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a b s t r a c t

The geomechanical behavior of porous media has become increasingly important in stress-sensitive
reservoirs. This paper presents a novel fully-coupled fluid flow-geomechanical model (TOUGH2-EGS).
The fluid flow portion of our model is based on the general-purpose numerical simulator TOUGH2-EOS3.
The geomechanical portion is developed from linear elastic theory for a thermo-poro-elastic system
using the Navier equation. Fluid flow and geomechanics are fully coupled, and the integral finite-
difference method is used to solve the flow and stress equations. In addition, porosity and permeability
depend on effective stress and correlations describing that dependence are incorporated into the
simulator. TOUGH2-EGS is verified against analytical solutions for temperature-induced deformation and
pressure-induced flow and deformation. Finally the model is applied to analyze pressure and
temperature changes and deformation at The Geysers geothermal field. The results demonstrate that
the model can be used for field-scale reservoir simulation with fluid flow and geomechanical effects.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In the past, reservoir engineers has neglected geomechanical
effects when considering porous media fluid flow because of little
change in rock properties or deformation in conventional reservoirs.
However, geomechanical effects should not be ignored in many
instances related to enhanced geothermal systems, such as analyzing
high flow rate drive oil recovery, associated formation subsidence,
stress sensitive fractured reservoirs, and dealing with wellbore stabi-
lity, and production of heavy oil (Merle et al., 1976; Kosloff et al., 1980;
Lewis and Schrefler, 1998; Settari and Walters, 2001; Samier and
Gennaro, 2008; Boutt et al., 2011). The coupling of geomechanics with
porous media fluid and heat flow is of importance in a variety of
technical venues. Some examples are soil shrinkage from water
evaporation and soil heaving due to water freezing; formation
permeability and porosity changes and ground surface uplift from
subsurface CO2 sequestration in a saturated geologic formation; and
rock deformation associated with heavy oil recovery processes such as
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steam assisted gravity drainage or from cold water injection and hot
water production in geothermal fields.

Models with coupled flow and geomechanics can be classified into
four types: fully coupled, iteratively coupled, explicitly coupled, and
loosely coupled (Settari and Walters, 2001; Longuemare et al., 2002;
Minkoff et al., 2003; Tran et al., 2004; Samier and Gennaro, 2008). For
a fully coupled simulator, a set of equations (generally a large system
of nonlinear coupled partial differential equations) incorporating all of
the relevant physics must be derived (Minkoff et al., 2003). The
iterative coupling method solves the pore fluid flow variables and
the geomechanical conditions independently and sequentially. The
iterative coupling between the reservoir simulator and the geomecha-
nical model is then performed at the end of each timestep through
pore volume calculations (Longuemare et al., 2002). The explicitly
coupled method is a special case of the iteratively coupled method in
which only one iteration per one time increment is performed. In
loose coupling, there are two sets of equations which are solved
independently, but information is passed at designated time intervals
in both directions between fluid flow and geomechanics simulators
(Minkoff et al., 2003). In the fully coupled method the equations of
flow and geomechanics are solved simultaneously at each time step. In
the iteratively coupled method, either the flow or mechanical problem
is solved first, and then the other equation is solved iteratively using
that intermediate solution information (GEOSIM (Settari et al., 2000),
GeoSys/Rockflow (Wang and Kolditz, 2007)). In explicitly coupled
methods, only one iteration is taken between the geomechanical and
fluid flow modules, for example, ROCMAS (Noorishad et al., 1984),
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Nomenclature

Anm the cross area, m2

Aj the cross area of grid j, m2

Aij the cross area between grid i and j, m2

CR heat conductivity, W K−1 m−1

Cϕ Pore compressibility, Pa−1

cs Specific heat capacity of rock, J kg−1 1C−1

ct Bulk total compressibility, Pa−1

DT Thermal diffusivity, m2s−1

E Young modulus, Pa
F the force, Pa
Fκ the mass or energy transport terms along the borehole

due to advective processes, W m−1

Fκnm the mass or energy transport terms along cross section
nm due to advective processes, W m−1

Fl l-direction body force (gravity), Pa m−1

g Gravitational acceleration constant, m s−2

h the total column height, m
hβ Specific enthalpy in phase β, J kg−1

k Absolute permeability, m2

kT Heat conductivity of rock Wm−1 1C−1

K Bulk modulus, Pa
kr β Relative permeability to phase β
M Biot's modulus, Pa
Mκ the accumulation terms of the components and

energy κ, kg m−3

Mκ
n the accumulation terms of the components and

energy κ of grid n, kg m−3

n Normal vector on surface element, demensionless
t Time, s
T Temperature, 1C or K
Tref Reference temperature, 1C or K
uβ the Darcy velocity in phase β, m s−1

Uβ the internal energy of phase β per unit mass, J kg−1

Vn Volume of the nth grid cell, m3

P Pressure, Pa
P0 Incremental pressure due to load, Pa
Pc Capillary pressure, Pa
Pc0 Reference capillary pressure, Pa
Pβ the fluid pressure in phase β, Pa
qκ Source/sink terms for mass or energy components,

kg m−3 s−1

qκn Source/sink terms for mass or energy components of
grid n, kg m−3 s−1

Rκ
n the residual of componentκfor grid block n, kg s−1

R4
n the residual of stress for grid block n, Pa m−2

S Storage coefficient, Pa−1

Sl Saturation of liquid phase, demensionless
Sβ Saturation of phase β, dimensionless

