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Summary

For processes such as production from low-permeability reser-
voirs and storage in subsurface formations, reservoir flow and the
reservoir stress field are coupled and affect one another. This pa-
per presents a thermal/hydrological/mechanical (THM) reservoir
simulator that is applicable to modeling such processes. The fluid-
and heat-flow portion of our simulator is for general multiphase,
multicomponent, multiporosity systems. The geomechanical por-
tion consists of an equation for mean stress, derived from linear
elastic theory for a thermo-poroelastic system, and equations for
stress-tensor components that depend on mean stress and other
variables. The integral finite-difference method is used to solve
these equations. The mean-stress and reservoir-flow variables are
solved implicitly, and the remaining stress-tensor components are
solved explicitly. Our simulator is verified by use of analytical
solutions for stress- and strain-tensor components and is com-
pared with published results.

Introduction

For processes such as oil and gas production from low-perme-
ability and unconsolidated reservoirs, energy production from
geothermal reservoirs, and carbon-dioxide storage in deep sa-
line aquifers, an analysis of fluid and heat flow coupled with
rock deformation is advantageous over one of fluid and heat
flow alone because reservoir flow and the reservoir stress field
affect one another (Rutqvist and Tsang 2002; Chin et al. 2002;
Xiong et al. 2013).

To simulate such a THM process, the two sets of equations,
the fluid and heat flow and the geomechanics are both solved on a
discretized medium. The different ways these two sets of equa-
tions can be coupled were described by Settari and Walters
(1999) and Tran et al. (2005). Three of these methods are itera-
tive, explicit, and full-coupling. In iterative coupling, the fluid-
and heat-flow equations and the geomechanical equations are
solved iteratively and sequentially until solutions for both sets
converge. Examples of THM processes being simulated with iter-
ative coupling include Chin et al. (2002) and Settari and Mourits
(1998). In explicit coupling, one set of equations is solved for first
and the other set is solved for next with the updated variables of
the previously solved for set. Explicit coupling is a special case
of iterative coupling, with only one iteration taken. An example
of THM processes being simulated with explicit coupling is
Minkoff et al. (1999). In full coupling, both sets of equations are
solved simultaneously. Examples of THM processes being simu-
lated with full coupling include Gutierrez and Lewis (1998) and
Wan et al. (2003).

A fully coupled THM simulator was presented by Winterfeld
and Wu (2014) and Hu et al. (2013). In their approach, the geome-
chanical equations relating stresses and displacements were com-
bined to yield an equation for mean stress, a primary variable, and
volumetric strain, a rock property. The computational cost of fully
coupling this geomechanical formulation to the fluid- and heat-

flow equations is relatively small because there is only one addi-
tional equation and primary variable. However, that formulation
is not able to calculate the stress-tensor components and informa-
tion from these components, such as principal-stress directions
that are applicable to predicting rock failure (Jaeger et al. 2007),
is lacking.

In this paper, we present a technique to obtain stress-tensor
components in the context of this mean-stress geomechanical for-
mulation. We begin by summarizing the mean-stress geomechani-
cal formulation, along with the associated fluid- and heat-flow
formulation, and then illustrate the technique for how to obtain
stress-tensor components. Four example problems are then used
to provide verification of our technique. The first is a comparison
of simulation results to the analytical solution for displacement by
a uniform load on a semi-infinite elastic medium. The second is a
comparison of simulation to the analytical solution for the 2D
Mandel-Cryer effect. The third and fourth, a single-phase deple-
tion problem and a simulation of carbon dioxide (CO2) injection
into a depleting gas field, show a comparison of our simulator to
published results.

Fluid- and Heat-Flow Formulation

Our simulator’s fluid and heat flow formulation is based on the
TOUGH2 one (Pruess et al. 1999) for general multiphase, multi-
component, multiporosity systems. Fluid advection is described
with a multiphase version of Darcy’s law. Heat flow occurs by
conduction and convection, the latter including sensible as well as
latent heat effects. The description of thermodynamic conditions
is based on the assumption of local equilibrium of all phases and
rock media. The conservation equations for mass and energy can
be written in differential form as

