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1. Introduction

SUMMARY

This study conducts sensitivity and uncertainty analysis for predicting unsaturated flow and contaminant
transport in a layered heterogeneous system. The objectives of this work are to: (1) examine the effects of
parameter correlations on the sensitivity of unsaturated flow and contaminant transport and (2) assess
the relative contributions of parameter uncertainties to the uncertainties of flow and transport at each
hydrogeologic layer. Using the unsaturated zone (UZ) of Yucca Mountain (YM) in Nevada, USA, as an
example, the study considers cases of independent and correlated parameters. A sampling-based regres-
sion method is used, when the model input parameters are independent, and a decomposition method is
used for the correlated case. When the parameters are independent, the uncertainty in permeability has
the largest contribution to the uncertainties in simulated percolation flux and mass of the reactive tracer
arriving at the water table. For the percolation flux, the second largest contribution is from the van
Genuchten o; the sorption coefficient of the reactive tracer is the second most important parameter
for the tracer mass arrival uncertainty. The sensitivity to the sorption coefficient is larger in the layers
of devitrified and zeolitic tuffs than in the layers of vitric tuff. Contributions of the uncertainties in van
Genuchten n and porosity to the percolation flux and tracer transport uncertainties are larger in the case
of correlated parameters compared with the case of independent parameters due to the correlations of n
and porosity with the van Genuchten o and permeability, respectively. These results illustrate the signif-
icant effects of parameter correlations on the sensitivity and uncertainty of unsaturated flow and trans-
port. The findings are of significance in facilitating future characterizations to reduce the parameter
uncertainties and associated predictive uncertainties of flow and contaminant transport in unsaturated
fractured porous media.

© 2010 Elsevier B.V. All rights reserved.

(e.g., through stochastic modeling) for estimating probability dis-
tribution (or its leading moments) of the quantities of interest.

Sensitivity analysis of flow and contaminant transport in
unsaturated zone (UZ) is important for water resources manage-
ment, environmental regulation, and remediation design. In
general, it quantifies variation in outputs of unsaturated flow and
transport models due to changes in model input parameters or
other model components, such as boundary conditions or model
structures. The input parameters are usually treated as random
variables due to the epistemic uncertainties (spatial variability
without sufficient characterization) and lack of measurements or
knowledge. A common practice is to conduct uncertainty analysis
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Sensitivity analysis is always conducted together with the uncer-
tainty analysis, and one purpose of the sensitivity analysis is to
determine contributions of uncertainties in individual input
parameters to predictive uncertainties in quantities of interest
from flow and contaminant transport modeling.

The correlations among hydraulic parameters have important
effects on the estimation of hydraulic parameters and further sig-
nificantly affect the predictions and associated uncertainties of
flow and tracer transport (Pohlmann et al., 2002; Lemke et al.,
2004; Manache and Melching, 2008). Although the parameter cor-
relations are observed and may be strong in some cases, existing
sensitivity analysis methods of unsaturated flow and transport
typically adopt the assumption of independent parameters (e.g.,
Li and Yeh, 1998; Boateng and Cawlfield, 1999; Boateng, 2007,
Zhu et al, 2010). Only a few studies have been devoted to the
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sensitivity analysis with correlated input parameters (Helton et al.,
1995; Fang et al., 2004; Jacques et al., 2006). Understanding the
contribution of each parameter and joint contributions of corre-
lated parameters in predictive uncertainties is also critical to
uncertainty reduction (Rojas et al., 2009; Fox et al., 2010).

The sensitivity analysis answers the question of how the out-
puts depend on the uncertain inputs (e.g., Jacques et al., 2006). Lo-
cal sensitivity analysis evaluates how the outputs change by
varying one input parameter at a time. Global sensitivity analysis
assesses how the output uncertainties are related to the uncertain-
ties of input parameters with all the variation range of inputs
(Jacques et al., 2006). This study is focused on the global sensitivity
analysis. Widely used sensitivity analysis methods include sam-
pling-based method (Helton, 1993; Helton and Davis, 2002; Helton
et al., 2005, 2006), screening method (Morris, 1991; Campolongo
et al., 2007; Muifioz-Carpena et al., 2007; Fox et al., 2010), vari-
ance-based method such as the Fourier Amplitude Sensitivity Test
(FAST) (Cukier et al., 1973, 1978; Sobol, 1993; Saltelli et al., 1999,
2008; Lu and Mohanty, 2001; Mufioz-Carpena et al., 2010), analy-
sis of variance (ANOVA) (McKay, 1997; Sobol, 2001; Winter et al.,
2006), and classification tree technique (Mishra et al.,, 2003;
Mishra, 2009). Among them, the sampling-based (i.e., Monte Carlo)
methods have been widely applied for global sensitivity analysis.
The method is conceptually simple and able to cover the full range
of parameter uncertainties. More importantly, the method allows
one to directly obtain predictive uncertainty results without using
surrogate models (e.g., Taylor series approximation, response sur-
face approximation, and Fourier series) to represent the original
model; mapping relations between uncertainty inputs and analysis
results can be easily established (Helton, 1993). Because the sam-
pling-based method employs linear regression techniques, the
rank transformation is often a preferred way when the relationship
between the parameter inputs and analysis results is nonlinear
(Saltelli and Sobol, 1995). For the sampling-based method, the sen-
sitivity measure, standardized rank regression coefficient (SRRC), is
a robust and reliable estimator (e.g., Saltelli and Marivoet, 1990;
Helton and Davis, 2002). When the input parameters are corre-
lated, however, SRRC may give unreliable results on estimation of
parameter importance (Helton et al., 2006). Recently, Xu and
Gertner (2008) proposed a decomposition method to separate
the contributions of individual parameter uncertainties to the out-
put uncertainties into the correlated and uncorrelated parts, which
is adopted in this study.