Tb Constant temperature boundary, 1C
Ti Initial temperature, 1C
w Vertical displacement of the upper surface, m
xt Primary variables at time t, pressure, temperature, air

fraction, or stress
Xκ
β Mass fraction of component κ in fluid phase β,

dimensionless
Vb Bulk volume, m3

z Distance along-column coordinate, m

Greek letters

α Biot's coefficient, dimensionless
αP Biot's coefficient, dimensionless
αT Biot's coefficient, dimensionless
β Linear thermal expansion coefficient, 1C−1

μβ Viscosity, Pa s
μf fluid viscosity, Pa s
ϕ Porosity, dimensionless
λ Thermal conductivity, W K−1 m−1

λs Lame's constant, Pa
εll Strain components, l¼x, y, z, dimensionless
εls Strain components, ls¼xy, yz, zx, dimensionless
εil Strain components, j¼x, y, z, l¼x, y, z, dimensionless
εv Volumetric strain, dimensionless
ε Strain tensor, dimensionless
u Displacement vector, m
ul Displacement component, l¼x,y,z, m
ν Poisson's ratio of rock, dimensionless
νu the undrained Poisson's ratio of rock, dimensionless
s′ Effective stress, Pa
sex External load per area at the top column, Pa
ρtot the density of rock, kg m−3

ρR the density of rock grain, kg m−3

ρβ the density of phase β, kg m−3

Γ the perimeter of the cross-section, m
Γn Area of closed surface, m2

τkl k¼ l for shear stress; k≠l for normal stress, k¼x, y, z,
l¼x, y, z, Pa

τls Stress components, ls¼xy, yz, zx, Pa
τm Mean total stress, Pa
ψ i Coefficient, dimensionless

Subscripts and Superscripts

κ the index for the components, κ¼1 (water), 2 (air),
and 3 (energy)

β G for gas; L for liquid
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FRACture (Kohl and Hopkirk, 1995) and FRACON (Nguyen, 1996). The
loosely coupling method is resolved only after a certain number of
flow time steps, for example, TOUGH-FLAC (Rutqvist et al., 2002;
Rutqvist, 2011), ATH2VIS (Longuemare et al., 2002), Integrated Parallel
Accurate Reservoir Simulator (IPARS) for flow and JAS3D for mechanics
(Minkoff et al., 2003). Some models include modeling of induced slip,
such as the models developed by Koh et al. (2011); Ghassemi and
Zhou (2011); McClure and Horne (2011). Koh et al. described the
characteristic properties of individual fracture using finite element
module. Ghassemi and Zhou used both finite element method and
integral equation method in their models. McClure et al. took
sequential stimulation method (similar to iteratively coupled method)
in their models.
The fully coupled method is internal consistent and rigorous,
because the fluid flow and geomechanical equations are solved
simultaneously on the same discretized grid. Consequently, consider-
able effort is required to develop such a simulator (Settari andWalters,
2001). Typical geomechanical models assign rock displacement or
velocity as primary variables, two primary variables for 2-D and
three primary variables for 3-D. As a result, the coupling flow-
geomechanical model requires intensive computation. Various cou-
pling techniques have been developed to reduce such computational
time required.

The objective of this paper is to present a new fully-coupled
multiphase, heat flow and geomechanical model, including the
mathematical equations and formulation. Mean total stress is the
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only primary variable for geomechanical model in a 3-D problem.
Thus, the computational requirement is less than that of typical
geomechanical model. We then verify the model using two
analytical solutions, and finally apply the model to a field example.
It is assumed that the reservoir rock is linear elastic and obeys the
generalized version of Hooke's law. The novelty of our model lies
in its simplified treatment of rock deformation using the relation
of mean normal stress and volumetric strain. Pressure, tempera-
ture, air mass fraction, and mean total stress are solved simulta-
neously for each Newton iteration. The advantages of the
simplification of typical geomechanical model lies on (1) the
computational requirement is less than that of the typical geo-
mechanical model because of less primary variable and (2) this
method is still capable of capturing geomechanical behavior of
rock as seen in the comparison between numerical and analytical
solution as well as in Geyser case.
2. Mathematical and numerical model

2.1. Multiphase fluid and heat flow module

The basis for our simulator is the TOUGH2/EOS3 model, which
solves the mass and energy balance equations describing fluid and
heat flow in multiphase, multi-component systems. Fluid flow is
governed by a multiphase extension of Darcy's law and there is
diffusive mass transport in all phases. Heat flow occurs by conduction
and convection, with sensible as well as latent heat effects included.
The TOUGH2/EOS3 mass and energy equations for two-phase flow of
two components (water, air) are summarized in Table 1 (see Nomen-
clature for definitions of all symbols used).
2.2. Geomechanical module

This fully coupling assumes that boundaries of each element can
move as an elastic material and obey the generalized version of
Hooke's law (Winterfeld and Wu, 2011). The mean total stress is an
additional primary variable. Under the assumption of linear elasticity
with small strains for a thermoporoelastic system, the equilibrium
equation can be expressed as follows: (Jaeger et al., 2007)

τll−ðαP þ 3βKðT−Tref ÞÞ ¼ 2Gεll þ λsðεxx þ εyy þ εzzÞ; l¼ x; y; z ð1Þ

and the shear stresses are

τls ¼ 2Gεls; ls¼ xy; yz; zx ð2Þ

The trace of Hooke's law for a thermoporoelastic medium is

Kεv ¼ τm−αP−3βKðT−Tref Þ ð3Þ

These stress and strains are symmetric tensors. The equations of stress
equilibrium are derived from a force balance on a differential volume
Table 1
Equations of fluid and heat flow solved in TOUGH2-EGS.