@Mk

@t
¼ r � Fk þ qk; ð1Þ

where superscript k refers to a conserved species (mass or
energy), M is conserved species per unit volume, q is source or
sink per unit volume, and F is flux. There are N conserved mass
components, and energy is denoted by index Nþ1. Mass per unit
volume is a sum over phases:

Mk ¼ /
X

l
SlqlX

k
l ; 1 � k � N; ð2Þ

where / is porosity, subscript l refers to a phase, S is phase satura-
tion, q is phase mass density, and X is phase mass fraction. Energy
per unit volume accounts for internal energy in rock and fluid and
is the following:

MNþ1 ¼ 1� /ð ÞCrqrT þ /
X

l
SlqlUl; ð3Þ

where qr is rock density, Cr is rock specific heat, and U is phase-
specific internal energy.

Advective mass flux is a sum over phases:

Fk
adv ¼

X
l
FlX

k
l ; 1 � k � N; ð4Þ

and phase flux Fl is given by the multiphase version of Darcy’s law,
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Fl ¼ �k
krlql

ll

rPþrPc;l � qlg
� �

; ð5Þ

where k is absolute permeability, kr is phase relative permeability,
l is phase viscosity, Pc is phase capillary pressure, and g is the
gravity vector. Capillary pressure is relative to a reference phase,
which is the gaseous phase. Energy flux includes conductive and
convective components:

FNþ1 ¼ �ktrT þ
X

l
hlFl; ð6Þ

where kt is thermal conductivity and h is specific enthalpy.

Mean-Stress Geomechanical Formulation

Our simulator’s mean-stress geomechanical formulation is based
on the classical theory of elasticity extended to multiporosity noni-
sothermal media. In the theory of elasticity, the stress/strain behav-
ior of an isothermal elastic material is described by Hooke’s law:

s ¼ 2G«þ k tr«ð ÞI; ð7Þ

where G is shear modulus and k is the Lamé parameter. For a
thermo-poroelastic medium, a porous medium subject to changes
in both temperature and stress, a pore pressure and a temperature
term are added to Eq. 7 (McTigue 1986), yielding

s� aPI� 3bK T � Trefð ÞI ¼ 2G«þ k tr«ð ÞI; ð8Þ

where a is Biot’s coefficient, Tref is reference temperature for a
thermally unstrained state, K is bulk modulus, and b is linear ther-
mal-expansion coefficient.

Bai et al. (1993) present a generalization of Hooke’s law for a
multiporosity medium, a common example of which is the dual-po-
rosity medium consisting of a network of fractures and rock matrix:

s�
X

j
ajPjI ¼ 2G«þ k tr«ð ÞI; ð9Þ

where the summation is over multiporosity continua. We obtain
Hooke’s law for a thermo-multiporoelastic medium by includ-
ing the temperature term from Eq. 8 in Eq. 9 for each multi-
porosity continuum, because temperature varies between
multiporosity continua. We also weight each temperature term
by the porous continuum volume fraction, xj, because the bulk
modulus and linear thermal-expansion coefficient describe the
overall porous medium:

s�
X

j
½ajPj þ 3bKxj Tj � Tref

� �
�

n o
I ¼ 2G«þ k tr«ð ÞI:

� � � � � � � � � � � � � � � � � � � ð10Þ

Expressions for the generalized Biot’s coefficients, aj, for a dual-
porosity medium were presented by Wilson and Aifantis (1982):

a1 ¼ 1� K

K�
ð11Þ

and

a2 ¼
K

K�
1� K�

Ks

� �
; ð12Þ

where Ks is the solid modulus, K� is the modulus of the porous
medium without the fractures, subscript 1 refers to the fractures,
and subscript 2 refers to the matrix.

Two other fundamental relations in the theory of linear elastic-
ity are the relation between the strain tensor and the displacement
vector u,

« ¼ 1

2
ruþrutð Þ; ð13Þ

and the static equilibrium equation,

r � sþ Fb ¼ 0; ð14Þ

where Fb is the body force. We combine Eqs. 10, 13, and 14 to
obtain the thermo-multiporoelastic Navier equation:

r
�X

j
ajPj þ 3bKxjTj

� ��
þ kþ Gð Þr r � uð Þ

þ Gr2uþ Fb ¼ 0: � � � � � � � � � � � � � � � � � � � � � ð15Þ
Taking the divergence of Eq. 15 yields

r2

�X
j

ajPj þ 3bKxjTj

� ��
þ kþ 2Gð Þr2 r � uð Þ þ r � Fb ¼ 0:

� � � � � � � � � � � � � � � � � � � ð16Þ

The trace of the stress tensor, an invariant, is obtained from
Eq. 10 as

Kev ¼ sm �
X

j
½ajPj þ 3bKxj Tj � Tref

� �
�; ð17Þ

where sm is the mean stress, the average of the normal stress-
tensor components, and ev is the volumetric strain, the sum of the
normal strain components. Finally, combining Eqs. 16 and 17 and
noting that the divergence of the displacement vector is the volu-
metric strain yield an equation relating mean stress, pore pres-
sures, and temperatures (Winterfeld and Wu 2014):

r � 3 1� tð Þ
1þ t

rsm þ Fb �
2 1� 2tð Þ

1þ t

�

�r
X

j
ajPj þ 3bKxjTj

� �h io
¼ 0; � � � � � � � � � � ð18Þ

where t is Poisson’s ratio.
We couple fluid and heat flow to geomechanics by solving

Eq. 18 along with the mass and energy conservation equations (Eq.
1) from the fluid and heat flow formulation. Eq. 18 is a momentum
conservation equation in terms of mean stress, the primary thermo-
dynamic variable associated with our geomechanical formulation.
Volumetric strain is an additional property arising from our geome-
chanical formulation and is calculated from Eq. 17.

Rock properties, namely porosity and permeability, are corre-
lated to effective stress, a general definition of which was given
by Biot and Willis (1957):

s0 ¼ sm � aP: ð19Þ

One such correlation for porosity is based on its definition, the
ratio of fluid volume to bulk volume:

/ ¼ 1� Vs

V0 1� evð Þ ; ð20Þ

where Vs is the solid or grain volume and V0 is the unstrained
bulk volume. Other such correlations for these properties used in
our simulator appear in Winterfeld and Wu (2014).

Stress-Tensor Component Formulation

In this section, we derive equations for calculation of the stress-
tensor components. Consider the x-component of Eq. 15:

@

@x
½h P;Tð Þ� þ kþ Gð Þ @

@x
r � uð Þ þ Gr2ux þ Fb;x ¼ 0;

� � � � � � � � � � � � � � � � � � � ð21Þ

where

h P;Tð Þ ¼
X

j
½ajPj þ 3bKxj Tj � Tref

� �
�: ð22Þ

Differentiating Eq. 21 by x and eliminating strains and dis-
placements in favor of stresses with Eqs. 10, 13, and 17 yield an
equation relating the xx-normal stress component, mean stress,
pore pressures, and temperatures:

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .
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@2

@x2
½h P;Tð Þ� þ 3

2 1þ tð Þ
@2

@x2
½sm � h P;Tð Þ�

þ 1

2
r2 sxx � h P;Tð Þ � 3t

1þ t
½sm � h P;Tð Þ�

� 	

þ @

@x
Fb;x ¼ 0: � � � � � � � � � � � � � � � � � � � � � � � � ð23Þ

Repeating this procedure for the y- and z-components of Eq.
15 yields similar equations for the yy- and zz-normal stress
components:

@2

@y2
½h P;Tð Þ� þ 3

2 1þ tð Þ
@2

@y2
½sm � h P;Tð Þ�

þ 1

2
r2 syy � h P;Tð Þ � 3t

1þ t
½sm � h P;Tð Þ�

� 	

þ @

@y
Fb;y ¼ 0 � � � � � � � � � � � � � � � � � � � � � � � � ð24Þ

@2

@z2
½h P;Tð Þ� þ 3

2 1þ tð Þ
@2

@z2
½sm � h P;Tð Þ�

þ 1

2
r2 s zz � h P;Tð Þ � 3t

1þ t
½sm � h P;Tð Þ�

� 	

þ @

@z
Fb;z ¼ 0: � � � � � � � � � � � � � � � � � � � � � � � � ð25Þ

Consider the y-component of Eq. 15:

@

@y
½h P;Tð Þ� þ kþ Gð Þ @

@y
r � uð Þ þ Gr2uy þ Fb;y ¼ 0:

� � � � � � � � � � � � � � � � � � � ð26Þ

Differentiating Eq. 26 by x, differentiating Eq. 21 by y, averag-
ing the two, and eliminating strains and displacements as before
yield an equation relating the xy-shear stress component, mean
stress, pore pressures, and temperatures:

@2

@x@y
½h P;Tð Þ� þ 3

2 1þ tð Þ
@2

@x@y
½sm � h P;Tð Þ�

þ 1

2
r2sxy þ

1

2

@

@x
Fb;y þ

@

@y
Fb;x

� �
¼ 0: � � � � � � � � ð27Þ

Repeating this procedure for the y- and z-components of Eq.
15 yields an equation for the yz-shear stress component; repeating
this procedure for the x- and z-components of Eq. 15 yields an
equation for the xz-shear stress component:

@2

@y@z
½h P;Tð Þ� þ 3

2 1þ tð Þ
@2

@y@z
½sm � h P;Tð Þ� þ 1

2
r2syz

þ 1

2

@

@y
Fb;z þ

@

@z
Fb;y

� �
¼ 0 � � � � � � � � � � � � � � � � ð28Þ

@2

@x@z
½h P;Tð Þ� þ 3

2 1þ tð Þ
@2

@x@z
½sm � h P;Tð Þ� þ 1

2
r2sxz

þ 1

2

@

@x
Fb;z þ

@

@z
Fb;x

� �
¼ 0: � � � � � � � � � � � � � � � � ð29Þ

Eqs. 23 through 25 and 27 through 29 relate each normal or
shear-stress component to mean stress, pore pressures, and tem-
peratures, the primary variables of the mean-stress geomechani-
cal formulation.

Discretization and Solution of
Simulator Equations

The fluid and heat flow and geomechanical equations are discre-
tized in space with the integral finite-difference method (Narasim-
han and Witherspoon 1976). In this method, the simulation domain
is subdivided into gridblocks, and those equations are integrated
over a gridblock volume, V:

d

dt

ð
V

MkdV ¼
ð

C
Fk � ndCþ

ð
V

qkdV; ð30Þ

where C is the gridblock surface. Because geomechanical effects
result in gridblock geometry changes, the integrands of Eq. 25
depend on strain. This dependence is formulated as

w ew
� �

¼ w0 1� ew
� �

;w ¼ A;D; or V; ð31Þ

where subscript 0 refers to zero strain, A refers to area, D refers to
distance, and V refers to volume. Replacing volume integrals with
gridblock volume averages and surface integrals with discrete
sums over gridblock surface segment averages yields the follow-
ing discrete form of the simulator equations:

½Mk 1� evð Þ�nþ1 � ½Mk 1� evð Þ�n

� Dt

V0

�X
j
A0 1� eA; j

� �
Fk

j þ V0 1� evð Þqk

�n�

¼ 0; � � � � ð32Þ

where the summation is over gridblock surface segments, super-
script n is timestep, and superscript n* bracketing the flux and
generation terms denotes that those terms are evaluated at the pre-
vious timestep (n) or the current one (nþ 1).

The simulator equations and primary variables comprising the
single-porosity version of our formulation are summarized in
Table 1. This system of equations is solved in a sequential man-
ner with the Newton-Raphson method. The Jacobian matrices
consist of square sub-matrices that are associated with a gridblock
or a connection between two gridblocks. Conservation of mass,
energy, and the mean-stress equation are solved simultaneously
first. This solution is also performed in the THM simulator pre-
sented by Winterfeld and Wu (2014), whose code is the starting
point for this simulator. Normal and shear stresses appearing in
those equations are evaluated at the previous timestep, and the
rest of the primary variables are evaluated at the current timestep.
Solution of those equations yields pressure, mass fractions, tem-
perature, and mean stress at the current timestep. The size of that
Jacobian’s sub-matrices is two plus the number of mass compo-
nents. The normal and shear-stress equations, Eqs. 23 to 25 and
27 to 29, are solved next. In those solutions, pressure, mass frac-
tions, temperature, and mean stress are evaluated at the current
timestep. Normal and shear stresses appearing in the Laplacian
terms are also evaluated at the current timestep, and other instan-
ces of those stresses are evaluated at the previous timestep. The
Jacobian matrix for each stress-tensor component is linear,

. . . . . . . . . . . . . .

. . . . . . . . . . . .

