−ω3
·

1
bþ2−b−2
� 


b−2 −bþ3
� 
 ���c1 0;α;n;pð Þ

2
66664

3
77775exp b−3 xf g

þ β2

ω2−ω3

���c2 x;α;n; pð Þ þ β1
���c1 x;α;n;pð Þ

bþ2−b−2
� 


b−2 −bþ3
� 


" #

ðA44Þ
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ω2 ¼ ω1;ω3 ≠ω1;ω2 ≠ω3

Finally, if ω1=ω2=ω3

���c3 ¼ Aexp b−3 xf g þ Bexp bþ3 x
n o

− β2

bþ3−b−3

1
bþ3−b−3

þ x
� � cp2

pþ γ2
þ γ1

pþ γ2

���c1 0;α;n; pð Þ
� �

exp b−3 xf g

− β2β1

bþ3−b−3
� 
2 1

b−3 −bþ3
x− 1

b−3 −bþ3

� �
− x2

2

" #
���c1 x;α;n;pð Þ

ðA45Þ

Now, making use of the boundary conditions for ���c3 gives B=0 and

A ¼ cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

þ β2

bþ3−b−3
� 
2 cp2

pþ γ2
þ γ1

pþ γ2

���c1 0;α;n; pð Þ
� �

− β1β2

bþ3−b−3
� 
2 1

b−3 −bþ3
� 
2 ���c1 0;α;n; pð Þ

ðA46Þ

Finally, substituting for A and B in (A45) gives

���c3 ¼

cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

þ β2

bþ3−b−3
� 
2 cp2

pþ γ2
þ γ1

pþ γ2

β1

bþ3−b−3
� 
2

 !
���c1 0;α;n; pð Þ

( )
2
666664

3
777775exp b−3 xf g

− β2

bþ3−b−3

1
bþ3−b−3

þ x
� � cp2

pþ γ2
þ γ1

pþ γ2

���c2 0;α;n; pð Þ
� �

exp b−3 xf g

− β1β2

bþ3−b−3
� 
2 1

b−3 −bþ3
x− 1

b−3 −bþ3

� �
− x2

2

" #
���c1 x;α;n;pð Þ

ðA47Þ

Or, upon simplifying (A47):

���c3 ¼

cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

− β2β1

bþ3−b−3
� 
2 ���c1 0;α;n;pð Þ

2
666664

3
777775exp b−3 xf g

− β2

bþ3−b−3
x

cp2
pþ γ2

þ γ1

pþ γ2

���c1 0;α;n;pð Þ
� �� �

exp b−3 xf g

− β2β1

bþ3−b−3
� 
2 1

b−3 −bþ3
x− 1

b−3 −bþ3

� �
− x2

2

" #
���c1 x;α;n;pð Þ

ðA48Þ

The inverse transform of ���c3 is given by substituting either (A38), (A41b), (A44) or (A48) into:

c3 x; y; z; tð Þ ¼ L
−1 1

πB
∫
∞

0

���c3 x;α;n¼ 0;pð Þþ2
X∞
n¼1

���c3 x;α;n; pð Þcos nπz
B

� �" #
cos αyð Þdα

" #
ðA49Þ

Species 4

R4
∂c4
∂t þ v

∂c4
∂x −Dx

∂2c4
∂x2

−Dy
∂2c4
∂y2

−Dz
∂2c4
∂z2

þ λ4R4c4−λ3R3c3 ¼ 0 ðA50Þ
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c4 x; y; z;0ð Þ ¼ 0 ðA51aÞ

