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A theoretical model for describing the changes in the porosity and permeability with fluid pressure in elastic
deformed porous media was presented firstly. Secondly, the changes in porosity and permeability of sandstones
were studied by experimental approach, and the exponential correlations between porosity, permeability and fluid
pressure in porous media were obtained by regression based on these experimental data. Thirdly, based on the
theory of nonlinear deformation of porous media and the continua theory on porous media and fluids, a fluid
filtration mathematical model considering nonlinear elastic deformation of porous media was developed. To get
insights into the performances of fluid flow in the media, exact analytical solutions of the nonlinear model were
obtainedby traveling-wave transmission. Themainparameterswere input to analyze the difference of the solutions
and their effects on the characteristics of thefluidpressuredistributionwith spaceand time. It is found that theeffect
of nonlinear elastic deformation may lead to the nonlinear distribution of fluid pressure in porous media at one-
dimensional case at a one-dimensional case. However, the distribution of fluid pressure in porous media is linear
onlywhen the pressure-dependent factors of pressure rock permeability, porosity,fluid density andviscosity satisfy
a special correlation.
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1. Introduction

The fluid flow in soil, sedimentary sand formation underground or
petroleum reservoir is a common phenomenon. The material such as
soil, sedimentary sand formationandpetroleumreservoir canbe treated
as a continuous porous media in space to describe in mathematical
model. The effects of stress andfluid pressure onporousmedia are often
neglected or regarded approximately as slightly compressible, therefore
porosity is often regarded as a linear function of fluid pressure in porous
media and permeability is approximately looked as constants. However,
for some scenarios such as unconsolidated sand beds, abnormal high-
pressured oil formation or large deformation of porous media for pore
pressure dropped greatly, the change in porosity is not a linear function
offluidpressure inporousmedia, andpermeability can't keep a constant
yet. Fluidpressuredepletion inporousmedia leads to thedecrease in the
porosity and permeability, which not only leads to formation damage,
production decline for oil payzone and surface subsidence, but also
impacts surface facilities (Kristiansen, 2009). This phenomenon has
been noticed for many oil reservoir engineers and petro-geologists.
Schatz and Carroll (1982) thought long-range predictions of reservoir
performance should take account of stress sensitivity, as porosity and
permeability can change significantly as the effective stress is increased
by pore pressure reduction during production.

Gorbunov (1973, 1987) have done research systematically on this
type of oil field through the theoretical analysis approach. They
presented an approximate correlation between fluid pressure and
permeability, but they failed to give the experimental evidence
supporting the correlation. Ruistuen and Teufe (1999) studied the
stress-path-dependent nonlinear behavior of weakly cemented sand-
stone by experiments. Ju and Luan (1999) analyzed the factors to cause
the deformation of unconsolidated sandstone and regarded porosity and
permeability as pressure-dependant variables. A percolationmathemat-
icalmodel in reversible deformed formationwas given in this paper. The
advantage of themodel is assuming that the porosity, permeability, fluid
viscosity, and rock compressibility are pressure dependent. The
disadvantage lies in the facts that some coefficients in themodel should
be identified by experiments and only numerical solution was obtained
for over complex non-linear mathematical problem.

Thallak et al. (1993) studiedmechanical damage linked to stress and
deformation changes associated with drilling and well completion
operations and associated permeability changes. Schutjens et al. (2001)
studied the porosity and permeability reduction in sandstone reservoir
data and presented a model for elasticity-dominated deformation. They
also gave the correlations of porosity and permeability reduction and
the difference of mean effective stress and pore pressure by
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experiments. However, the correlations are not easily coupledwith fluid
flow in porous media.

At present, the solution for themathematical model describing fluid
flow in deformable porous media often resorts to numerical methods
(Cuisiat et al., 1998; Caers, 2003; Nelson, 2009) such as finite difference
and finite element methods (Minkoff et al., 2003). Though it is easy to
obtain the solution of the kind of non-linear equation, unfortunately, the
numerical method will induce pseudo-phenomena because of the
numerical diffusion and oscillation, whichwill influence the accuracy of
the solution and even change the physical property of the solutionmore
or less. Analytical solution (comparing to numerical solution) has some
advantages in precision and physical meaning. Gorbunov (1973) gave
the form of the solution of axisymmetric filtration for the case of the
work of a single well with a constant output in an infinite stratum.
Aadnoy (1987) gave a radial flow equation assuming laminar flow,
which was used for the pressure drop in the rock. Aadnoy and Finjord
(1996) derived a solution of radial flow equation, which based on the
Boltzmann transformation and a first-order perturbation (by neglecting
the “second-order” term) method. Three references above addressed
radial flow equation in infinite spaces. The objective of this work is to
obtain an exact analytical solution of filtration equation within one
dimensional space and finite boundary conditions during fluid
percolating in reversible elastic porous media.