The UZ of Yucca Mountain (YM), Nevada, once considered as the
potential high-level radioactive waste repository, is used as the
study site. The UZ of YM is a complex system of distinct hydrogeo-
logic layers with significant parameter uncertainties (Zhou et al.,
2003; BSC, 2004a; Wu et al., 2004, 2007; Illman and Hughson,
2005; Zhang et al., 2006; Ye et al., 2007; Pan et al., 20093,b). The
available measurements of hydraulic parameters are limited in
each hydrogeologic layer of the UZ, especially for permeability
and water retention parameters. The results of sensitivity analysis
can be particularly helpful in targeting future measurements to the
most influential parameters in the particular layers to better utilize
limited resources for reducing predictive uncertainties in flow and
contaminant transport. The sensitivity of the flow and tracer trans-
port at YM has been investigated by several studies (Lu and
Mohanty, 2001; Mohanty and Wu, 2001; Mishra et al., 2003; Zhang
et al., 2006). Zhang et al. (2006) examined the sensitivity of unsat-
urated flow and tracer transport by varying only one input param-
eter at a time within one standard deviation. The most influential
parameters of total-system performance assessment at YM were
identified by FAST, cumulative distribution function (CDF)-based
method, and classification tree technique (Lu and Mohanty,
2001; Mohanty and Wu, 2001; Mishra et al., 2003). These previous
studies, however, have not addressed the layer-scale sensitivity,

and the effects of parameter correlations have been largely omit-
ted. The objective of this study is to evaluate and compare contri-
butions of uncertainties in individual input parameters to flow and
contaminant transport uncertainties with and without parameter
correlations at the layer-scale in the unsaturated zone.

2. Materials and methods
2.1. Study site

The UZ of YM is between 500 and 700 m thick and is a complex
geologic formation that includes heterogeneous layers and aniso-
tropic fractured tuffs (Montazer and Wilson, 1984). The UZ consists
of five major geologic units: Tiva Canyon welded (TCw) unit, Paint-
brush nonwelded (PTn) unit, Topopah Spring welded (TSw) unit,
Calico Hills nonwelded (CHn) unit, and Crater Flat undifferentiated
(CFu) unit (Fig. 1). Each unit is further divided into multiple hydro-
geologic layers, resulting in 33 layers. The three-dimensional (3-D)
UZ model has been developed to simulate various physical pro-
cesses in the UZ of YM (BSC, 2004a; Wu et al., 2004). The unsatu-
rated flow module, EOS9, and radionuclide transport module,
T2R3D, of the TOUGH2-family (Wu et al,, 1996; Pruess et al.,
1999) are applied for simulating the unsaturated flow and tracer
transport. The details of the conceptual model, numerical model,
model domain, site measurements and variations of the parame-
ters are given in Appendix A. In this study, the model input param-
eters (e.g., porosity, permeability, van Genuchten « and n, and
sorption coefficient of reactive tracer) are treated as random vari-
ables to assess the uncertainty and sensitivity of unsaturated flow
and tracer transport. The random model parameters are generated
based on the site measurements and statistical methods.

2.2. Sampling-based regression method and decomposition method

The sampling-based regression method and decomposition
method are used for the sensitivity analysis with independent
and correlated model parameters, respectively. The sampling-
based method is implemented in the following procedures (Helton,
1993; Helton et al., 2005):

(1) Determine the probability distributions and ranges of indi-
vidual parameters based on the field measurements.

(2) Generate multiple realizations of random parameters based
on the estimated distributions and ranges.

(3) Solve the flow and transport problems for each realization.

(4) Evaluate uncertainties of the output variables (e.g., satura-
tion, water potential, percolation flux, mass fraction and tra-
vel time of tracer transport).

(5) Conduct the sensitivity analysis to rank the relative impor-
tance of the individual parameters to the uncertainties of
output variables.

The sensitivity analysis (i.e., step 5) is first carried out based on
the Monte Carlo simulation results of Ye et al. (2007) and Pan et al.
(2009b), in which the correlations between permeability and
porosity and between van Genuchten « and n are considered. In or-
der to evaluate the effects of parameter correlations, uncorrelated
parameters are generated and additional Monte Carlo simulations
are carried out in this study.

The regression model relating the model outputs (e.g., percola-
tion flux and cumulative mass arrival) and the input parameters
(i.e., permeability, porosity, van Genuchten o and n, and sorption
coefficient of the reactive tracer in this study) is constructed for
each numerical gridblock as (Helton, 1993; Helton and Davis,
2002; Helton et al., 2006)
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Fig. 1. Schematic illustration of the conceptualized flow processes and effects of capillary barriers, major faults, and perched-water zones within a typical east-west cross

section of the UZ flow model domain (modified from BSC, 2004a).

Vi=bo+Y by, i=12,....m j=12,.k 1)
J

where m is number of realizations (m = 200 in this study), k is num-
ber of input parameters (k =5 in this study), y; is the estimation of
output y; by the regression model, x;; is the ith realization of the jth
model input parameter, by is a regression coefficient, and b; is
regression coefficients for parameter j. Due to the different units
of input parameters and outputs, b; cannot be used to directly mea-
sure the parameter importance. This problem is resolved by stan-
dardizing the regression model (Eq. (1)), which leads to the
following normalized equation,

k
Wi=3)/5=> b3/ —%)/3 i=1,2,..m (2)
j=1

where x; and §; are mean and standard deviation of the input
parameter x;;, respectively, and y and § are mean and standard devi-
ation of the output y;. The coefficient b;5;/s is the standardized
regression coefficient (SRC), used to measure the contribution from
parameter j to the output variable uncertainty. In other words,
parameters with larger |SRC| values contribute more to the output
uncertainties.

