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NçÃ�Ù®��½ Ý®Ãç½�ã®ÊÄÝ of fl ow and contaminant 

transport in unsaturated media require relationships 

describing the water retention characteristics. Th e van Genuchten 

(1980) equation is one of the most widely used relationships:
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where Se is the eff ective saturation, h is the pressure head, θ is 
volumetric water content, θs and θr are saturated and residual 

volumetric water contents, respectively, and α and m (n = 1 − 

1/m) are water retention parameters related to the water entry 

pressure and soil pore size distribution, respectively. Th e water 

retention parameters are usually estimated from water reten-

tion data obtained from core samples, and accurately estimating 

these parameter values has been an active research fi eld for many 

years (Yates et al., 1992). Due to their spatial variability, the 

water retention parameters are treated as random variables in 

stochastic subsurface hydrology. Probability density functions of 

the parameters are required for evaluating their uncertainty and 

its propagation through unsaturated fl ow and solute transport 

models (Christiaens and Feyen, 2001; Avanidou and Paleologos, 

2002; Zhou et al., 2003; Lu and Zhang, 2004; Chen et al., 

2005; Boateng, 2007). Th e parameter estimates and the PDFs 

can be obtained in two ways: direct methods of fi tting the water 

retention data (e.g., Meyer et al., 1997; Schaap and Leij, 1998; 

Hollenbeck and Jensen, 1998; Christiaens and Feyen, 2000, 

2001; Vrugt and Bouten, 2002; Børgesen and Schaap, 2005; Ye 

et al., 2007a; Chirico et al., 2007) and indirect methods of cali-

brating the Richards equation (Yeh and Zhang, 1996; Hughson and 

Yeh, 2000; Wang et al., 2003; Abbaspour et al., 2004; Minasny and 

Field, 2005). We developed a direct method of estimating the PDFs 

for measuring the uncertainty of the water retention parameters and 

for evaluating the eff ect of the uncertain parameters on the predictive 

uncertainty of unsaturated fl ow and contaminant transport.

Many methods have been developed for estimating the water 

retention parameters and their associated estimation uncertainty. 

Among them, the least square (LS) method is the most widely 

used due to its simplicity and fl exibility. Th e LS method has 

been implemented in the RETC (retention curve) software (van 

Genuchten et al., 1991; Yates et al., 1992), and the accuracy of 

the LS estimates is measured by a covariance matrix. Th e ML 

method incorporates measurement errors in a rigorous manner 

and can evaluate the adequacy of model fi t (Hollenbeck and 
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Uncertainty assessment of fl ow and contaminant transport in the vadose zone entails probability density funcƟ ons 
(PDFs) of soil hydraulic parameters. An unconvenƟ onal maximum likelihood (ML) approach was used in this study to 
esƟ mate the PDFs of water retenƟ on parameters (e.g., van Genuchten α and m) for a situaƟ on common in fi eld-scale 
modeling where core samples are sparse and prior PDFs of the parameters are unknown. In this situaƟ on, the uncon-
venƟ onal ML approach approximates the PDFs as mulƟ variate Gaussian. This study developed a method of esƟ maƟ ng 
the mean and covariance of the mulƟ variate Gaussian PDF based on the results of least square methods that can 
be easily obtained in pracƟ ce. The developed method was applied to and evaluated through numerical simulaƟ on of 
unsaturated fl ow and tracer transport at the proposed Yucca Mountain geologic repository. Another focus of this study 
was to invesƟ gate the eff ect of uncertainty in the water retenƟ on parameters on predicƟ ve uncertainty. By compar-
ing the predicƟ ve uncertainty before and aŌ er incorporaƟ ng random water retenƟ on parameters, it was found that 
the random water retenƟ on parameters had limited eff ects on the mean predicƟ ons of the state variables including 
percolaƟ on fl ux and tracer travel Ɵ me from the potenƟ al repository to the water table. IncorporaƟ ng the uncertainty in 
the water retenƟ on parameters, however, signifi cantly increased the magnitude and spaƟ al extent of predicƟ ve uncer-
tainty of the state variables. In parƟ cular, incorporaƟ ng the random water retenƟ on parameters signifi cantly changed 
the 5th and 95th percenƟ les of the tracer travel Ɵ me by tens of thousands of years.
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Jensen, 1998). In addition, the ML method gives the Cramer–Rao 

lower bound for describing the parameter estimation uncertainty. 