2. Theoretical analysis on the deformation of porous media

As we know, sandstone is one kind of porous media that includes
sand gravels and pores. The pores in sandstone are often saturated
with fluids. The porous media contact with impermeable rocks at the
top and bottom and the vertical profiles of porous media saturated
with fluid at initial pressure and current pressure are shown in Fig. 1.
According to Biot's theory (Biot, 1941), an approximate expression of
average effective stress loaded on gravels can be expressed as

σe
Z = σZ−δp ð1Þ

where σZ is the total stress loaded on the top of the porousmedia, σZ
e is

the effective stress in Z direction, p is the average pressure of fluid in
the pore spaces, and δ is the Kroneker coefficient.

Similarly, the effective stresses loaded on the porousmedia for X, Y
direction can be written as

σe
X = σX−δp; ð2Þ

σe
Y = σY−δp: ð3Þ
Fig. 1. Sandstone deformation in
The average effective stress loaded on a cubic unit of the porous
media can be obtained from Eqs. (1) to (3).

σe
ave =

σX + σY + σZ−3δp
3

: ð4Þ

Let δ=1 and we define

σX + σY + σZ

3
= σave; ð5Þ

then the average effective stress can be written as

σe
ave = σave−p ð6Þ

The sandstone such as oil reservoir formation is buried under-
groundwith depth from hundred to thousandmeters. During the fluid
drainage out of the porous media, σave can be almost kept as a
constant and p will decline for the decrease in fluid volume in porous
media, so it leads to the increase in average effective stress, σave

e . If the
fluid pressure (p) increases up to σave, then σave

e =0 and we denote
σave=p0. Eq. (6) is rewritten as

σe
ave = p0−p: ð7Þ

According to Eqs. (4)–(7), when the fluid pressure declines as the
fluid is drawn out, it leads to the increase in the average effective
stress loaded on rock framework. Therefore, the sands are compacted
and pore space decreases (see Fig.1A and B). From the analysis above,
the effective stress loaded on rock framework is a key parameter to
describe formation deformation.

For the deformable porous media, porosity and permeability are
the functions of effective stress loaded on it, that is

ϕ = f1 σe
ave

� �
; ð8Þ

K = f2 σe
ave

� �
; ð9Þ

ϕ = f1 p0−pð Þ; ð10Þ

K = f2 p0−pð Þ: ð11Þ

3. Experimental study on porosity and permeability of elastic
porous media

In order to estimate hydrocarbon reserves and predict fluid flow
performances as accurately as possible, a reliable estimate of the
porosity and permeability at the conditions loaded on stresses is
duced by pressure decrease.



Table 1
Experimental data of porosity and permeability of core samples.

C2 C5 C7 C8

p−p0 Porosity Permeability Porosity Permeability Porosity Permeability Porosity Permeability

106Pa % 10−3 μm2 % 10−3 μm2 % 10−3 μm2 % 10−3 μm2

0.00 22.21 828.00 21.00 410.00 20.99 424.00 20.14 101.00
−5.00 22.06 813.00 20.87 404.00 20.89 418.00 20.00 99.20
−10.00 21.92 799.00 20.78 400.00 20.82 413.00 19.90 97.80
−15.00 21.81 786.00 20.72 396.00 20.76 408.00 19.82 96.60
−20.00 21.71 776.00 20.66 392.00 20.72 404.00 19.76 95.60
−25.00 21.62 768.00 20.61 388.00 20.68 400.00 19.71 94.70
−30.00 21.55 760.00 20.58 385.00 20.66 396.00 19.68 94.00
−35.00 21.50 753.00 20.56 383.00 20.64 393.00 19.64 93.40
−40.00 21.46 748.00 20.55 382.00 20.63 391.00 19.63 93.00
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required. Stonecore samples provide a source for directmeasurement of
porosity andpermeability. Inprinciple, the stonecore shouldbe reloaded
up to the in-situ stress state in the experimental process. A steel core cell
with a rubber seal holds the core and a high-pressure pump provides
enough pressure to load on the core. A precision pressure gage can show
the strain stress loaded on the core. The procedures to determine the
porosity and permeability of sandstone cores were stated in the
published works (Archer and Wall, 1986; Qin and Li, 2001).