The regression model is based on the linear relationships be-
tween the input parameters and the outputs. If the relationships
are nonlinear, which is typical for complex models such as in this
study, the linear regression may not provide accurate estimations.
The problem can be alleviated by using the rank regression that is
similar to the regression analysis (Saltelli and Sobol, 1995). The
only difference is that the input and output data used in the usual
regression model are transformed to their corresponding ranks.
The smallest value of each variable of input and output data is
ranked No. 1, the next larger value No. 2, and so on. Note that
the ranking rules are consistent for the inputs and outputs. The
contribution of each variable is measured by the square or absolute
values of its regression coefficients. Correspondingly, the resulting

regression coefficients are called the standardized rank regression
coefficients (SRRC).

For each computational gridblock, the total variance (V) of the
output over the m realizations is calculated via

V=vary) =~ > (-9’ (3)
i=1

For the same gridblock, the variance (V) of the regression esti-
mated output is

. . 1 noo .,

V =var(y) —m;(ysz (4)
The extent to what the regression model can account for the

output uncertainty is measured by the coefficient of determination

(R?) (Helton, 1993; Saltelli et al., 2000; Helton et al., 2006)

R =y (5)

If the input parameters are independent, V can be calculated by
taking the variance on both sides of Eq. (1), which leads to

k
V=var(y) =Y bvar(x;) (6)
=
Considering Eqgs. (2), (5), and (6) leads to
k
R =Y SRC (7)
j=1

The SRC? (or SRRC?) represents the contribution proportion
from individual input parameters to the uncertainties of output
variables. In deriving Eq. (6), the correlation terms among the input
parameters are omitted. As a result, when the input parameters are
correlated, the SRC? (or SRRC?) may not give true indications in
terms of the parameter importance in output uncertainty (e.g.,
Saltelli et al., 2000; Helton et al., 2006). Xu and Gertner (2008)
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developed an approach to decompose the output variance into the
partial variance contributed by the correlated and uncorrelated
portions of the input parameters. Since the method is also based
on the linear relationships between the input parameters and the
output variables, the rank transformation is also applied to
alleviate the limitation of linear relationships. When the parameter
correlation is considered, the regression model between the input
parameters and outputs is constructed the same way as Eq. (1). The
partial variance (V}) of output variable contributed by parameter x;
is separated into the partial variances contributed by uncorrelated
and correlated variances of parameter xj, respectively, as follows:

Vi=V/+V§ (8)

where V}’ is the partial variance contributed by the uncorrelated
variance of parameter x;, and V{ is the partial variance contributed
by x; correlated with other parameters. The partial variance of y
contributed by x; is estimated by the regression analysis:
50) ; . [ YT R
yi = 0o + 0ix;, 1:172,...madej:m -y 9)
i=1

where j/,@ is the regression estimation of output y; by Eq. (9), 0 is
regression coefficient, and 6; is regression coefficients of parameter
J-

The partial variance contributed by the uncorrelated variance of
x; can be derived from the following regression models:

o 5. i (U _ j

Vi’ =rot+rz; i=12,.. .mandV}=_ Z(yi
(10)

where 2; = xj — X;, Xj = Co + Yp-1CpXip, and 317 is the regression

P#j
estimation of output y; by Eq. (10), ro, 13, ¢o, and ¢, are regression

coefficients. VJ-C can be calculated via Eq. (8). The sensitivity indices

(ratios of partial variance and total variance, V) of each parameter
can be described as:

Vi @ Vo Y
szvé Sj :7§ Sj :7 (11)
where §;, S;’, and Sjc are the total, uncorrelated, and correlated par-

tial sensitivity indices of parameter x;, respectively. The total sensi-
tivity index, S;, is used to measure the relative contributions of input
parameter, x;, to the flow and tracer transport uncertainties. The
correlated sensitivity index, Sjc, is specifically used to quantify the
uncertainty contributions from x; due to its correlations with the
other parameters. The larger |S;| values indicate more significant
sensitivity to the parameter j.

3. Results and discussion

The sensitivity coefficients (i.e., SRRC? for the independent
parameters and the sensitivity indices S for the correlated param-
eters) are determined for each gridblock. Their mean values over
all gridblocks within a layer are calculated as the measure of
parameter importance to the flow and transport uncertainties,
and their standard deviations are used to measure the variations
of sensitivity coefficients within a layer.

3.1. Sensitivity analysis of unsaturated flow with independent and
correlated parameters

The R? values are first used to examine reliability of the regression
analysis. If R? value is larger than 0.7, the linear regression model is
acceptable for the sensitivity analysis (Saltelli et al., 2006; Manache
and Melching, 2008). The R? values in this study are larger than 0.8 in
more than 80% gridblocks of the domain (e.g., Fig. 3d), indicating that
the regression analysis is generally reliable.

Fig. 2. The mean and standard deviation (SD) of standardized rank regression coefficent (SRRC?) of permeability, van Genuchten ¢, and n parameters on percolation flux

uncertainty at each layer (R? is the coefficient of determination value).
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Fig. 3. The standardized rank regression coefficient (SRRC?) of permeability (a), van Genuchten o (b) and n (c) parameters on percolation flux uncertainty and the coefficient
of determination (R?) values of regression analysis (d) at the tracer-releasing horizon (about 300 m below surface).