∂c4
∂t 0; y; z; tð Þ þ γ4c4 0; y; z; tð Þ−γ3c3 0; y; z; tð Þ ¼ 0 ðA51bÞ

c4 0; y; z;0ð Þ ¼ cp4ϖ4 yð Þ· H z−H1ð Þ−H z−H2ð Þ½ � ðA51cÞ

c4 ∞; y; z; tð Þ ¼ 0 ðA51dÞ

c4 x;�∞; z; tð Þ ¼ 0 ðA51eÞ

∂c4
∂z x; y;0; tð Þ ¼ 0 ðA51fÞ

∂c4
∂z x; y;B; tð Þ ¼ 0 ðA51gÞ

Application of the transformations transforms F, Fc and L to the system (A50) and (A51) leads to

d2���c4
dx2

−ϕ
d���c4
dx

−ω4 α;n;pð Þ���c4 ¼ β3
���c3 ðA52Þ

���c4 0;α;n;pð Þ ¼ cp4ζ4 αð Þκ4 nð Þ
pþ γ4

þ γ3

pþ γ4

���c3 0;α;n;pð Þ ðA53aÞ

���c4 ∞;α;n;pð Þ ¼ 0 ðA53bÞ

where:

ω4 α;n;pð Þ ¼ 1
Dx

R4 pþ λ4ð Þ þ α2Dy þ
n2π2Dz

B2

" #

β3 ¼ −λ3R3

Dx

ζ4 αð Þ ¼
2πð Þ1=2S4exp − S24α

2

2

 !
Gaussian type

2
α
sinðαy0Þ Rectangular patch type

8>>><
>>>:

κ4 nð Þ ¼
H2−H1ð Þ n ¼ 0

B
nπ

sin
nπH2

B

� �
−sin

nπH1

B

� �� �
n > 0

8><
>:

Upon substituting (A38) for ���c3 in (A52) and (A28a) for ���c2 in (A38), the general solution to (A52) is:

���c4 ¼ Aexp b−4 xf g þ Bexp bþ4 x
n o

þ β3

ω3−ω4

cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n;pð Þ

− β2

ω2−ω3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n; pð Þ

� �

− β1β2

ω1−ω2ð Þ ω1−ω3ð Þ
���c1 0;α;n;pð Þ

2
666666664

3
777777775
exp b−3 xf g

þ β2β3

ω2−ω3ð Þ ω2−ω4ð Þ
cp2ζ2 αð Þκ2 nð Þ

pþ γ2
þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n;pð Þ

� �
exp b−2 xf g

þ β1β2β3

ω1−ω2ð Þ ω1−ω3ð Þ ω1−ω4ð Þ
���c1 x;α;n; pð Þ

ðA54Þ

for the case

ω1 ≠ω2 ≠ω3 ≠ω4
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Boundary condition (A53b) gives B=0 and (A53a) yields:

A ¼ cp4ζ4 αð Þκ4 nð Þ
pþ γ4

þ γ3

pþ γ4

���c3 0;α;n; pð Þ

− β3

ω3−ω4

cp3ζ3 αð Þκ3 nð Þ
pþ γ3

þ γ2

pþ γ3

���c2 0;α;n; pð Þ

− β2

ω2−ω3

cp2ζ2 αð Þκ2 nð Þ
pþ γ2

þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n; pð Þ

� �

− β1β2

ω1−ω2ð Þ ω1−ω3ð Þ
���c1 0;α;n;pð Þ

2
666666664

3
777777775

− β2β3

ω2−ω3ð Þ ω2−ω4ð Þ
cp2ζ2 αð Þκ2 nð Þ

pþ γ2
þ γ1

pþ γ2
− β1

ω1−ω2

� �
���c1 0;α;n;pð Þ

� �

− β1β2β3

ω1−ω2ð Þ ω1−ω3ð Þ ω1−ω4ð Þ
���c1 0;α;n;pð Þ

ðA55Þ

Substituting (A55) for A into (A54) and letting B=0 yields the final solution for ���c 4 for the case ω1≠ω2≠ω3≠ω4. Due to the
large number of combinations of special case solutions for ω4=ω3, etc., this solution will not be derived here. Finally using the
inversion formula, we can write:

c4 x; y; z; tð Þ ¼ L
−1 1

πB
∫
∞

0

���c4 x;α;n ¼ 0;pð Þ þ 2
X∞
n¼1

���c4 x;α;n;pð Þcos nπz
B

� �" #
cos αyð Þdα

" #
ðA56Þ

Steady-state solutions
For any species ci, the steady-state solution follows from the final-value theorem for the Laplace transformation given by:

ci x; y; zð Þ ¼ lim
p→0

p�ci x; y; z;pð Þ

¼ 1
πB

∫
∞

0

lim
p→0

p·���ci x;α;n ¼ 0;pð Þ
� �

þ 2
X∞
n¼1

cos
nπz
B

� �
lim
p→0

p⋅���ci x;α;n;pð Þ
" #

cos αyð Þdx
ðA57Þ

Note that the contributions of a decaying boundary condition at x=0 for any of the parents leading to ci is zero, including the
concentration of cpi if it decays also. The limits appearing in (14) are easily written down.

Solution for simple splitting chains
Consider the parent-daughter splitting reaction as illustrated in Fig. 2b. Here, η1j is a splitting factor with j=2, 3, 4, … and

XND
j¼1

η1j ¼ 1

where ND is the number of daughters. We have

���c1 ¼ cp1ζ1 αð Þκ1 nð Þ
pþ γ1

exp b−1 xð Þ ðA58Þ

as usual (e.g., see A13).
For the case shown here, the solution for ���c1 is:

���ci ¼
cpiζ i αð Þκ i nð Þ

pþ γi
þ γ1i

pþ γi
− β1i

ω1 þωi

� �
���c1 0;α;n; pð Þ

� �
exp b−i xð Þ

þ β1i

ω1 þωi

���c1 x;α;n; pð Þ

ðA59Þ

provided that

ω1≠ωi; i ¼ 2; 3;…
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The assumption of unequal coefficients ωi is the same as before (see A28a). For the special case where ω1=ωi, where i=2, 3,
…, the solution becomes (see A29a).

���ci ¼
cpiζ i αð Þκ i nð Þ

pþ γi
þ γ1i

pþ γi

���c1 0;α;n;pð Þ
� �

exp b−i xð Þ

þ β1ix
bþi −b−i

���c1 x;α;n;pð Þ

ðA60Þ

if

ωi ¼ ωi; where i ¼ 2;3;…

In the above, we have defined γ1i=η1iγ1, β1i=η1iβ1 and normally we would use γ1=λ1.

Solution for simple converging chains
Consider the parent-daughter converging reaction as illustrated in Fig. 2c. Here, η1j is a splitting factor with j=2, 3, 4, … and

���ci ¼
cpiζ i αð Þκ i nð Þ

pþ γi
exp b−i xð Þ i ¼ 1;2;…N−1 ðA61Þ

���cN ¼ cpN ζN αð ÞκN nð Þ
pþ γN

þ
XN−1

i¼1

cpiγi

pþ γN
− βi

ωi−ωN

� �
���ci 0;α;n; pð Þ

" #
exp b−N xð Þ

þ
XN−1

i¼1

βix
ωi−ωN

���ci x;α;n;pð Þ

ðA62Þ

for the case ωi≠ωN and

���cN ¼ cpN ζN αð ÞκN nð Þ
pþ γN

þ
XN−1

i¼1

γi

pþ γN

���ci 0;α;n; pð Þ
" #

exp b−N xð Þ

− x
bþN−b−N

XN−1

i¼1

βi

ωi−ωN

���ci x;α;n; pð Þ

ðA63Þ

for the case ωi=ωN. Eq (A62) and (A63) for ���cN are simply based on superposition using (A28a) and (A29a).

Solution for a seven-member branching chain
Consider the seven-member branching chain as shown in Fig. 2e:

Member 1: as Eq. (A17) with ���c x;α;n;pð Þ given by (A13)
Member 2: as Eq. (A28a) or (A28), but with β1 replaced by β12 where β12=η12β1. Because the mass from the decay of member 1

splits at x=0 also, then the term
γ1

pþ γ2
in (A28a) must be replaced by

η12γ1

pþ γ2
.

Member 3: as Eq. (A28a) or (A28), but with β1 replaced by β13 where β13=η13β1. Also, replace
γ1

pþ γ2
by

η13γ1

pþ γ2
noting that all

subscripts involving “2” now become “3” to denote member 3 in (A28a).