Four sandstone core samples obtained from the oil formation of H.
Z.J. Oil Field and the experimental data of porosity and permeability
affected by strain stresses are shown Table 1. The porosities are from
20.14% to 22.21% and permeabilities are from 101.00 to 828.00×10
−3μm2 of the four cores (C2, C5, C7 and C8) at the condition of p
−p0=0.0. It indicates that all the porosities and permeabilities of the
cores decline with the fluid pressure (p) depletion. Let ϕ=ϕ0 and
K=K0 when p=p0.The trend of the changes in porosities and
Fig. 2. The relations of the porosity ratios with pressure difference (p−p0).

Fig. 3. The relations of the permeability ratios with pressure difference (p−p0).
permeabilities with fluid pressure depletion in porous media was
obtained (Figs. 2 and 3).

The two sandstone core samples (C5 and C7) are drilled from the oil
formation of H.Z.J. Oil Field and the depth of oil formation is from
2201.84 to 2436.37 m from the well tops. The fluid pressures (p) in the
formation decrease from 24.5 MPa to 7.4 MPa, and p−p0 changes from
−15.5 MPa to −32.6 MPa. The relations between the ratios of
porosities and permeabilities with p−p0 are shown in Figs. 4 and 5
and the ratios with p−p0 show a good exponential correlation.

ϕ pð Þ
ϕ0

= Aϕe
αϕ p−p0ð Þ

; ð12Þ

K pð Þ
K0

= AKe
αK p−p0ð Þ

: ð13Þ
Fig. 4. The relations of the porosity ratios with pressure difference (p−p0) during fluid
flow in sand formation.

Fig. 5. The relations of the permeability ratios with pressure difference (p−p0) during
fluid flow in sand formation.
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4. Model description

The sanding mathematical model was developed under the
following assumptions:

(1) The model is assumed that its single-phase flow is isothermal.
(2) Consider the compressibility of rock and fluids.
(3) The flows of fluids in porous media follow Darcy's law.
(4) The fluid is Newtonian fluid.
(5) Chemical reactions are not considered.

The governing equation of transient fluid flow in deformable porous
media is

∂ ϕρð Þ
∂t =

∂
∂x

Kxρ
μ

∂p
∂x

� �
: ð14Þ

According to references (Gorbunov, 1973; Zhang and Lei, 1998) the
density and viscosity of fluid with the pressure of the fluid in porous
media are written as

ρ pð Þ = ρ0e
αρ p−p0ð Þ

; ð15Þ

μ pð Þ = μ0e
αμ p−p0ð Þ

: ð16Þ

We suppose the initial condition p=p0 and inner and outer
boundary conditions p=pin and p=pout respectively.

The initial and boundary conditions and Eqs. (12)–(16) are the
mathematical model to describe fluid flow in elastic porous media.
The model considered the changes not only in porosity and
permeability but also in fluid density and viscosity.

5. Analytical solution

Combine Eqs. (12), (13), (15) and (16) with Eq. (14) and let

α = αK + αρ−αμ ; ð17Þ

β = αϕ + αρ; ð18Þ

φ = eβ p−p0ð Þ
; ð19Þ

and

D2 = K0 = αϕ0μ0ð Þ; ν =
α
β
; ð20Þ

then

∂φ
∂t = D2∇2φν: ð21Þ

Further let

u = φν; ð22Þ

χ = νD2
; ð23Þ

then

∂u
∂t = χu1−1

ν∇2u; ð24Þ

where

u = eα p−p0ð Þ
: ð25Þ
Eq. (24) is a parabolic partial equation. It becomes a linear
parabolic partial equation when ν is equal to 1.0.