For the case of independent parameters, Fig. 2 plots the mean
and standard deviation of SRRC? for the permeability, and van
Genuchten « and n for the percolation flux for each hydrogeologic
layer. The SRRC? value for a parameter represents the relative frac-
tional contribution to the output variance from uncertainty in this
parameter. Note that the summation of the SRRC? values for the
three parameters is equal to the R? value, which validates Eq. (7).
Among the three parameters affecting the unsaturated flow, the
mean SRRC? values for the permeability are the largest for most lay-
ers, indicating that the parameter uncertainty in permeability has
the largest contribution to the percolation flux uncertainty. The
contributions of parameter uncertainty in permeability to the flux
uncertainty vary with the layers from 20% to 80%. The mean SRRC?
values of van Genuchten « are the second largest in most layers in
the range of 0-40% contributions. The mean of SRRC? for van
Genuchten n parameter is close to zero for all layers, indicative of
the limited contributions of its uncertainty to the flux uncertainty.
The general order of parameter importance to flux uncertainty,
from the most to least important parameters, is permeability, van
Genchten o and n for most layers, which is generally in line with
the variances of these input parameters. Since the perched water
may occur with the low-permeability zeolites in the CHn unit and
the bottom of TSw unit in the UZ (Fig. 1), the fully saturated situa-
tions in the layers are checked. It is found that only very small per-
centage of gridblocks in the layers PV2a and CHZ are fully saturated.
In this regard, the van Genuchten parameters are considered to be
important in the layers. Fig. 2b shows the standard deviation of
SRRC? is large for permeability and van Genuchten o for most lay-

ers, which indicates the large spatial variation of the sensitivity of
the two parameters to flux uncertainty within each layer.

Since percolation flux uncertainty in a computational gridblock
is related not only to the parameter uncertainty at the gridblock
but also to the parameters at other locations, especially those
above the gridblock, it is necessary to investigate the spatial distri-
bution of the sensitivity coefficients within each layer. Fig. 3 de-
picts the spatial distribution of SRRC? values for the permeability
and van Genuchten o and n as well as the R? values of regression
analysis at the tracer-releasing horizon about 300 m below the sur-
face. The large R? values (Fig. 3d) indicate reliable regression anal-
ysis in general. The SRRC? values for the permeability are the
largest in most parts of layer; the values are approximately equal
to or slightly smaller than those for the van Genuchten o in the tra-
cer-releasing area (blue dots in Fig. A.1). The SRRC? values of van
Genuchten n are close to zero in the entire domain. The degree
of spatial variability of SRRC? values is similar for the permeability
and van Genuchten o. These findings are consistent with the re-
sults of layer-scale shown in Fig. 2.

For the case of correlated parameters, the total, uncorrelated,
and correlated sensitivity indices, S, are calculated to measure
the contributions of input parameter uncertainty to the output
uncertainty. As mentioned earlier, two pairs of correlated parame-
ters are considered: (1) permeability and porosity and (2) van
Genuchten o and n. Due to paucity of measurements, the
correlations among other parameters are not considered. The
Spearman rank correlations of the two pairs of parameters are
listed in Tables A.1 and A.2 for each hydrogeologic layer.
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Fig. 4. The sensitivity indices (S) of permeability, van Genuchten «, and n parameters for each layer. (a) mean of uncorrelated S; (b) mean of correlated S; and (c) mean of

total S.

Fig. 4 plots the mean values of the uncorrelated, correlated, and
total S for the three parameters for each layer. As shown in Fig. 4a,
the partial variance contributed by uncorrelated variance of perme-
ability is dominant for all the layers, while the uncorrelated variance
of van Genuchten n is close to zero for the layers. The mean values of
the correlated S (Fig. 4b) for the van Genuchten « and n are almost
identical due to the strong correlation between these two parame-
ters. The mean values of the correlated S for permeability are close
to zero for the layers, because the permeability is uncorrelated with
the van Gencuten « or n parameters (the correlation between
permeability and porosity does not appear to affect the flow
uncertainty). The mean total S (Fig. 4c) is used to rank the relative
importance of parameter uncertainty to the flux uncertainty when
the input parameters are correlated. Fig. 4c shows the permeability
is still the most important parameter for most layers; the van
Genuchten n has more contributions to the flux uncertainty in sev-
eral layers, indicative of increased contributions of van Genuchten
n to the predictive uncertainty due to the correlation between n
and o.

In addition to the correlated S values, Fig. 4b also plots, in solid
line, the correlations between van Genuchten « and n for all layers.
The mean values of correlated S for van Genuchten o and n have
the same trend as the absolute correlations, suggesting that the
partial variances contributed by the correlated input parameters
largely depends on their correlations. For the permeability, the
mean values of SRRC? (Fig. 2a) are larger than those of the total S
(Fig. 4c) in most layers, while the opposite is true for the van
Genuchten n. This indicates that the importance of permeability
decreases while that of van Genuchten n increases, because the
parameter correlations are considered.

3.2. Sensitivity of contaminant transport with independent and
correlated parameters

Two variables are of particular importance to contaminant
transport sensitivity: normalized cumulative mass arrival at each
gridblock and cumulative mass travel time. The normalized cumu-

lative mass arrival at each gridblock is an important variable in
evaluating the potential locations of high-radionuclide concentra-
tion and migration, which is defined as the cumulative mass of
contaminant arriving at each gridblock over time, normalized by
the total mass of the initially released tracer from the tracer-
releasing horizon about 300 m below surface. The cumulative mass
travel time is the tracer travel time from the tracer-releasing
horizon to the water table, which represents a measure of the
overall tracer transport. The parameter sensitivity analysis of the
contaminant transport is conducted for the five random parame-
ters, permeability, porosity, van Genuchten « and n, and sorption
coefficient (Ky) of the reactive tracer (>’Np).