Description Equation

Conservation of mass and
energy

d
dt

R
Vn
MκdVn ¼

R
Γn
Fκ�ndΓn þ

R
Vn
qκdVn κ¼1, 2,

3
Mass accumulation Mκ ¼ ϕ∑

β
SβρβX

κ
β , κ¼1, 2

Mass flux Fκ ¼∑
β
Xκ
βρβuβ , κ¼1, 2

Energy flux F3 ¼ −λ∇T þ ∑
β
hβρβuβ

Energy accumulation M3 ¼ ð1−ϕÞρRCRT þ ϕ∑
β
ρβSβUβ

Phase velocity uβ ¼ −k krβρβ
μβ

ð∇Pβ−ρβgÞ
element. They are, when neglecting acceleration

∂τxl
∂x

þ ∂τyl
∂y

þ ∂τzl
∂z

þ Fl ¼ 0; l¼ x; y; z ð4Þ

Strain can be expressed in terms of a displacement vector, u. The
displacement vector points from the new position of a volume
element to its previous one. The strain tensor is related to the
displacement vector by

ε ¼ 1
2 ∇uþ ð∇uÞT
h i

ð5Þ

Each element of Eq. (5) has the form

εjl ¼
1
2

∂ul

∂xj
þ ∂uj

∂xl

� �
; ðl; jÞ ¼ x; y; z; xl ¼ x; y; z ð6Þ

We then derive (see Appendix A)

3ð1−νÞ
ð1þ νÞ∇

2τm þ ∇⋅F−
2ð1−2νÞ
ð1þ νÞ ðα∇2P þ 3βK∇2TÞ ¼ 0 ð7Þ

The boundary type of stress includes specified stress boundary
only. Specified stress boundary remains fixed at all time steps and
the mean total stress at other places will be subjected to the
pressure, temperature and body force. For 1D, 2D and 3D cases, the
model should include at least 1, 2 and 3 specified stress boundaries
respectively. For an example of 1D case, the model is discretized
into N gridblocks, and the number of connections should be N−1.
From Eq. (7), there are N−1 equations, and the number of
boundary condition should be at least 1, and so we get N equations
and N unknown mean total stress. So we can obtain mean normal
stress field after solving the linear equations.

2.3. Space and times discretization

The integral finite-difference method (Pruess et al., 1999) is
used to discretize the continuous space variables for numerical
simulation. Time discretization is carried out using a backward,
first-order, and fully implicit finite-difference scheme. Time and
space discretization of the governing mass and energy balance
equations results in a set of coupled non-linear equations, which
can be written in residual form as follows:

Rκ
nðxtþ1Þ ¼Mκ

nðxtþ1Þ−Mκ
nðxtÞ−

Δt
Vn

∑
m
AnmF

κ
nmðxtþ1Þ þ Vnqκ;tþ1

n g ¼ 0; κ¼ 1;2;3
�

ð8Þ
The stress equation, Eq. (7), relates mean total stress to pore
pressure, temperature, and body forces. It is also discretized using
the integral finite difference method over a volume element with
an outer surface. After applying the divergence theorem to the
integral finite difference volume integral the following is obtained:Z

3ð1−νÞ
ð1þ νÞ∇τm þ F−

2ð1−2νÞ
ð1þ νÞ ðα∇P þ 3βK∇TÞ

� �
⋅_ndΓ ¼ 0 ð9Þ

The surface integral is expressed as a discrete sum of averages over
surface segments

∑
j

3ð1−νÞ
ð1þ νÞ∇τm þ F−

2ð1−2νÞ
ð1þ νÞ ðα∇P þ 3βK∇TÞ

� �
j
Aj ¼ 0 ð10Þ

The boundary conditions for Eq. (10) are a reference temperature,
pressure, and stress at some distance from a given grid block. For
example, surface pressure, stress (both atmospheric) and tem-
perature can be used as boundary conditions.

The finite difference approximation for Eq. (10) in residual form is

R4
nðxtþ1Þ ¼∑

j

3ð1−νÞ
ð1þ νÞ

τj−τi
sij

−
2ð1−2νÞ
ð1þ νÞ α

Pj−Pi

sij
−

2E
ð1þ νÞ β

Tj−Ti

sij
þ ρtotgk̂⋅n̂

� �
ij

Aij ¼ 0

ð11Þ
The model solves for four primary variables (pressure, air mass
fraction/gas saturation, temperature, and mean total stress) for each



Fig. 1. Model architecture of TOUGH2-EGS.
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grid block. A uniform residual form for four primary variables is
shown in Eq. (12). For variables of pressure, air mass fraction/gas
saturation and temperature, the residuals are formed from Eq. (8).
For mean total stress, the residuals is assembled from Eq. (11).
Eq. (12) are solved by the Newton/Raphson method that iterates
until the residuals are reduced below preset convergence criteria.