∂u
∂t = χ∇2u ð26Þ

The analytical solution of Eq. (30) has been provided in the paper
(Gorbunov, 1973). However, when ν≠1, Eq. (24) becomes too
complicated to be obtained an analytical solution. Gorbunov (1973)
gave the form of the solution of Eq. (21) for the case of the work of a
single well with a constant output in an infinite stratum. The solution
is obtained at the case of radial flow and an infinite place. He also
obtained the analytical solution at steady-state conditions and limited
case for linear filtration. For the general case, they carry out a
numerical solution using an electronic computer. Aadnoy and Finjord
(1996) gave an analytical solution for the transient line sink for oil
reservoirs. The solution of radial flow equation is based on the
Boltzmann transformation and a first-order perturbation (by neglect-
ing the “second-order” term) method. Almost all boundary conditions
of physical flow filtration in porous media in oil formation are finite,
therefore the focus of this paper is to obtain the solution of Eq. (24)
with finite boundary conditions. The following section demonstrates
the procedure how to obtain an analytical solution of Eq. (24) by the
transmission of traveling wave. Let

1−1
ν

= θ; ð27Þ

Eq. (24) is expressed as

∂u
∂t = χuθ ∂2u

∂x2
: ð28Þ

Let u=u(ξ) and ξ=x−ct, then

−c
du
dξ

= χuθ d
dξ

du
dξ

� �
: ð29Þ

then the integral form of Eq. (29) is given by:

du
dξ

= C1e
− c

χuθ
ξ
: ð30Þ

Let

Ω =
c
χ
; ð31Þ

then

du
dξ

= C1e
−Ω

uθ
ξ = C1

1

e
Ω
uθ
ξ
: ð32Þ

Let

σ = e
Ω
uθ
ξ
; ð33Þ

then

ξ =
1
Ω
uθ ln uθ−1 + ln

C1

Ω

� �
: ð34Þ

Substituting Eq. (25) into Eq. (34),

x−ctð Þ = 1
Ω

eα p−p0ð Þ� �θ
ln eα p−p0ð Þ� �θ−1

+ ln
C1

Ω

� �
: ð35Þ



Fig. 6. Comparison of the solutions for incompressible liquid in a nondeformable porous
medium.

Fig. 7. Comparison of the solutions for steady-state conditions and completely reversible
deformations. 1: K0=0.5×10−12m2; 2: K0=1.0×10−12m2; and 3: K0=2.0×10−12m2.
c=0.10m/s; ϕ0=0.25; μ0=1.0×10−3Pa⋅s; αK=4.0×10−8Pa−1; αμ=7.0×10−9Pa−1;
and αϕ=1.0×10−8Pa−1.

Fig. 8. The effect of the initial permeability on pressure distribution. 1: K0=0.5×10−12m2;
2: K0=1.0×10−12m2; 3: K0=2.0×10−12m2; c=0.10m/s; ϕ0=0.25; μ 0=1.0×10−3

Pa·s; αK=4.0×10−8Pa−1; αμ=7.0×10−9Pa−1; αϕ=1.0×10−8Pa−1.
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If the boundary condition satisfies

ξ = x−ctð Þ = 0:0; p = p0; ð36Þ

then

C1 = Ω; ð37Þ

Eq. (35) becomes into the following expression

x−ctð Þ = 1
Ω
α θ−1ð Þ p−p0ð Þeαθ p−p0ð Þ

: ð38Þ

Combining Eqs. (19), (20), (23), (26) and (33), then Eq. (38) can
be written as

x−ctð Þ =
α
β

AKK0

αAϕϕ0μ0
c

α θ−1ð Þ p−p0ð Þeα 1−β
αð Þ p−p0ð Þ

: ð39Þ

Combining Eqs. (17) and (18) with Eq. (39) then

x−ctð Þ = K0

βϕ0μ0c
αð Þ − β

α

� �
p−p0ð Þe αK + αρ−αμð Þ 1−

αϕ + αρ
αK + αρ−αμ

� �
p−p0ð Þ

;

ð40Þ

x−ctð Þ = − K0

ϕ0μ0c
p−p0ð Þe αK−αμ−αϕð Þ p−p0ð Þ

: ð41Þ

If ν = α
β is equal to 1.0 in (Eq. (40)) or αK=αμ=αφ is equal to 0.0

(ignoring the elasticity of porous media and compressibility of fluid),
and let

1
R

= − K0

ϕ0μ0c
; ð42Þ

then

p = p0 + R x−ctð Þ = p0 + Rξ: ð43Þ

Eq. (43) shows the relation between fluid pressures, p and space, ξ
are linear if the elasticity of porous media and compressibility of fluid
is ignored or ν keeps 1.0.