Equation Associated Primary Variables 
Conservation of mass (Eq. 1) Pressure, N –1 mass fractions 

Conservation of energy (Eq. 1) Temperature

Mean stress (Eq. 18) Mean stress 

Normal stresses (Eq. 23) xx, yy, zz normal stresses

Shear stresses (Eq. 24) xy, yz, xz shear stresses 

Table 1—Summary of single-porosity version formulation including equations and associated primary

variables for N mass components.
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independent of the other stress-tensor components, and has a sub-
matrix size of one. The modification of that THM-simulator code
to include calculation of these stress-tensor components is rela-
tively straight-forward, and the additional calculations do not
increase execution time substantially. Fig. 1 is a flow chart illus-
trating this equation solution.

Our simulator is massively parallel, with domain partitioning
with the METIS and ParMETIS packages (Karypis and Kumar
1998, 1999). Each processor computes Jacobian-matrix elements
for its own gridblocks, and exchange of information between pro-
cessors uses MPI (message passing interface) and allows calcula-
tion of Jacobian-matrix elements associated with interblock
connections across domain-partition boundaries. The Jacobian
matrix is solved in parallel with an iterative linear solver from the
Aztec package (Tuminaro et al. 1999).

Example Problems

We provide four example problems for verification of our tech-
nique. The first is a comparison of simulation to the analytical so-
lution for displacement caused by a uniform load on a semi-
infinite elastic medium. There is no fluid or heat flow in this prob-
lem. The second is a comparison of simulation to the analytical
solution for the 2D Mandel-Cryer effect. The last two, a single-
phase depletion problem and a simulation of CO2 injection into a
depleting gas reservoir, show a comparison of our simulator to
published results.

Displacement From Uniform Load on Semi-Infinite Elastic

Medium. With a semi-infinite elastic medium, the displacement
caused by a uniform load acting on its surface over a circular area
of radius a is given by Timoshenko and Goodier (1951) as

w rð Þ ¼ 4 1� �2ð Þpr

pE

ðp
2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

a2
sin2h

r
dh

 !
; r < a

w rð Þ ¼ 4 1� �2ð Þpr

pE

�
ðp

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

r2
sin2h

r
dh� 1� a2

r2

� �ðp
2

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

r2
sin2h

r
2
664

3
775; r > a;

� � � � � � � � � � � � � � � � � � � ð33Þ

where p is the load, w(r) is displacement at a radius r from the
center of the circle, and the integrals in the brackets are elliptic
integrals of the first and second kind. The normal z-direction
stress along the z-axis at the center of the circle is given as well:

szz ¼ p �1þ z3

a2 þ z2ð Þ
3

2

2
64

3
75: ð34Þ

We used this analytical solution to verify calculation of normal
stress-tensor components. We approximated the semi-infinite
medium as a large rectangular parallelepiped 194 m in the x- and
y- directions and 1320 m in the z-direction. We subdivided this
medium into a 200� 200�800 Cartesian grid. Gridblock x- and
y-direction length in the vicinity of the center was 0.1 m and
increased further away from it. Gridblock z-direction length was
0.2 m in the vicinity of the surface and increased further away from
it. The loaded circle was at the center of the top xy-face and had a
1.0-m radius. Because our grid was Cartesian, we approximated this
circle as 314 loaded squares of radius 0.1 m, as shown in Fig. 2.
The rest of the medium’s surface had no load exerted on it.

Our geomechanical formulation requires boundary conditions
for mean stress and those stress-tensor components that are calcu-
lated. We specified a mean stress of 0.48 MPa and a normal z-
direction stress (the load) of 0.6 MPa over the loaded circle. The
equal x- and y-direction normal stresses were then 0.42 MPa.
There is no fluid or heat flow in this problem, so only mean stress
and stress-tensor components are solved for. We solve for mean
stress first, and calculate stress-tensor components next with the
mean-stress solution. Because gridblock geometry depends on
stress-tensor components that are evaluated at the previous time-
step, we must repeat these calculations over a number of time-
steps, until the stress-tensor components are converged. This
converged solution is that obtained by a fully coupled or fully
implicit solution to these stress equations.