Member 4: same as (A38) but replace
γ2

pþ γ3
by

η24γ2

pþ γ3
, β2 by η24β2,

γ1

pþ γ2
by

η12γ1

pþ γ2
, and β1 by η12β1. Note that all subscripts “3”

will become “4” to denote member 4.

Member 5: same as (A38) but replace
γ2

pþ γ3
by

η25γ2

pþ γ3
, β2 by η25β2,

γ1

pþ γ2
by

η12γ1

pþ γ2
, and β1 by η12β1. Note that all subscripts “3”

will become “5” to denote member 5.

Member 6: same as (A38) but replace
γ2

pþ γ3
by

η36γ2

pþ γ3
, β2 by η36β2,

γ1

pþ γ2
by

η13γ1

pþ γ2
, and β1 by η13β1. Note that all subscripts “3”

will become “6” to denote member 6 and all subscripts “2” will refer to member 3 which is the parent of 6.

Member 7: same as (A38) but replace
γ2

pþ γ3
by

η37γ2

pþ γ3
, β2 by η37β2,

γ1

pþ γ2
by

η13γ1

pþ γ2
, and β1 by η13β1. Note that all subscripts “3”

will become “7” to denote member 7 and all subscripts “2” will refer to member 3 which is the parent of 7.
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Appendix B. Analytical inversion of ���c 1 x;α;n;pð Þ

From Eq. (A13) and using the definitions of ω(α,n,p), ϕ, ζ1(α) and κ1(n), (A13) can be expressed as

���c1 ¼ cp1ζ1ðαÞκ1 nð Þexp vx
2Dx

� �

·
1

pþ γ1
exp − pþ λ1 þ

v2

4R1Dx
þ α2Dy

R1
þ n2π2Dz

R1B
2

( )1=2
R1

Dx

� �1=2
x

2
4

3
5 ðB1Þ

Where

ζ1 αð Þ ¼
2πð Þ1=2S1exp − S21α

2

2

 !
Gaussian type

2
α
sinðαy0Þ Rectangular patch type

8>>><
>>>:

κ1 nð Þ ¼
H2−H1ð Þ n ¼ 0

B
nπ

sin
nπH2

B

� �
−sin

nπH1

B

� �� �
n > 0

8><
>:

Now define the following inverse Laplace transforms:

L
−1 exp −a pþ bð Þ1=2

n oh i
¼ a

2π1=2t3=2
exp −btð Þexp − a2

4t

 !
a > 0 ðB2Þ

L
−1 1

pþ a

� �
¼ exp −atð Þ ðB3Þ

And the convolution theorem:

L
−1 �f 1 pð Þ⁎�f 2 pð Þ	 
 ¼ ∫

t

0

f 1 τð Þ·f 2 t−τð Þdτ ðB4Þ

Using (B2) - (B4) we get:

��c 11 x;α;n; tð Þ ¼ cp1R
1=2
1 x

2 πDxð Þ1=2 ·ζ1ðαÞ·κ1 nð Þexp vx
2Dx

� �

·∫
t

0

1
τ3=2

exp − v2

4R1Dx
þ α2Dy

R1
þ n2π2Dz

R1B
2 þ λ1

 !
τ− R1x

2

4Dxτ

( )

·exp −γ1 t−τð Þf gdτ

ðB5aÞ

Depending on the source types, (B5a) can be expressed as two types. If ζ1(α) is the Gaussian source type, then:

¼ cp1S1R
1=2
1 x

2Dxð Þ1=2 ·exp
vx
2Dx

� �
·κ1 nð Þexp −γ1tð Þ

·∫
t

0

1
τ3=2

exp − v2

4R1Dx
þ n2π2Dz

R1B
2 þ λ1−γ1

 !
τ− R1x

2

4Dxτ

( )

·exp −α2 Dyτ
R1

þ S21
2

 !( )
dτ

ðB5bÞ
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or if ζ1(α) is the rectangular patch source type, then:

¼ cp1R
1=2
1 x

2 πDxð Þ1=2 ⋅exp
vx
2Dx

� �
·κ1 nð Þexp −γ1tð Þ

·∫
t

0

1
τ3=2

exp − v2

4R1Dx
þ n2π2Dz

R1B
2 þ λ1−γ1

 !
τ− R1x

2

4Dxτ

( )

·
2
α
sinðαy0Þ⋅exp −

α2Dyτ
R1

 !
dτ

ðB5cÞ

We can use the following inverse Fourier transform F−1:

F
−1 exp −aα2

n oh i
¼ 1

2 πað Þ1=2 exp − y2

4a

 !
ðB6aÞ

F
−1 2

α
sin αy0ð Þ

� �
¼ H yþ y0ð Þ−H y−y0ð Þ ðB6bÞ

And the convolution theorem:

F
−1 �f αð Þ⁎�g αð Þ	 
 ¼ ∫

∞

−∞
f ξð Þ·g y−ξð Þdξ ðB6cÞ

To invert the Fourier transform involving α. For (B5b), making use of (B6a) yields

�c1 x; y;n; tð Þ ¼ cp1S1R
1=2
1 x

2 2πDxð Þ1=2 exp
vx
2Dx

� �
exp −γ1tð Þκ1 nð Þ

·∫
t

0

1

τ3=2 Dyτ=R1 þ S21=2
� �1=2 exp

− R1x
2

4Dxτ
− y2

4 Dyτ=R1 þ S21=2
� �

− v2

4R1Dx
þ n2π2Dz

R1B
2 þ λ1−γ1

 !
τ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
dτ

ðB7aÞ

Similarly, using (B6b) and (B6c), (B5c) can be transformed:

�c1 x; y;n; tð Þ ¼ cp1R
1=2
1 x

4 πDxð Þ1=2 exp
vx
2Dx

� �
exp −γ1tð Þκ1 nð Þ

·∫
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0

1
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2 Dyτ
� �1=2

8><
>:

9>=
>;−erf c

yþ y0

2 Dyτ
� �1=2

8><
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>;

2
64

3
75

·exp − R1x
2

4Dxτ
þ v2

4R1Dx
−n2π2Dz

R1B
2 þ λ1−γ1

 !
τ

( )
dτ

ðB7bÞ

Finally making use of the inverse Fourier cosine transform (A14) to obtain:
A. Case for Gaussian source type:

c1 x; y; z; tð Þ ¼ cp1S1R
1=2
1 x

2B 2πDxð Þ1=2 exp
vx
2Dx

� �
exp −γ1tð Þ

·∫
t

0

H2−H1ð Þ þ 2B
π

X∞
n¼1

1
n

sin
nπH2

B

� �
−sin

nπH1

B

� �� �
cos

nπz
B

� �
exp −n2π2Dzτ

R1B
2

( )" #

·
1

τ3=2 Dyτ=R1 þ S21=2
� �1=2 exp − R1x

2

4Dxτ
þ y2

4 Dyτ=R1 þ S21=2
� �þ v2

4R1Dx
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2
4

3
5τ

8<
:

9=
;dτ

ðB8aÞ

42 E.A. Sudicky et al. / Journal of Contaminant Hydrology 144 (2013) 20–45



Author's personal copy

B. Case for rectangular patch source type:

c1 x; y; z; tð Þ ¼ cp1R
1=2
1 x

4B πDxð Þ1=2 exp
vx
2Dx

� �
exp −γ1tð Þ

⋅∫
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>;
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3
75dτ

ðB8bÞ

Eqs. (B8a) and (B8b) are the final form of the solution for c1 with Gaussian and rectangular patch source types, respectively.

Appendix C. Solution to the nonhomogeneous ordinary differential equation

Given the nonhomogeneous ordinary differential equation:

d2���ci
dx2

−ϕ
d���ci
dx

−ωi α;n; pð Þ���ci ¼ βk
���ck i≥ 2 ðC1Þ

we seek a general solution of the form:

���c i ¼ Aexp b−1 α;n;pð Þxf g þ Bexp bþ1 α;n;pð Þx
n o

þ ���cpi x;α;n; pð Þ ðC2Þ
where

b�1 α;n;pð Þ ¼ ϕ
2

1� 1þ 4ωi

ϕ2

� �1=2� �

and ���cpi is the particular solution arising from the nonhomogeneous term βk
���ck x;α;n;pð Þ.