Th e pedotransfer method (Schaap and Leij, 1998; Christiaens 

and Feyen, 2000, 2001; Børgesen and Schaap, 2005; Ye et al., 

2007a; Chirico et al., 2007) is another type of parameter estima-

tion method; it uses the bootstrap method (Efron and Tibshirani, 

1993) to measure the accuracy of the estimates (Schaap and Leij, 

1998; Børgesen and Schaap, 2005). Th ese methods do not explic-

itly yield the parameter PDFs, although normal distributions are 

always assumed. Th is renders these methods insuffi  cient for uncer-

tainty assessment of unsaturated fl ow and contaminant transport. 

While the Bayesian methods (e.g., Meyer et al., 1997; Vrugt and 

Bouten, 2002; Minasny and Field, 2005) give the parameter 

PDFs, they require estimating the prior PDFs from published 

data sets of the soil water retention parameters. Although estimat-

ing the prior PDFs is not diffi  cult for soils, it may be diffi  cult, if 

not impossible, for other types of unsaturated media such as the 

fractured rock in this study.

Th is study estimated the PDFs of the water retention param-

eters in a Bayesian framework based on an unconventional ML 

method introduced by Berger (1985, p. 223) in the statistical 

literature. In particular, the PDFs are estimated for a situation 

common in fi eld-scale modeling where core samples are sparse 

and prior PDFs of the parameters are unknown. When core sam-

ples are sparse, conventional statistical methods (e.g., Carsel and 

Parrish, 1988; Russo and Bouton, 1992; Mallants et al., 1996; 

Russo et al., 2008) of estimating the PDFs based on a large data-

base become inappropriate. When prior PDFs are unknown, 

regular Bayesian methods cannot be applied. Th e unconventional 

ML approach used in this study resolves the problems of sparse 

core sample measurements and unknown prior PDFs; it shows 

in a Bayesian framework that the PDFs can be approximated 

as multivariate Gaussian for unknown prior PDFs regardless of 

the number of measurements (Berger, 1985, p. 223). Th is is the 

major advantage of this approach over conventional ML methods, 

which give only ML parameter estimates and estimation uncer-

tainty bounds, not the PDFs. Another feature of this approach 

is that it explicitly considers correlation between the water reten-

tion parameters through the multivariate Gaussian PDF, instead 

of ignoring the correlation (e.g., Zhou et al., 2003) or assuming 

a perfect correlation (e.g., Avanidou and Paleologos, 2002). Th e 

ML approach gives only a mathematical expression of the multi-

variate Gaussian PDF but not the way of estimating its mean and 

covariance. Th is study showed that the mean of the multivariate 

normal distribution is the same as the LS parameter estimates and 

that the covariance can be estimated using the sensitivity matrix 

of the LS methods. Th is provides a practical way of using the 

unconventional ML approach, since the LS parameter estimates 

and the sensitivity matrix can be easily obtained.

Although the unconventional ML approach was intro-

duced decades ago, it has not received attention from vadose 

zone hydrologists for estimating the PDFs of the water retention 

parameters. Th is study appears to provide its fi rst application 

and evaluation in the vadose zone to the best of our knowledge. 

We selected as a case study site the unsaturated zone (UZ) of 

Yucca Mountain (YM), the proposed geologic repository for spent 

nuclear fuel or high-level radioactive waste. Th e site provided a 

good setting for illustrating and testing the ML approach. In each 

hydrogeologic layer of the UZ, there are only several available 

measurements of the water retention parameters, insuffi  cient 

for estimating the PDFs using conventional statistical methods. 

On the other hand, regular Bayesian methods cannot be applied 

because the prior parameter PDFs are unknown for the frac-

tured porous medium. Due to these obstacles, uncertainty in the 

water retention parameters has not been fully assessed, despite its 

importance to the unsaturated fl ow and radionuclide transport 

uncertainty, as shown in previous studies (e.g., Zhang et al., 2006; 

Paleologos et al., 2006).

Th e necessity of assessing the uncertainty in the water reten-

tion parameters at the site is illustrated in Fig. 1. Th e solid line 

plots the van Genuchten model fi tted using the LS method from 

water retention data (symbols) of three core samples in the hydro-

geologic layer TMN (details of the parameter fi tting are available 

in Bechtel SAIC Company, 2003). Uncertainty of the parameter 

estimates is quantifi ed by the 95% confi dence interval of the 

parameters, and the corresponding van Genuchten models are 

plotted in the dashed lines of Fig. 1. When the PDFs of the 

parameters are unknown, however, using the 95% confi dence 

interval for quantifying the uncertainty is empirical. Knowing the 

parameter PDFs would better quantify the parametric uncertainty. 