−∑
i

∂Rκ;tþ1
n

∂xi

���
p
ðxi;pþ1−xi;pÞ ¼ Rκ;tþ1

n ðxi;pÞ; κ¼ 1;2;3;4 ð12Þ

2.4. Stress-dependent parameters modification

Permeability and porosity are both dependent on effective
stress according to the following relations:

s′¼ τm−αP ð13Þ

k¼ kðs′; pÞ ð14Þ

ϕ¼ ϕðs′; pÞ ð15Þ
Since bulk volume is related to porosity, bulk volume depends on
effective stress and pore pressure

Vb ¼ Vbðs′; PÞ ð16Þ
In addition, permeability and porosity are used to scale capillary
pressure according to the relation by Leverett (1941)

Pc ¼ Pc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=ϕÞ0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
ðk=ϕÞ

p ð17Þ

where subscript 0 refers to reference conditions.
The coupled multiphase flow and geomechanical model, called

TOUGH2-EGS, implements four empirical correlations for porosity
as a function of effective stress (Appendix B): Zimmerman et al.
(1986) for sedimentary rock, Rutqvist et al. (2002) for sedimentary
rock and fractures, and McKee et al. (1988); and five empirical
correlations for permeability a function of effective stress
(Appendix C): Rutqvist et al. (2002) for sedimentary rock and
fractures, the Carman–Kozeny equation, Ostensen (1986), and
Verma and Pruess (1988).

2.5. Model architecture of TOUGH2-EGS

The model architecture is summarized in Fig. 1. There are four
primary variables, pressure, temperature, air mass fraction, and
mean total stress. Secondary variables such as liquid saturation
and volumetric strain are derived from the primary variables. First,
the grid systems, boundary conditions, sources and sink terms,
initialization parameters of pressure, temperature, and mean total
stress are inputted to the model. The initial stress field is then
calculated based on Eq. (10) with initial pressure field, initial
temperature field and stress boundary conditions. Then, the time
iteration is carried out. During time iteration, the coefficient
matrixes for four primary variables (κ¼1, 2, 3, 4) in Eq. (12) are
assembled, and then pressure, temperature, air mass fraction, and
mean total stress are solved iteratively for each Newton iteration.
Also, permeability and porosity correction will be carried out in
each time iteration is the module of equation of state. The
calculation of fluid and geomechanical variables is fully implicit
and fully coupled.
3. Verification of TOUGH2-EGS

Consolidation problems subjected to stress and temperature
change will be verified. Here, three cases, 1-D consolidation, 1-D
heat conduction and 2-D consolidation (Mandel's problem), is
selected for testing the applicability of our model when comparing
the simulated results with analytical solutions. The poroelastic was
verified by comparing the numerical result against the analytical
solution of 1-D consolidation problem and the thermoelastic was
verified against the analytical solution of 1-D heat conduction.

3.1. 1-D consolidation in a porous permeable column

A 1-D consolidation problem is simulated numerically and
compared with Jaeger's analytical solution (Jaeger et al., 2007,
listed in Appendix D) to verify the validity of the simulator code.
The 1-D problem is a porous permeable column that undergoes
uniaxial strain in the vertical direction only. The column is
subjected to a constant load on the top (Fig. 2), the fluid boundary
pressure is set to zero gauge right after the load is imposed, and
only vertical displacement takes place. Basic parameters for rock
properties, fluid properties, initial and boundary conditions can be
seen in Fig. 2 and are listed in Table 2.

The comparison of normalized excess pressure (defined as the
ratio of pressure change to the maximum pressure) and vertical
displacement between the analytical and numerical solutions in
Fig. 3 indicates that our numerical results produce essentially the
same answers as analytical models, which lend creditability to our
computational approach.

3.2. 1-D heat conduction in a deformable rock column

1-D heat conduction in a deformable medium is simulated
numerically and compared with Jaeger's analytical solution (Jaeger
et al., 2007, listed in Appendix E) to verify the validity of the
simulator code. The 1-D problem is a non-permeable column that
undergoes uniaxial strain in the vertical direction only. The
column is subjected to a constant temperature on the top
(Fig. 4) and only heat conduction takes place. Input parameters



Fig. 2. Problem description of 1-D consolidation.

Table 2
Input parameters used in simulation of the 1-D consolidation problem.

Model 1000�1�1
Grid size Δx¼1, Δy¼0.5, Δz¼0.5 m

Rock properties
Porosity 0.094
Permeability 10−13 m2

Rock compressibility 0.0 Pa−1

Rock mechanics properties
Biot's coefficient 1.0
Young's modulus 5.0�109 Pa
Poisson ratio 0.25
Reference temperature 60

Initial condition
Initial pressure 2.466�106 Pa

Sink
Well index 2.0�10−10 m3/(Pa.s)
Bottom hole pressure 1�105 Pa

Fig. 3. Comparisons between numerical and analytical solutions (a) pressure
profiles and (b) displacement at the top of the column.