The displacement caused by the load is the change of the
medium’s overall length in the direction of the applied load,
given by

w ¼
X

D0;zezz; ð35Þ

where D0;z is z-direction gridblock unstrained length and the sum
is over a z-direction column of gridblocks. The z-direction normal
strain is calculated from Hooke’s law:

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Start

Jacobian calculation

Equations:

Solve Jacobian and
update P, Xk, T, τm

No YesVariables
converged?

Cons. of mass component
Cons. of energy
Mean stress

Jacobian calculation and
solution for τxx

Jacobian calculation and
solution for τyy

Jacobian calculation and
solution for τxz

Variables : P, Xk, T, τm

Fig. 1—Flow chart for solution of mass, energy, and geomechanical equations.
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ezz ¼
1

E
½szz � t sxx þ syy

� �
�: ð36Þ

The analytical and simulated displacements are shown in Fig. 3,
and those for the z-direction normal stresses are shown in Fig. 4. In
both cases, they are hardly distinguishable.

The 2D Mandel-Cryer Effect. Consider a fluid-filled poroelastic
material with a constant compressive force applied to the top and
bottom. There is an instantaneous compression and uniform pore
pressure increase caused by the force. Afterward, the material is
allowed to drain laterally. Drainage is accompanied by a decrease
in pore pressure near the edges, and the material there becomes
less stiff, resulting in a load transfer to the center and a pore pres-
sure there that reaches a maximum and then declines. This pore-
pressure behavior is the Mandel-Cryer effect (Mandel 1953), and
Abousleiman et al. (1996) derived an analytical solution to it. We
use this analytical solution to verify our coupled fluid flow and
geomechanics calculations.

Our simulation domain is a 1000-m square and is subdivided
into a uniform Cartesian 200� 200 grid. Rock properties are the

following: porosity is 0.094, permeability is 10�13 m
2
, Young’s

modulus is 5.0 GPa, Poisson’s ratio is 0.25, and Biot’s coefficient
is 1.0.

We simulate the compression and then the drainage. The initial
unstrained state is pore pressure and normal stress components at
2.0 MPa. The compressive portion of the simulation, with an
imposed mean stress of 5.0 MPa at the top and bottom, is run until
equilibrium is reached. The pore pressure increases to 3.28 MPa
in this step, and the mean stress becomes a uniform 5.0 MPa
throughout the simulation domain. Because the lateral boundaries
are free, the x- and y-direction effective stresses are zero, so the
normal stresses in those directions are 3.28 MPa, and the normal
z-direction stress is therefore 8.44 MPa.

In the drainage portion of the simulation, the initial pore pres-
sure (2.0 MPa) is imposed at the lateral boundaries. Because the
effective stresses there are zero, the x- and y-direction normal
stresses there have that value. The normal z-direction stresses at
the top and bottom remain at 8.44 MPa. The drainage simulation
is run for 100,000 seconds with 100-second timesteps. Fig. 5
shows the match of centerline pore pressure with the analytical
solution. The displacements in the x- and z-direction are calcu-
lated as was performed in the previous example problem. The
applied stress causes the system to contract in the z-direction and
expand in the x-direction. The expansion, shown in Fig. 6, is
matched almost perfectly, and the match of the contraction,
shown in Fig. 7, shows only a small deviation from the analytical
solution at early times.

Depletion of a Single-Phase Reservoir. We ran the depletion of
a single-phase reservoir, adapted from Dean et al. (2006), as a
comparison of our simulator to published results. A single-phase
(water) reservoir, 671 m2 in area and 61 m thick, with a single ver-
tical well at the center and completed along the entire thickness,
was produced at a constant rate of 27.59 kg/s for 500 days. Reser-
voir porosity was initially 0.20, horizontal permeability was
5�10�14 m2, vertical permeability was 5�10�15 m2, Young’s mod-
ulus was 6.87�107 Pa, Poisson’s ratio was 0.30, and the rock den-
sity was 2700 kg/m3. The z-direction stress at the reservoir top
was 41.4 MPa, and the constant horizontal stresses were 27.6
MPa. Pore pressure at the reservoir top was 20.7 MPa. Pore pres-
sure increased with increasing depth caused by the hydrostatic
gradient, and z-direction stress increased with increasing depth
caused by the overburden.