For the case of independent parameters, Fig. 5 depicts the mean
and standard deviation of SRRC? of the five random input parame-
ters for the normalized cumulative mass arrival uncertainty of
237Np after 1,000,000 years in the layers below the tracer-releasing
horizon. The mean SRRC? values of the permeability are the largest
in most layers. As noted earlier that the permeability also contrib-
utes the most to flow uncertainty, the results illustrate that the
flow uncertainty also translates to uncertainty in tracer transport.
The K, of 2’Np has the second largest contributions to the tracer
transport uncertainty in the layers with zeolitic and devitrified
tuffs but is the smallest in the layers with vitric tuff (the geological
information with corresponding tuffs is referred to Fig. 1, and BSC,
2004b). The reason is that uncertainty of Kj is relatively small for
vitric tuff and large for zeolitic and devitrified tuffs (BSC, 2004b).
In general, the parameter uncertainty in permeability contributes
about 30% to the tracer transport uncertainties for the layers, and
the contributions of other parameters vary with layers from close
to zero to about 20%, Fig. 5b depicts the relative large standard
deviation of SRRC? values for the parameters, indicating large var-
iability of SRRC? within each layer.

Fig. 6 shows the SRRC? values of the five independent parame-
ters for travel time uncertainty of 23’Np. At early stage, the perme-
ability and the van Genuchten o have more contributions to the
uncertainty in overall tracer transport, the same sensitivity results
as the flow simulation. This observation may be explained in part
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Fig. 5. The mean and standard deviation of standardized rank regression coefficient (SRRC?) of permeability, porosity, van Genuchten o, and n, and sorption coefficient (Kd)
on normalized cumulative mass arrival uncertainty of 2*’Np after 1,000,000 years in the layers below the tracer-releasing horizon (Z - zeolitic tuff; V - vitric tuff;

D - devitrified tuff).

Fig. 6. The standarized rank regression coefficent (SRRC?) of permeability, porosity,
van Genuchten o and n, and Kd on travel time uncertainty of 2’Np.

by the fact that early arrival of the tracer at the water table is
mainly along the faster flow paths. As time evolves, the porosity
starts to make impact on the uncertainty in the overall tracer
transport. After 10,000 years, the SRRC? values for the sorption
coefficient are larger than those for the other parameters, indicat-
ing the sorption coefficient is the most important parameter on the
overall tracer transport uncertainty after 10,000 years.

For the case of the correlated parameters, Fig. 7 shows the mean
values of the uncorrelated, correlated, and total sensitivity indices,
S, for permeability, porosity, van Genuchten o and n, and K on the
normalized cumulative mass arrival uncertainty of 2*’Np after
1000,000 years in the layers below the tracer-releasing horizon.
The mean values of uncorrelated S (Fig. 7a) show that the perme-
ability has the largest contributions on transport uncertainty in
most layers, which is similar to the results with the independent

parameters. Fig. 7b of the correlated S values shows that the mean
values of correlated S for permeability and van Genuchten « are al-
most the same as those for porosity and van Genuchten n, respec-
tively. The partial variances contributed by the correlated
parameters to transport uncertainty have the same trends as the
values of the parameter correlations. The mean values of correlated
S are zero for Ky in all layers, because the parameter is not corre-
lated with other input parameters for this study. The mean values
of total S (Fig. 7c) are used to rank the relative importance of the
parameters for each layer. The permeability is the most important
parameter with around 20% contributions to the transport uncer-
tainty for most layers. The relative importance for other parame-
ters varies in a range of 0-20% contributions to transport
uncertainty for different layers. The parameter uncertainty in Ky
has the second largest contributions to transport uncertainty in
the layers of devitrified and zeolitic tuffs and the smallest ones
in the layers of vitric tuff, which are the same as the results with-
out considering parameter correlations.

Fig. 8 shows the total, uncorrelated, and correlated S for the five
correlated uncertain parameters on the travel time uncertainty of
237Np. At the early stage, the van Genuchten o and n parameters
have the largest total S on overall tracer transport uncertainty
due to their large partial variances contributed by correlated vari-
ances of the parameters. As time evolves, both porosity and perme-
ability become the most important parameters and the van
Genuchten o and n parameters become insignificant. The sorption
coefficient becomes the dominant parameter on the uncertainty of
overall tracer transport at the water table after 10,000 years.

Fig. 7b depicts relatively large mean values of correlated S for
the parameters in several layers, due to the high parameter corre-
lations in these layers (Figs. 4b and 7b). It indicates that the partial
variances contributed by the correlated parameters largely depend
on the values of their correlations. The comparison of sensitivity
analysis results with (Fig. 7c) and without (Fig. 5a) parameter cor-
relations shows the parameter K; has the same contributions for
both cases, because K; is uncorrelated with other parameters.
The contributions of van Genuchten n significantly increase with
the decreased importance of van Genuchten o after the parameter
correlations are taken into account, while the importance of
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Fig. 7. The sensitivity indices (S) of permeability, porosity, van Genuchten «, and n, and Kd in the layers below the tracer-releasing horizon (Z - zeolitic tuff; V - vitric tuff;

D - devitrified tuff).

Fig. 8. The total (solid line), uncorrelated (dash line), and correlated (dashdot line)
sensitivity indices (S) of permeability, porosity, van Genuchten « and n, and Kd on
travel time uncertainty of 2>’Np.

porosity slightly increases with the slightly decreased contribu-
tions of permeability to the transport uncertainty. This is due to
the large correlations between van Genuchten o and n (Fig. 4b)
and relatively small correlations between permeability and poros-
ity (Fig. 7b) in most layers.

The permeability and the van Genuchten o are the two most
important parameters on the travel time uncertainty at the water
table at early stage, when the parameter correlations are not con-
sidered (Fig. 6). However, the van Genuchten n parameter becomes
more important than the other parameters when the parameter
correlations are considered (Fig. 8), due to large contributions from
the correlated partial variances (Fig. 7). The parameter importance
for the overall tracer transport uncertainty has the same rankings
at the early stage. However, the correlated contributions for

permeability and porosity account for large portions of their total
partial variances, when the parameter correlations are considered.
It indicates that the effects of parameter correlations, as an
important factor for sensitivity in results, should be considered in
uncertainty analysis.