Fig. 4. Problem description of 1-D heat conduction.

Table 3
Input parameters used in simulation of the 1-D heat conduction in a deformable
rock column problem.

Model 1�1�100
Grid size Δx¼1, Δy¼1, Δz¼0.5 m

Rock properties
Porosity 0.01
Permeability 0.0 m2

Heat conductivity 2.34 W/m K
Heat capacity of rock 690 J/kg K
Density 2550 kg/m3

Rock mechanics properties
Linear thermal expansion 1.5�10−6 K−1

Bulk modulus 8.0�109 Pa
Poisson’s ratio 0.20

Initial condition
Initial temperature 60 1C

Boundary condition
Constant temperature at the top 10 1C

Fig. 5. Comparisons between numerical and analytical solutions (a) pressure
profiles and (b) displacement at the top of the column.

L. Hu et al. / Journal of Petroleum Science and Engineering 107 (2013) 1–11 5
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in the model are listed in Table 3. Fig. 5a and b shows the match
between analytical and numerical solutions are excellent.
Fig. 7. Comparison of pressure, volumetric strain between numerical and analytical
solutions, (a) pressure, (b)volumetric strain.
3.3. Mandel's problem

The geometry of Mandel's problem is depicted in Fig. 6. An
infinitely long specimen with a rectangular cross-section is sand-
wiched between two rigid, frictionless and impermeable plates.
The specimen consists of incompressible solid constituents, and it
is saturated with a single-phase incompressible fluid. At initial
time, a force of 2F per unit thickness of the specimen is applied at
the top and bottom. The lateral boundary surfaces perpendicular
to the x direction are traction free and exposed to the ambient
pressure. As predicted by the Skempton effect, a uniform pressure
rise will be observed inside the specimen upon the exertion
of a force 2F on the rigid plates. As time passes on, pore pressure
near these boundaries must dissipate due to drainage access.
Abousleiman et al. (1996) extend the classical problem to account
for transversely isotropic material (the analytical solution is shown
in Appendix F). Table 4 gives the dimensions of the specimen and
its material properties used in this simulation (Fakcharoenphol
et al., 2012). Fig. 7a and b shows the comparison of pressure at the
center of the specimen, volumetric strain at the right and top edge
of the specimen between numerical and analytical solutions. The
pressure curve at the center has a peak and shows a good
agreement with analytical solutions.
Fig. 6. Mandel's problem description.

Table 4
Input parameters for Mandel's problem.

Model 1000�1000�100
Grid size Δx¼10, Δy ¼10, Δz¼100 m
Size 1000�1000 m2

Applied stress 1470 MPa
Rock and fluid properties

Porosity 0.094
Permeability 1.0e−13 m2

Pore compressibility 0.0
Rock mechanics properties
Young’s modulus 5.0�109 Pa.s
Biot's coefficient 1.0
Poisson's ratio 0.25

Initial condition
Initial pressure 3.0�106 Pa
4. Model application

The Geysers is the site of the largest geothermal electricity
gene`rating operation in the world and has been in commercial
production since 1960 (Mossop and Segall, 1997, 1999; Rutqvist and
Tsang, 2002; Rutqvist et al., 2006a, 2006b; Rutqvist and Oldenburg,
2008; Khan and Truschel, 2010; Rutqvist, 2011). It is a vapor-
dominated geothermal reservoir system that is hydraulically con-
fined by low permeability rock. As a result of high steam withdrawal
rates, the reservoir pressure declined until the mid 1990s, when
increasing water injection rates resulted in a stabilization of the
steam reservoir pressure. Archival INSAR images were acquired from
approximately monthly satellite passes over the region for a seven-
year period, seven-year period, from 1992 to 1999, and the data is
compared with displacement calculated from our model.

The combined effects of steam production and water injection in
44 years and their influences on the ground deformation will be
analyzed. Based on the work by Rutqvist et al. (2008) and Rutqvist
et al. (2010), a cross-axis (NE-SW) two-dimensional model grid of the
Geysers Geothermal Field was established. Permeability, tempera-
ture, and boundary conditions are shown in Fig. 8. The initial thermal
and hydrological conditions (vertical distributions of temperature,
pressure and liquid saturation) are typically established through
steady-state multi-phase flow simulations. According to previous
studies, the adopted rock-mass bulk modulus is 3 GPa and the linear
thermal expansion coefficient is 3�10−5 1C−1. Pore compressibility
and the reservoir Poisson's ratio of the reservoir is 1.0�10−10 Pa−1

and 0.25, respectively. The injection well is about 217.5 m away from
the production well. The steam-production and water-injection rate
used in the model is estimated from the field-wide production and
injection data (Mossop and Segall, 1997; Majer and Peterson, 2007;
Khan and Truschel, 2010; Sanyal and Enedy, 2011).

4.1. Change of pressure and temperature after 44 years

Fig. 9 shows calculated liquid saturation and changes in fluid
pressure and temperature after 44 years of production and
injection. Fig. 9a shows the injection caused formation of a wet
zone that extends towards 1000 m. Fig. 9b demonstrates pressure
decrement is about 2�106 Pa after steam production and water
injection. Fig. 9c indicates a local cooling effect and the maximum
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temperature decrement is about 50 1C. All the results are almost
the same as the results from Rutqvist et al. (2008).