The solution for ���cpi is given by:

���cpi ¼ βk∫
x exp b−i ζð Þexp bþi x

� 

−exp bþi ζ

� 

exp b−i xð Þ	 


W ζð Þ
���ck ζ ;α;n; pð Þdζ ðC3Þ

where the Wronskian W(x) is given by

W xð Þ ¼ eb
−
i x eb

þ
i x

b−i eb
−
i x bþi e

b−i x

����
���� ¼ bþi −b−i

� �
exp b−i þ bþi

� �
x

n o
ðC4Þ

We note that the solution for ���c k will be of the form:

���ck ¼ F exp b−k xf g ðC5Þ

where F is some function (usually independent of x). Substitution of (C4) and (C5) into (C3) yields, after minor algebra:

���c
p
i ¼ Fβk⋅

1
bþi −b−i

∫
x

exp bþi x−ζð Þ
� �

−exp b−i x−ζð Þð Þ
h i

exp b−k ζð Þdζ

¼ Fβk
1

bþi −b−i
exp bþi x

� �
∫
x

exp b−k −bþi
� �

ζ
� �

dζ
h i

−exp b−i xð Þ∫
x

exp b−k −bþi
� �

ζ
� �

dζ

" #

¼ Fβk
1

bþi −b−i

1
b−k −bþi

− 1
b−k −b−i

� �
exp b−k xð Þ if b−k ≠b−i ðC6aÞ

¼ Fβk
1

b−k −bþi
� 


b−k −b−i
� 
 exp b−k xð Þ if b−k ≠b−i ðC6bÞ

Upon writing bk
−, bi−, and bi

+ in the denominator of (C6) in terms of ϕ, ωi, and ωk, (C6) can be simplified to:

���cpi ¼ Fβk
1

ωk−ωi
exp b−k xð Þ ðC7Þ
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if we have

b−k ≠b−i i:e:;Rkλk≠Riλið Þ

If, however ωk=ωi (i. e., Rkλk=Riλi), we must use:

���c
p
i ¼ Fβi−1

1
bþi −b−i

exp b−k xð Þ
b−k −bþi

−exp b−i xð Þ∫
x

dζ

" #
¼ Fβi−1

1
bþi −b−i

exp b−k xð Þ
b−k −bþi

−xexp b−i xð Þ
� �

¼ −Fβi−1
1

bþi −b−i
þ x

� �
1

bþi −b−i
exp b−i xð Þ ðC8Þ

b−k ¼ b−i i:e:;Rkλk ¼ Riλið Þ

We can also have the case where ���ck is the form:

���ck ¼ Fxexp b−k xf g ðC9Þ

For which we need to evaluate:

���c
p
i ¼ Fβk

1
bþi −b−i

exp bþi x
� �

∫
x

ζexp b−k −bþi
� �

ζ
� �

dζ−exp b−i xð Þ∫
x
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" #

¼ Fβk
1

bþi −b−i
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exp bþi x

� � 1
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xexp b−k −bþi
� �

x
� �
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ζ
� �

dζ

 !( )

−exp b−i xð Þ 1
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 !( )#
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− 1
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� �� �
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ðC10Þ

if

b−k ≠b−i

but:

1
bþi −b−i

1
b−k −bþi

− 1
b−k −b−i

� �
¼ 1

ωk−ωi

in which case (C10) can be written as:

���cpi ¼ Fβk
1

ωk−ωi
x− 1

b−k −bþi

� �
exp b−k xð Þ ðC11Þ

for the case when

b−k ≠b−i ; i:e:;ωk≠ωið Þ

If ���c k is of the form of (C9) and bk
−=bi

−, then:

���cpi ¼ Fβk

bþi −b−i

1
b−k −bþi

x− 1
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� �
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