Our Cartesian grid was 11� 11�10 with constant gridblock
dimensions, and our timestep size was 50 days. We used the same
relations for porosity and gridblock volume as used by Dean et al.
(2006); gridblock volume was constant, and porosity varied with
volumetric strain as

/ ¼ /i þ ev;i � ev; ð37Þ

where subscript i refers to initial conditions.

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 2—Approximation of loaded 1.0-m radius circle by 314
square gridblocks of length 0.1 m.
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circular load.
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Fig. 8 shows a comparison of average reservoir pressure, and
Fig. 9 shows a comparison of subsidence around the well,
between our simulation and Dean et al. (2006). The average-reser-
voir-pressure match necessitated usage of the previous-gridblock
volume and porosity relations and would not be as good if grid-

block volume varied with volumetric strain and porosity varied
with effective stress, as we formulated previously. Our subsidence
is very similar to the published results and differs by approxi-
mately 5% at 500 days.

In Salah Gas Project. The In Salah Gas Project, in central Alge-
ria, is a CO2-storage project. Natural gas produced nearby is high
in CO2, and this CO2 is injected back into the water leg of a
depleting gas field for geological storage. Surface uplift from CO2

injection was measured by satellite-based inferrometry, and
Rutqvist et al. (2010) performed a reservoir-geomechanical analy-
sis of In Salah CO2 injection and surface uplift with the
TOUGH2-FLAC numerical simulator (Rutqvist et al. 2002) to
determine whether the uplift can be explained by pressure
changes and deformation in the injection zone only. We reran
their analysis on our simulator to match their simulated results.

The domain was 10�10�4 km with one 1.5-km horizontal
injection well at 1810-m depth and in the domain center. The do-
main consisted of four geological layers—Shallow Overburden,
Caprock, Injection Zone, and Base; their properties are shown in
Table 2. The reservoir initially contained water at hydrostatic
equilibrium. The initial temperature and pressure at the injection
well were 90 �C and 18.5 MPa, respectively. The initial stress ten-
sor was calculated assuming no shear stresses. Then, the normal
z-direction stress, from Eq. 14, satisfies

@szz

@z
þ Fb;z ¼ 0: ð38Þ. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 5—Match of simulated centerline pore pressure (dotted
line) with analytical solution (solid line) for Mandel-Cryer effect.
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Normal stresses are also assumed to have only z-direction de-
pendence. Then, Eqs. 23 and 24 become

@2

@z2
sxx � h P;Tð Þ � 3t

1þ t
½sm � h P;Tð Þ�

� 	
¼ 0 ð39Þ

and

@2

@z2
syy � h P;Tð Þ � 3t

1þ t
½sm � h P;Tð Þ�

� 	
¼ 0: ð40Þ

At a reference elevation, z0, we specify normal stress-tensor
components and two normal stress ratios, Rxz and Ryz, given by

lim
z!z0

sxx � sxx;0

szz � szz;0
¼ Rxz ð41Þ

and

lim
z!z0

syy � syy;0

szz � szz;0
¼ Ryz ð42Þ

to completely determine the normal stress-tensor components.
These ratios were 1.2 and 0.8, respectively. The lateral reservoir
boundaries were maintained at constant pressure, the reservoir
boundaries were maintained at constant stress, and CO2 was
injected at 9.734 kg�sec�1 for 3 years. Surface uplift results from
changes in gridblock height, which is given by

Dzk ¼ Dzk;i
1� ezzð Þ
1� ezz;i

� � ; ð43Þ

where ezz is the z-direction normal strain and subscript i refers to
initial conditions.

Our simulation was over a 5�5�4-km quarter-symmetry ele-
ment of the domain with a 50�50�60 grid. In all three directions,
the grid was finer in the vicinity of the well and became coarser
away from it. Fig. 10 compares pressure change vs. depth. We
modified the Rutqvist et al. (2010) injection-zone permeability
somewhat to match the pressure change there after 3 years. Their
simulation used a much coarser grid than ours (approximately
10,000 gridblocks for the entire domain) and is reflected by their
piecewise-linear pressure profile. Fig. 11 compares vertical dis-
placement vs. depth at the injection-well center after 3 years.
Both simulators give similar displacement profiles.