4.2. Changes in stress and volumetric strain

Fig. 10a and b displays changes in mean total stress and
volumetric strain, respectively. The mean total stress change in
Fig. 8. Half-symmetric model domain with hydraulic prop

Fig. 9. Simulated profile of liquid saturation (a), changes in fluid pressure (b), c

Fig. 10. Simulated changes in mean total stress (a) and volum
the rock mass depends on the production-induced depletion and
injection-induced cooling. The change in mean total stress is about
0.5–1.5 MPa and the volumetric strain is about 0.0001–0.0004. It is
assumed that the length in x, y, and z directions will be changed
uniformly and the ground displacement can be obtained from the
volumetric strain and volume. Fig. 11 shows the change of
simulated ground displacement with time and the comparison
erties and boundary conditions (Rutqvist et al., 2008).

hanges in temperature and (c) after 44 years of production and injection.

etric strain (2) after 44 years of production and injection.



Fig. 11. Comparison of calculated and INSAR evaluated vertical displacements and
simulated results from TOUGH2-FLAC from year 1992 to 1999 since start of steam
production.

Fig. 12. Comparison of calculated and INSAR evaluated total subsidence and
simulated results from TOUGH2-FLAC from 1992 to 1999 along the cross section
of model.
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with INSAR data and results from TOUGH2-FLAC (Rutqvist, 2011).
Fig. 12 shows the change of displacement along the cross-section
of the model and the comparison with observed and known
simulated results. It can be seen from these two figures that there
is good agreement between simulated ground displacement and
INSAR data.
5. Conclusions

We present an efficient fully-coupled fluid flow and geome-
chanics simulator (TOUGH2-EGS) for simulating multiphase flow,
heat transfer and rock deformation in porous media. Our numer-
ical model is verified using three problems with analytical solu-
tions and the results show that our numerical model can produce
essentially the same results as analytical models do. The model is
applied to the analysis of deformation at the Geyser geothermal
field, California. The model shows the changes of pressure,
pressure and liquid saturation after 44 years of production and
injections, and also thermo-elastic cooling shrinkage near injec-
tion and production wells is the dominant cause of stress changes.
The results show that TOUGH2-EGS is rigorous in handling
coupled flow and rock deformation and is easily applied to
stress-sensible reservoirs for analyzing multiphase fluid, heat flow
and rock deformation.

Compared with a numerical modeling code for advanced
geotechnical analysis of soil, rock, and structural support, such as
FLAC3D and ECLIPSE, our numerical model only calculates mean
total stress as opposed to the total stress tensor, and this
simplification may be a shortcoming of our model since it cannot
analyze phenomena dependent on shear stress, such as rock
failure. This method used in this paper is a simplification of typical
geomechanical model where the advantage lies on (1) the com-
putational requirement is less than that of the typical geomecha-
nical model because of less primary variable and (2) this method is
still capable of capturing geomechanical behavior of rock. This
paper is mainly concerned with fluid and heat flow and geome-
chanics in porous media, and geomechanics in the fractured
reservoir is not discussed here.
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Appendix A. Derivations of geomechanical equation

Substituting Eqs. (1) and (6) into Eq. (5) and rearranging yields
the following for x-component, y-component, and z-component,
respectively:

α
∂P
∂x

þ 3βK
∂T
∂x

þ ðGþ λsÞ
∂2ux

∂x2
þ ∂2uy

∂x∂y
þ ∂2uz

∂x∂z

� �

þ G
∂2ux

∂x2
þ ∂2ux

∂y2
þ ∂2ux

∂z2

� �
þ Fx ¼ 0 ðA1Þ

α
∂P
∂y

þ 3βK
∂T
∂y

þ ðGþ λsÞ
∂2ux

∂x∂y
þ ∂2uy

∂y2
þ ∂2uz

∂y∂z

� �

þ G
∂2uy

∂x2
þ ∂2uy

∂y2
þ ∂2uy

∂z2

� �
þ Fy ¼ 0 ðA2Þ

α
∂P
∂z

þ 3βK
∂T
∂z

þ ðGþ λsÞ
∂2ux

∂x∂z
þ ∂2uy

∂y∂z
þ ∂2uz

∂z2

� �

þ G
∂2uz

∂x2
þ ∂2uz

∂y2
þ ∂2uz

∂z2

� �
þ Fz ¼ 0 ðA3Þ

Eqs. (A1)–(A3) can be expressed in vector notation as

α∇P þ 3βKα∇T þ ðλs þ GÞ∇ð∇⋅uÞ þ G∇2uþ F ¼ 0 ðA4Þ
which is the thermoporoelastic version of the Navier equations.