4. Conclusions

The sample-based regression and decomposition methods are
used for evaluating the sensitivity of the unsaturated flow and con-
taminant transport uncertainties with and without considering
parameter correlations. This study not only gives the ranks of
parameter importance on flow and transport uncertainties but also
apportions the contributions of individual input parameters to the
output uncertainties.

When the input parameters are independent, the uncertainties
in the permeability and van Genuchten « are the major contribu-
tors to the flow uncertainty. For the tracer transport uncertainty,
the uncertainties in permeability and van Genuchten « also have
the most important contributions to the uncertainty in total cumu-
lative mass arrival at the water table at the early stage. As time
evolves, the uncertainty in porosity became more important. As
the transport progresses further, the sorption coefficient of the
reactive tracer becomes the dominant parameter in contributing
to the uncertainty in overall tracer transport. The contribution of
van Genuchten n to the flow and transport uncertainties is limited.

When the input parameters are correlated, the uncertainty in
van Genuchten n has more contribution to the flow uncertainty,
mainly due to its correlation with the van Genuchten o. The
van Genuchten n and porosity also become more important on
the transport uncertainty when the parameter correlations are
considered due to their correlations with the van Genuchten o
and permeability, respectively. The importance of sorption coeffi-
cient to the tracer transport uncertainty does not change when
the parameter correlations are considered, since no correlations
between the sorption coefficient and other hydraulic parameters
are considered in this study. Therefore, this study illustrated that
the parameter correlations have significant effects on the sensitiv-
ity and uncertainty analysis of unsaturated flow and contaminant
transport.
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To our best knowledge, this is the first time that sample-based
regression and decomposition methods are applied to complex
hydrogeologic systems such as the unsaturated zone at Yucca
Mountain. In particular, the contributions of input parameter
uncertainties to the flow and transport uncertainties are investi-
gated for each hydrogeologic layer of the system and the parame-
ter correlation is also incorporated into the sensitivity analysis to
investigate its effect in each layer. The findings of this study are ex-
pected to be useful for uncertainty and sensitivity analysis of com-
plex subsurface systems.
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Appendix A

This appendix briefly describes the numerical model (EOS9 and
T2R3D modules of TOUGH2 code), model domain, model input
parameters, site measurements and variations of the parameters
used in this study. For more details, readers are referred to Wu
et al. (2004, 2007), Wu and Pruess (2000), BSC (2004a,b), Ye
et al. (2007), and Pan et al. (2009b).

A.1. Governing equations of UZ numerical model

A 3-D site-scale numerical model was developed to simulate
the flow and transport of three mass components (air, water, and
tracer) in the UZ of YM. Since the dual-continuum approach is
used, a doublet of governing equations of flow and transport are
used to simulate fluid flow, chemical transport, and heat transfer
processes in the two-phase (air and water) system of fractured
rock for fracture and matrix, respectively. The physical processes
of unsaturated flow in fracture and matrix are governed by Rich-
ards’ equation, conservation of mass, and Darcy’s law (BSC,
2004a; Wu and Pruess, 2000).

The mass flux in matrix or fracture (F¥) can be calculated by
Darcy’s law (BSC, 2004a; Wu and Pruess, 2000):

k
ﬂ:Z%H;H:WW:%Zﬂ
B

(VPy = ps8) (A1)

p

where f is fluid phase (liquid (L) or gas (G)); Xf, is mass fraction of
component k in phase f; F4 is mass flux in phase g; p is the density
of phase f; v is the Darcy velocity; k is absolute permeability; k,; is
relative permeability; ug is viscosity; g is gravity acceleration con-
stant; and Py is capillary pressure.

The Richards’ equation can be described as (BSC, 2004a):

%Oﬁ = diU[K/;V!///J + Qﬁ
where 0; = ¢S is specific volumetric moisture content for fracture
or matrix (¢ is porosity and S, is the saturation of phase f);
Kj; = kk:5pp8/ 1 is hydraulic conductivity with k,; being the relative
permeability, y;=z+Ps/(psg) is the total water potential with z
being elevation, and q; is sinks and sources.

The van Genuchten model is used to estimate water capillary
pressure and unsaturated hydraulic conductivity for matrix and
fracture continuums. The relationship between water content (0)

(A2)

Fig. A.1. Plan view of the 3-D UZ numerical model grid showing the model domain,
faults, high-level radioactive waste repository layout, and locations of several
boreholes (modified from BSC, 2004a). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

of a porous medium and capillary pressure is (van Genuchten,
1980):

- {3

where h(6) is capillary pressure head; « and n are water retention
parameters related to water entry pressure and soil pore size distri-
bution, respectively; 0; and 0, are saturated and residual volumetric
water contents, respectively. The relationship between unsaturated
hydraulic conductivity k(6) and water content can be described as:

n-1
0—06,\" 0—0,\7"| "
Ke) = ’“(05 - 0r> b {1 - <es - 9r> }
where ks is saturated hydraulic conductivity.
The processes of tracer transport in UZ include advection, diffu-
sion, and dispersion in heterogeneous porous media, which are
governed by Fick’s law and conservation of mass (Wu and Pruess,
2000). The mass flux (F¥) is the summation of mass flux by advec-

tion, F¥, and mass flux by diffusion and dispersion, F¥, i.e., (Wu and
Pruess, 2000)

(A3)

(A4)

F*=F + F} (A.5)
and FX and F¥ are calculated via
Fr =2 _(Xypsvp) (A6)
7
(A7)
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B

where Q;‘, is diffusion-dispersion tensor for both molecular diffusion
and hydraulic dispersion for component k in phase .
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Table A.1
Descriptive statistics for matrix porosity and saturated hydraulic conductivity.
Major units Layer name Porosity (®@)° Saturated hydraulic conductivity (Ks, m/s)" r
Mean SD Min Max N Mean SD Min Max N