Summary and Conclusions

We developed a reservoir simulator for modeling THM processes
in fractured and porous media. The simulator geomechanical for-
mulation consists of a momentum-conservation equation for mean
stress, pore pressures, and temperatures, along with additional
equations relating each stress-tensor component to mean stress,
pore pressures, and temperatures. The fluid- and heat-flow formu-
lation is for general multiphase, multicomponent, multiporosity
systems. The simulator is an extension of a THM one with geome-
chanical formulation that was the momentum-conservation equa-
tion for mean stress alone.

We verified our technique with analytical solutions and pub-
lished results. For the analytical solutions, we matched the dis-
placement from a uniform load on semi-infinite elastic medium
and the 2D Mandel-Cryer effect. Both analytical solutions were
matched by simulation extremely well, verifying the technique for
calculating stress-tensor components. We also ran simulations,
published in the literature, of single-phase depletion of a reservoir
and CO2 injection into a depleting gas field. The results from our
simulation, namely pressures and displacements, agreed well with
the published results.

Nomenclature

a ¼ radius, m
A ¼ area, L2, m2

C ¼ specific heat, L2/t2T, J/kg�K
D ¼ distance, L, m
F ¼ mass flux, m/L2t, kg/m2�s

Fadv ¼ advective mass flux, m/L2t, kg/m2�s
Fb ¼ body force, cm3/t2, kg�m/s2

g ¼ gravity vector, L/t2, m/s2

. . . . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

Property 
Shallow Overburden  

(0–900 m) 
Caprock

(900–1800 m) 
Injection Zone
(1800–1820 m) 

Base
(>1800 m) 

Young’s modulus (GPa) 1.5 20.0 6.0 20.0
Poisson’s ratio 0.2 0.15 0.2 0.15
Biot’s coefficient 1.0 1.0 1.0 1.0
Porosity 0.1 0.01 0.17 0.01
Permeability (m2) 1.0×10–17 1.0×10–19 0.875×10–14 1.0×10–21

Residual CO2 saturation 0.05 0.05 0.05 0.05
Residual liquid saturation 0.3 0.3 0.3 0.3
Van Genuchten (1980) (m) 0.457 0.457 0.457 0.457
Van Genuchten, P0 (kPa) 19.9 621.0 19.9 621.0

Table 2—Geological-layer properties for In Salah CO2 injection.
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Fig. 10—Pressure change at injection-well center after 3 years
of injection.
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G ¼ shear modulus, m/Lt2, Pa

h ¼ specific enthalpy, L2/t2, J/kg
I ¼ identity matrix
k ¼ permeability, L2, m2

kr ¼ relative permeability
kt ¼ thermal conductivity, cm3/t3T, J/m�s�K
K ¼ bulk modulus, m/Lt2, Pa

Ks ¼ solid modulus, m/Lt2, Pa
K* ¼ solid modulus without fractures, m/Lt2, Pa
Mk ¼ conserved species per unit volume, m/L3, kg/m3 or m/

Lt2, J/m3

N ¼ number of mass components
p ¼ load, m/Lt2, Pa
P ¼ pressure, m/Lt2, Pa

Pc ¼ capillary pressure, m/Lt2, Pa
q ¼ mass source/sink per unit volume, m/L3t, kg/m3�s
S ¼ saturation
t ¼ time, t, seconds

T ¼ temperature, T, K
Tref ¼ reference temperature, T, K

u ¼ displacement vector, L, m
U ¼ specific internal energy, L2/t2, J/kg
V ¼ bulk volume, L3, m3

Vs ¼ solid volume, L3, m3

w ¼ displacement, m
X ¼ mass fraction
a ¼ Biot’s coefficient
b ¼ linear thermal-expansion coefficient, 1/T, 1/K
e ¼ strain tensor
ev ¼ volumetric strain
k ¼ Lamé parameter, m/Lt2, Pa

l ¼ viscosity, m/Lt, Pa�s
v ¼ Poisson’s ratio
q ¼ density, m/L3, kg/m3

s ¼ stress tensor, m/Lt2, Pa
sm ¼ mean stress, m/Lt2, Pa
s0 ¼ effective stress, m/Lt2, Pa
/ ¼ porosity
x ¼ volume fraction

Subscripts

l ¼ phase
r ¼ rock
0 ¼ unstrained

Superscripts

i ¼ initial
k ¼ conserved species
n ¼ timestep
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