Eq. (41) is the traveling-wave solution of Eq. (28). Though the
solution is implicit in form, it gives the relations between fluid
pressure in deformed porous media with space x and time t. We can
get an insight into the performances of fluid flow in nonlinear elastic
porous media by the solution.

6. The comparisons of previous solution and the solution in this
paper

Aadnoy and Finjord (1996) gave an analytical solution of radial
flow equation for the transient line sink for oil reservoirs. The
solution is different from our solution in boundary conditions and
flow domain. To validate the solution in this paper, we compared
our solutions to Gorbunov's solutions at two cases (1) incompress-
ible liquid in a nondeformable porous medium; and (2) steady-state
conditions and completely reversible deformations. The solutions
obtained in this paper are the same as Gorbunov's solutions (Figs. 6
and 7). The comparisons validate the solution obtained by this
work.

7. The analysis for the effects of main parameters on fluid
pressure in porous media

There are 6 parameters (K0, ϕ0, μ0, αK, αμ, and αϕ) except for the
speed of traveling wave in Eq. (41). The following section is used to
demonstrate how that these parameters influence pressure distribu-
tion. We let the pressure satisfy the following boundary condition.

ξ = ξin = 0:0; pin = p0 = 1:0 × 107Pa; ð44Þ

ξ = ξout ; pout = 4:0 × 107Pa: ð45Þ
Define dimensionless pressure p and space ξ as

p =
p

pout
; ð46Þ



Fig. 9. The effect of the initial porosity on pressure distribution. 1:ϕ0=0.1; 2:ϕ0=0.2; 3:
ϕ0=0.3; c=0.10m/s; K0=1.0×10−12m2; μ 0=1.0×10−3Pa·s; αK=4.0×10−8Pa−1;
αμ=7.0×10−9Pa−1; αϕ=1.0×10−8Pa−1.

Fig. 10. The effect of the initial viscosity on pressure distribution. 1: μ0=1.0×10−3Pa⋅s
2: μ 0=2.0×10− 3Pa ⋅ s; 3: μ

0
=3.0×10−3Pa· s; c=0.10m/s; K0=1.0×10− 12m2;

ϕ0=0.3; αK=4.0×10−8Pa−1; αμ=7.0×10−9Pa−1; αϕ=1.0×10−8Pa−1.

Fig. 12. The effect of the modifying factor of permeability on pressure distribution. 1:
αK=1.0×10−8Pa−1; 2: αK=2.0×10−8Pa−1; 3: αK=3.0×10−8Pa−1; c=0.10m/s;
K0=1.0×10− 12m2; ϕ0=0.3; μ 0=1.0×10− 3Pa ⋅ s; αϕ=2.0×10− 9Pa− 1; αμ=7.0×
10− 9Pa− 1.

Fig. 13. The effect of the modifying factor of viscosity on pressure distribution. 1:
αμ=0.5×10−8Pa−1; 2: αμ= 1.0×10−8Pa−1; 3: αμ= 1.5×10−8Pa−1; c=0.10m/s;
K0=1.0× 10− 12m2; ϕ0=0.3; μ 0=1.0×10− 3Pa· s; αϕ= 2.0×10− 9Pa− 1; αK=
1.0×10−8Pa−1.
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ξ =
ξ

ξout
: ð47Þ

Fig. 8 shows the dimensionless pressure curve becomes steep with
the decrease in initial permeability of porous media if the other
parameters keep constants. The phenomenon results from the fact
that the decrease in permeability of porous media leads to the
increase in flow resistance of fluid in interconnected networks.