Take the partial derivative with respect to x of x-component
Eq. (A1), and the analogous for Eqs. (A(2) and A3), and add the
three equations to obtain

α
∂2P
∂x2

þ ∂2P
∂y2

þ ∂2P
∂z2

� �
þ ∂Fx

∂x
þ ∂Fy

∂y
þ ∂Fz

∂z
þ 3βK

∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

� �

þðGþ λsÞ
∂2

∂x2
∂ux

∂x
þ ∂uy

∂y
þ ∂uz

∂z

� �
þ G

∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

� �
∂ux

∂x

þðGþ λsÞ
∂2

∂y2
∂ux

∂x
þ ∂uy

∂y
þ ∂uz

∂z

� �
þ G

∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

� �
∂uy

∂y

þðGþ λsÞ ∂
2

∂z2
∂ux

∂x
þ ∂uy

∂y
þ ∂uz

∂z

� �
þ G

∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

� �
∂uz

∂z
¼ 0

ðA5Þ
Eq. (A5) written in vector notation is

α∇2P þ 3βK∇2T þ ðλs þ 2GÞ∇2ð∇⋅uÞ þ ∇⋅F ¼ 0 ðA6Þ
The divergence of the displacement vector is the volumetric strain

∇⋅u¼ ∂ux

∂x
þ ∂uy

∂y
þ ∂uz

∂z
¼ εxx þ εyy þ εzz ¼ εv ðA7Þ

Summing Eq. (1) over x, y, and z-components gives the trace of
Hooke's law for a thermoporoelastic medium. This sum is an
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invariant for an isotropic solid, and is

λþ 2
3
G

� �
εv ¼

τxx þ τyy þ τzz
3

−αP−3βKðT−Tref Þ ¼ τm−αP−3βKðT−Tref Þ

ða8Þ
Substituting Eqs. (A(7) and A8) into Eq. (A6) yields

α∇2P þ 3βK∇2T þ λþ 2G
λþ ð2=3ÞG∇2ðτm−αP−3βKðT−Tref ÞÞ þ ∇⋅F ¼ 0 ðA9Þ

The coefficient of the third term in Eq. (A9) is only a function of
Poisson's ratio ν

λþ 2G
λþ ð2=3ÞG ¼ 3ð1−νÞ

ð1þ νÞ ðA10Þ

Eq. (A9) then becomes

3ð1−νÞ
ð1þ νÞ∇

2τm þ ∇⋅F−
2ð1−2νÞ
ð1þ νÞ ðα∇2P þ 3βK∇2TÞ ¼ 0 ðA11Þ
Appendix B. Empirical corrections for porosity

B.1. (Zimmerman, 1986) poroelasticity

A theory of hydrostatic poroelasticity (Zimmerman et al., 1986)
has been proposed that accounts for the coupling of rock deforma-
tion with fluid flow inside the porous rock. Porous rock has a bulk
and a pore volume, and those volumes are acted on by pore
pressure and mean stress. The compressibilities are written in
terms of those quantities.

Cbc ¼
−1
Vb

∂Vb

∂sm

� �
p

ðB1Þ

where subscript b refers to bulk volume.
Relationships between these compressibilities are derived for

an idealized porous medium and from that, dependence of
porosity on effective stress

dϕ¼ −½Cbcð1−ϕÞ−CrÞds′ ðB2Þ
where Cr is rock grain compressibility, an expression for the Biot's
coefficient

α¼ 1−
Cr

Cbc
ðB3Þ

and dependence of bulk volume on pore pressure and effective
stress

dVb ¼ −VbCbcds′þ CrdP ðB4Þ

B.2. Rutqvist et al. (2002), sedimentary rock

Rutqvist et al. (2002) presented the following function for
porosity, obtained from laboratory experiments on sedimentary
rock by Davies and Davies (1999)

ϕ¼ ϕr þ ðϕ0−ϕrÞe−αs′ B5

where ϕ0 is zero effective stress porosity, ϕr is high effective stress
porosity, and the exponent a is a parameter.

B.3. Rutqvist et al. (2002), fractures

For fractured media, they defined an aperture width bk for
direction k as

bk ¼ b0;k þ Δbkðe−ds′−e−ds
′
0 Þ; k¼ x; y; z ðB6Þ

where subscript 0 refers to initial conditions, Δbk is the aperture
change, and the exponent d is a parameter. Porosity is correlated
to changes in bk as

ϕ¼ ϕ0
b1 þ b2 þ b3

b1;0 þ b2;0 þ b3;0
ðB7Þ

B.4. McKee (1988)

McKee et al. (1988) derived a relationship between porosity
and effective stress from hydrostatic poroelasticity theory by
assuming incompressible rock grains

ϕ¼ ϕ0
e−cpðs′−s

′
0Þ

1−ϕ0ð1−e−cpðs′−s
′
0ÞÞ

ðB8Þ

where Cp is average pore compressibility.
Appendix C. Permeability correlations

C.1. Rutqvist et al. (2002), sedimentary rock

An associated function for permeability in terms of porosity is

k¼ k0ecððϕ=ϕ0Þ−1Þ ðC1Þ
where k0 is zero stress permeability and the exponent c is a
parameter.

C.2. Rutqvist et al. (2002), fractures

Direction k permeability is correlated to fracture aperture of
other directions l and m as

kk ¼ kk;0
b3l þ b3m
b3l;0 þ b3m;0

ðC2Þ

C.3. Carman–Kozeny

A relationship between permeability and effective stress was
obtained from the Carman–Kozeny equation

k∝
ϕ3

ð1−ϕÞ2
ðC3Þ

and the above relationship for porosity. These relationships fit
laboratory and field data for granite, sandstone, clay, and coal.