TCw CCR&CUC 0.241 0.073 0.038 0.431 124 5.80E-08 6.53E-08 2.03E-08 1.33E-07 3 e
CUL&CW 0.088 0.032 0.032 0.213 694 7.68E-10 3.02E-09 2.15E-13 1.25E-08 17 -0.50
CMW 0.200 0.055 0.1 0.452 96 1.89E-08 4.21E-08 3.34E-12 9.41E-08 5 0.60

PTn CNW 0.387 0.069 0.228 0.633 104 2.90E-07 3.38E-07 5.12E-12 8.79E-07 10 0.61
BT4 0.428 0.100 0.134 0.669 58 4.56E—-06 7.59E-06 1.80E-10 2.54E-05 11 0.26
TPY 0.233 0.057 0.073 0.309 39 1.38E-08 1.52E-08 3.00E-09 2.45E-08 2 e
BT3 0.413 0.082 0.137 0.578 73 1.77E-06 2.03E-06 1.90E-09 7.30E-06 11 0.03
TPP 0.498 0.041 0.388 0.623 159 1.17E-06 5.76E-07 9.00E-08 1.74E-06 11 -0.47
BT2 0.490 0.095 0.104 0.614 176 7.10E-06 6.87E—06 1.24E-09 2.06E-05 21 0.42

TSw TC 0.054 0.036 0.012 0.273 75 3.21E-08 6.72E-08 1.70E-11 1.68E-07 6 -0.49
TR 0.157 0.030 0.062 0.267 449 2.03E-07 1.37E-06 1.70E-11 9.37E-06 47 0.39
TUL 0.155 0.030 0.076 0.25 438 3.94E-08 2.33E-07 420E-13 1.42E-06 37 0.40
TMN 0.111 0.020 0.055 0.192 277 4.18E-11 1.72E-10 4.76E—-13 1.23E-09 74 0.48
TLL 0.131 0.031 0.088 0.263 502 4.11E-09 1.31E-08 1.39E-12 7.65E-08 52 —0.46
TM2&TM1 0.103 0.025 0.053 0.341 300 4.28E-07 2.00E-06 5.33E-13 9.39E-06 22 -0.39
PV3 0.043 0.040 0.011 0.34 125 1.66E-10 5.45E-10 8.63E-14 2.25E-09 17 -0.20
PV2a 0.275 0.096 0.11 0.415 13 b b b b b e
PV2v 0.243 0.122 0.048 0.47 49 3.23E-06 3.69E-06 5.03E-11 1.20E-05 16 0.06

CHn BT1a 0.285 0.051 0.158 04 46 1.90E-08 3.21E-08 1.83E-13 8.70E—08 10 0.12
BT1v 0.324 0.085 0.031 0.5 80 3.76E-06 5.77E-06 1.04E-10 2.20E-05 35 0.37
CHV 0.341 0.048 0.04 0.49 130 1.48E-05 1.89E-05 1.68E—12 7.20E-05 47 -0.19
CHZ 0.322 0.048 0.099 0.433 520 1.19E-09 9.62E-09 3.88E-13 9.54E-08 99 0.47
BTa 0.271 0.046 0.181 0.418 73 4.05E-11 6.96E-11 2.08E-13 2.10E-10 9 0.22
BTv a a a a a b b b b b e
PP4 0.327 0.050 0.216 0.44 56 4.62E—-08 1.08E-07 8.44E-13 3.08E-07 8 0.52
PP3 0.318 0.032 0.246 0.395 168 6.91E-08 6.72E-08 4.20E-12 3.65E-07 51 0.45
PP2 0.221 0.058 0.099 0.333 127 1.56E-09 3.01E-09 3.75E-12 1.15E-08 35 0.68
PP1 0.297 0.043 0.164 0.426 280 9.63E-08 3.88E-07 1.70E-12 1.94E-06 28 0.24

CFu BF3 0.142 0.075 0.059 0.369 105 1.31E-08 2.01E-08 6.90E-11 5.58E-08 7 -0.71
BF2 0.234 0.049 0.16 0.329 40 b b b b b e

Note: (a) Only one porosity data point is available for BTv. (b) Only one saturated conductivity data point is available for Pv2a, BTv and BF2 respectively. (c) SD is standard
deviation of the sample; Min, Max are the minimum and maximum values of the sample; N is the sample size. (d) r is Spearman rank correlation coefficient between the

porosity and saturated hydraulic conductivity. (e) The sample size is not sufficient to estimate the Spearman rank correlation.

A.2. Model domain, numerical grid and approach

The 3-D numerical model grid representing the UZ system con-
sists of 980 mesh columns of both fracture and matrix continua
along a horizon grid layer, and each column includes an average
of 45 model layers representing the hydrogeologic layers (BSC,
2004a). Refined mesh is used near the potential repository and nat-
ural faults. Fig. A.1 shows the plan view of the 3-D numerical grid
with the model domain, proposed repository layout, borehole loca-
tion, and faults.

The ground surface and the water table are treated as the top
and bottom model boundaries, where the pressure and saturation
are specified as boundary conditions. The no-flux boundary condi-
tion is specified for the lateral boundaries. A present-day net infil-
tration estimate with a constant rate of 4.43 mm/year within the
UZ model grid is applied as a source term to the fracture gridblocks
within the second grid layer from the top of the domain, as the first
layer is treated as a Dirichlet boundary to represent average atmo-
spheric conditions on the land surface. The spatial distribution of
the net infiltration over the domain can be referred to Fig. 2 in
Ye et al. (2007). The initial condition is the steady-state flow field
of a previous run with a similar modeling condition. The tran-
sient-state transport simulation is conducted for 1,000,000 years.
At the start time of simulation, constant concentration source is
instantaneously released from the fracture continuum gridblocks
(blue points in Fig. A.1) representing the once proposed repository
(BSC, 2004a). The transport model shares the same boundaries as
the flow model, with zero concentration at the top and bottom
boundaries and no-flux lateral boundary conditions.