Figs. 9 and 10 show the dimensionless pressure curves become
steep with the increases in initial porosity of porous media and
viscosity of the fluid in porous media if the other parameters keep
constants.
Fig. 11. The effect of the modifying factor of porosity on pressure distribution. 1:
αϕ=1.0×10−8Pa−1; 2: αϕ=2.0×10−8Pa−1; 3: αϕ=3.0×10−8Pa−1;c=0.10m/s;
K0= 1.0 × 10− 12m2; μ 0= 1.0 × 10− 3 Pa · s; ϕ0= 0.3; αK=4.0 × 10− 8 Pa− 1;
αμ=7.0×10−9Pa−1.
Fig. 11 indicates the dimensionless pressure curve becomes steep
with the increase in the modifying factor of porosity of porous media
if the other parameters keep constants. The dimensionless pressure
curve becomes flat with the increase in the modifying factor of
permeability (see Fig. 12). The increase in the modifying factor of
permeability leads to the reduction in permeability and higher flow
resistance.

Fig. 13 indicates the dimensionless pressure curve becomes steep
with the increase in the modifying factor of viscosity of the fluid in
porous media if the other parameters keep constants. Fig. 14 gives the
effect of the factor (v=α/β) on pressure distribution. When v is equal
to 1.0, the relation between dimensionless pressure and space is linear
(Curve 3). The curves move to the left side of the 3rd curve if v is less
than 1.0, and vice versa if v is great than 1.0.
Fig. 14. The effect of the factor (v=α/β) on pressure distribution. 1: v=0.50;
2: v=0.75; 3: v=1.0; 4: v=1.50; 5: v=2.00; c=0.10m/s; K0=1.0×10−12m2; ϕ0=0.3.
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8. Conclusion

(1) Based on Biot's theory on effective stress loaded on porous
media, a theoretical model for describing the changes in the
porosity and permeability with fluid pressure in elastic
deformed porous media was presented.

(2) The exponential correlations between porosity, permeability
and fluid pressure in porous media were obtained by nonlinear
regression based on the experimental data obtained by
experimental approach in this work.

(3) Combining the theory of nonlinear elastic deformation of
porous media and the continua theory on porous media and
fluids, the authors developed a mathematical model fully
considering nonlinear elastic deformation of porous media and
fluid percolating in the media.

(4) An exact analytical solution of the nonlinear model was
obtained by the transmission of traveling wave and it provides
an access to get more insights for the characteristics of pressure
distribution during fluid flow in this type of porous media than
by numerical solution because of numerical dispersion.

(5) The solutions obtained in this paper are validated by compar-
ison to Gorbunov's solutions. The effects of main parameters
(K0, ϕ0, μ0, αK, αμ, and αϕ) on pressure distribution of fluid in
porous media during percolation were demonstrated the
analytical solution.

(6) An important discovery is that the relation between dimen-
sionless pressure and ξ is linear when not only ignoring the
elasticity of porous media and compressibility of fluid, but also
keeping the ratio of α to β equal to 1.0. Otherwise the relations
between dimensionless pressure and ξ become into nonlinear
curves.

(7) Both the compressibilities of rock and fluid and the pressure-
dependent viscosity of fluid are considered in the developed
model, of which importance lies in the fact that the model is
more precise than the previous model treating porosity,
permeability and viscosity as constants. The analytical solution
provides an exact access to insights of the effects of the all
pressure-dependent variables on pressure distribution in fluid
flowing direction.

Nomenclature
Aϕ coefficient for calculating porosity
AK coefficient for calculating permeability
c traveling-wave propaganda speed, m/s
C1 a constant
D2 D2=K0/(αϕ0μ0), parameter
K transient absolute permeability of porous media, μm2

p pressure, Pa
p dimensionless pressure
RK the ratio of transient permeability to initial permeability
Rϕ the ratio of transient porosity to initial porosity
t time, s
u a new variable induced for solution
ν the ratio of α to β
x Space, m
αK modifying factor of permeability, Pa−1

αϕ modifying factor of porosity, Pa−1

αμ modifying factor of viscosity, Pa−1

αρ modifying factor of density, Pa−1

α modifying factor group, is equal to αK+αρ−αμ, Pa−1

β modifying factor group, is equal to αϕ+αρ, Pa−1

χ is equal to νD2

ϕ transient porosity of porous media
μ viscosity of fluid, Pa·s
φ a new variable induced for solution
θ a new variable induced for solution
ρ density of fluid, mPa·s
σe stress, Pa
τ gradient of u
ξ a new variable induced for solution
ξ a dimensionless space variable
Ω Ω=c/χ

Subscripts
0 0=initial value
in in=inner boundary
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