C.4. Ostensen (1986)

Ostensen (1986) studied the relationship between effective
stress and permeability for tight gas sands and approximated
permeability as

kn ¼Dln
s′;n

s′
ðC4Þ

where n is 0.5, D is a parameter, and s′;nis effective stress for zero
permeability, obtained by extrapolating measured square root
permeability versus effective stress on a semi-log plot.

C.5. Verma and Pruess (1988)

Verma and Pruess (1988) presented a power law expression
relating permeability to porosity

k−kc
k0−kc

¼ ð ϕ−ϕc

ϕ0−ϕc
Þn ðC5Þ

where kc and ϕc are asymptotic values of permeability and
porosity, respectively, and exponent n is a parameter.
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Appendix D. Analytical solutions for 1D consolidation problem

The anlaytical solution for the 1-D consolidation problem
follows:

Pressure during drained conditions is

Pðz; tÞ ¼ P0 ∑
∞

n ¼ 1;3;::

4
nπ

sin
nπz
2h

	 

exp

−n2π2kt

4μSh2

 !
ðD1Þ

Vertical displacement of the upper surface is

wðz¼ 0; tÞ ¼ sexh
ðλþ 2GÞ 1−

α2PM
ðλþ 2Gþ α2PMÞ ∑

∞

n ¼ 1;3;::

8
n2π2

exp
−n2π2kt

4μSh2

 !" #

ðD2Þ
where

P0 ¼
αPM

ðλþ 2Gþ α2PMÞ sex ðD3Þ

M¼ 1
ϕct

ðD4Þ

S¼ 1
M

þ α2P
λþ 2G

ðD5Þ
Appendix E. Analytical solutions for 1D heat conduction
problem

The analytical solution for the 1-D heat conduction problem
follows:

Temperature during the cooling is:

Tðz; tÞ ¼ Tb þ ðTi−TbÞerf c
zffiffiffiffiffiffiffiffiffiffiffi
4DTt

p
 !

ðE1Þ

The vertical displacement is

wðz¼ 0; tÞ ¼−
βð1þ νÞðTi−TbÞ

ð1−νÞ h� erf c
hffiffiffiffiffiffiffiffiffiffiffi
4DTt

p
 !

þ
exp −h2=ð4DTtÞ

	 

−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π=ð4DTtÞ
p

2
4

3
5 ðE2Þ
Appendix F. Analytical solutions for Mandel's problem

The original Mandel's solutions (1953) provides only the
analytical form for the pore pressure. Later, Abousleiman et al.
(1996) extend the solution to all field quantities for materials with
transverse isotropy, as well as compressible pore fluid and solid
constitutes. The solutions are given as the following.

Pressure solution

pðx; tÞ ¼ 2F
aA1

∑
∞

i ¼ 1

sinðψ iÞ
ψ i−sinðψ iÞcosðψ iÞ

ðcosðψ ix=aÞ−cosðψ iÞÞexp −
ψ2
i ct
a2

� �� �

ðF1Þ
where a is dimension of specimen, 2F is force applied to the top of
the specimen (Pa), ψ i is an infinite series defined by tanψ i=ψ i ¼
A1=A2, x is location of interest (m), t is time (s)

A1 ¼
α1

2M33−2α1α2M13 þ α3
2M11

α3M11−α1M13
þ M11M33−M13

2

M α3M11−α1M13ð Þ ðF2Þ

A2 ¼
α3M11−α1M33

M11

where αi is Biot constant of direction QUOTE and Mij is drained
elastic modulus defined as

M11 ¼M33 ¼
Eð1−νÞ
1−ν−2ν2
M13 ¼
Eν

1−ν−2ν2

and, c1 is fluid flow and mechanical properties of the specimen
defined as

c1 ¼
k1MM11

μf M
u
11

where k1 is permeability in the x-direction, M is the Biot modulus
defined as ϕctð Þ−1, μ is fluid viscosity, and Mu

11 is undrained elastic
modulus in the x-direction defined as Mu

11 ¼M11 þ α21M
Displacement solutions:
x-direction

uxðx; tÞ ¼−
F
a

M13

M11M33−M2
13

−
F
a

α1α3M þM13

A1Mðα3M11−α1M13Þ

(

� ∑
∞

i ¼ 1

sinðψ iÞcosðψ iÞ
ψ i−sinðψ iÞcosðψ iÞ

exp −
ψ2
i c1t
a2

� �� �)
x

−
2Fα1
A2M11

∑
∞

i ¼ 1

cosðψ iÞsinðψ ix=aÞ
ψ i−sinðψ iÞcosðψ iÞ

exp −
ψ2
i c1t
a2

� �� �

z-direction

uzðz; tÞ ¼
F
a

M11

M11M33−M2
13

1þ 2
A2

A1
−1

� �� �

� ∑
∞

i ¼ 1

sinðψ iÞcosðψ iÞ
ψ i−sinðψ iÞcosðψ iÞ

exp −
ψ2
i c1t
a2

� �� �
z

Volumetric strain

εv ¼ 1−ð1−ux=xÞð1−uy=yÞ
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