The integral finite-difference method is used to discretize the
governing equations in Space. Time is discretized as a first-order fi-
nite difference associated with the numerical solution (Pruess
et al, 1999; Wu and Pruess, 2000). The time increment is automat-
ically adjusted at each time level according that if the convergence
can be reached within a certain number of iterations. If no conver-
gence can be reached within the iterations, the new reduced time
step size is set to start a new iteration process. The initial time step
size is 10° s in this study. The computational time varies from 2 to
10 h for different flow simulations with varied model input param-
eters. The steady-state flow fields can be examined by the mass
balance (i.e., equivalent inflow and outflow) over the entire flow
domain.

A.3. Model input parameters

Because of the dual-continuum approach, two sets of hydraulic
and transport properties and other intrinsic properties are needed
for the fractured and matrix continua. The basic parameters used
for each model layer include (a) fracture properties (frequency,
spacing, porosity, permeability, van Genuchten « and n parame-
ters, residual saturation, and fracture-matrix interface area); (b)
matrix properties (porosity, permeability, van Genuchten o and n
parameters, and residual saturation); (c) transport properties
(grain density, diffusion, adsorption, and tortuosity coefficients);
and (d) fault properties (porosity, matrix and fracture permeability,
and active fracture-matrix interface area).

This study treats matrix permeability, porosity, van Genuchten
o and n parameters, and sorption coefficient of reactive tracer as
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Table A.2
The estimates of mean and standard deviation of van Genuchten o (1/bar) and m parameters.
Major units Layer name Sample size iog(2) Olog(x) i Om r
TCw CCR&CUC 3 0.004 0.244 0.388 0.081 —-0.958
CUL&RCW 10 —0.509 0.199 0.280 0.046 —0.897
CMW 6 —0.488 0.192 0.259 0.044 —0.886
PTn CNW 8 1.207 0.269 0.245 0.038 —0.862
BT4 8 1.164 0.169 0.219 0.019 —0.882
TPY 2 0.391 0.728 0.247 0.104 -0.941
BT3 3 1.897 0.375 0.182 0.028 —0.899
TPP 3 1.015 0.189 0.300 0.039 —0.861
BT2 11 1.992 0.335 0.126 0.017 -0915
TSw TC 4 0.939 0.544 0.218 0.068 -0.870
TR 5 0.055 0.118 0.290 0.025 -0.870
TUL 4 -0.210 0.114 0.283 0.025 -0.894
TMN 3 -0.074 0.776 0317 0.122 —-0.941
TLL 5 0.032 0.447 0.216 0.058 -0.072
TM2&TM1 3 —0.081 0.934 0.442 0.173 -0.825
PV3 5 —0.206 0.446 0.286 0.092 —0.865
PV2a 1 -0.337 0.156 0.059 0.007 -0.937
PV2v 1 0.686 0.043 0.293 0.011 -0.831
CHn BT1a 3 -1.678 0.183 0.349 0.073 —0.885
BT1v 3 0.940 0.050 0.240 0.008 -0.854
CHV 5 1.413 0.092 0.158 0.008 —0.492
CHzZ 4 —0.648 0.094 0.257 0.022 -0.879
BTa 1 —1.807 0.043 0.499 0.036 —0.699
BTv 1 0.196 0.253 0.147 0.025 -0.901
PP4 3 —-1.349 0.513 0.474 0.200 —0.881
PP3 5 —0.055 0.094 0.407 0.033 -0.906
PP2 3 —0.622 0.168 0.309 0.044 —-0.884
PP1 3 -1.036 0.442 0.272 0.116 —-0.932
CFu BF3 2 0.098 0.940 0.193 0.077 —-0.909
BF2 1 -1.921 0.032 0.617 0.070 -0.164

Note: u is the mean values of the van Genuchten parameters; ¢ is standard deviation; r is Spearman rank correlation between the parameters.

random based on a sensitivity analysis of Zhang et al. (2006),
which illustrated that flow and transport simulations are not sen-
sitive to fracture properties because fracture flow dominates over
the entire model domain. Other matrix parameters (e.g., residual
saturation) are considered as deterministic in this study because
of their small spatial variability in the study site.

A.4. Site measurements and variations of model input parameters

The random fields of the five random parameters are generated
based on the site measurements and statistical methods. Based on
core samples collected from 33 boreholes, 546 measurements of
matrix saturated hydraulic conductivity (converted into perme-
ability in this study) and 5257 measurements of porosity are ob-
tained (Flint, 1998, 2003; BSC, 2003). Table A.1 lists the statistics
of measured porosity and saturated hydraulic conductivity and
their rank correlations. Measurements of parameters of the van
Genuchten water retention equation are sparse within each hydro-
geologic layer and there are only several samples available to esti-
mate the water retention parameters (Flint, 1998; BSC, 2003). The
probability density functions (PDFs) of water retention parameters
(e.g., van Genuchten o and m) are estimated using a non-conven-
tional maximum likelihood approach (Pan et al., 2009b). Their rank
correlations are calculated using the generated 2000-realization
water retention parameter random fields based on the estimated
covariance matrix and the multivariate Gaussian PDFs (Pan et al,,
2009b). The fitted mean and variance of van Genuchten « and m
and their rank correlations are listed in Table A.2. Over 700 mea-
surements of sorption coefficient (K;) of the reactive tracer,
237Np, are available for three types of rocks: devitrified, vitric,
and zeolitic tuffs, which are the rock types in the hydrogeologic
layers (BSC, 2004b).
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