It is also expected that incorporating the parametric uncertainty 

into numerical modeling will better simulate the variability of the 

simulated state variables (e.g., saturation and concentration). Th e 

extent of improvement is yet to be examined at the site, however, 

which partly motivated this study.

Another focus of this study was to investigate the eff ect 

of uncertainty in the retention parameters on the predictive 

uncertainty of unsaturated fl ow and tracer transport. We were 

particularly interested in the eff ect relative to that of permeability 

and porosity, since understanding the relative eff ect is impor-

tant for directing future data collection eff orts for uncertainty 

F®¦. 1. The van Genuchten model fi Ʃ ed to the water retenƟ on data 
of three samples for the hydrogeologic layer TMN of the unsatu-
rated zone model of Yucca Mountain. Symbols denote the water 
retenƟ on data of three samples, and the solid and dashed lines are 
the fi Ʃ ed van Genuchten model and their 95% confi dence inter-
vals, respecƟ vely. The water retenƟ on data were adopted from 
Bechtel SAIC Company (2003). (1 bar = 0.1 MPa.)
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reduction. Th e relative eff ect has not been examined in previous 

uncertainty analyses (e.g., Nichols and Freshley, 1993; Avanidou 

and Paleologos, 2002; Haukwa et al., 2003; Zhou et al., 2003; 

Illman and Hughson, 2005; Oliveira et al., 2006; Paleologos et 

al., 2006; Ye et al., 2007b). We investigated the relative eff ect by 

incorporating the uncertainty in the water retention parameters 

into the numerical modeling of Ye et al. (2007b). Since Ye et al. 

(2007b) already assessed the predictive uncertainty due to the 

uncertainty in the permeability and porosity, the relative eff ect 

was revealed by comparing the predictive uncertainty of this study 

with that of Ye et al. (2007b).

Materials and Methods

Study Site and Numerical Model
Th e study site (the UZ of YM) and the numerical model 

are briefl y described here; more details of the site and the model 

can be found in Bechtel SAIC Company (2004) and Wu et al. 

(2004). Th e UZ is a complex geologic formation with heteroge-

neous layered and anisotropic fractured tuff . It consists of fi ve 

major geologic units: the Tiva Canyon welded unit (TCw), the 

Paintbrush nonwelded unit (PTn), the Topopah Spring welded 

unit (TSw), the Calico Hills nonwelded unit (CHn), and the 

Crater Flat undiff erentiated unit (CFu). Each unit is further 

divided into multiple hydrogeologic layers, resulting in a total 

of 33 layers. Table 1 lists the number of core samples used to 

estimate the water retention parameters for the 33 hydrogeologic 

layers. For 25 of these layers, the water retention parameters were 

estimated from fewer than fi ve core samples. Given that each 

core sample gave one set of water retention parameters, the small 

number of parameter estimates is insuffi  cient for identifying the 

parameter PDFs using traditional statistical methods such as the 

Kolmogorov–Smirnov test.

Th e unsaturated fl ow module, EOS9, and radionuclide trans-

port module, T2R3D, of the TOUGH2 family (Wu et al., 1996; 

Pruess et al., 1999) were used for simulating the unsaturated fl ow 

and radionuclide transport. A three-dimensional numerical grid 

of the UZ encompassing approximately 40 km2 was developed, 

which consisted of 980 mesh columns and 45 numerical layers 

(Bechtel SAIC Company, 2004). Figure 2 is the plane view of 

the numerical grid, with the potential repository area highlighted 

using blue dots. Th e ground surface and water table were taken 

as the top and bottom model boundaries, where Dirichlet-type 

boundary conditions with specifi ed pressure or saturation were 

applied. A no-fl ux boundary condition was specifi ed for the 

lateral boundaries. Th e present-day net infi ltration from pre-

cipitation at the land surface was used as a source term in the 

fracture grid blocks. Infi ltration is the major control of the over-

all hydrologic and thermal conditions within the UZ (Bechtel 

SAIC Company, 2004). Since the dual-continuum approach was 

used in the numerical model for the fractured and matrix media, 

permeability, porosity, and the water retention parameters were 

required for both media. Based on the sensitivity analysis results 

of Zhang et al. (2006), only matrix properties were treated as 

random variables in this study. In Ye et al. (2007b), matrix per-

meability, porosity, and the adsorption coeffi  cient were treated as 

T��½� 1. The esƟ maƟ on of the mean (μ) and standard deviaƟ on 
(σ) of the van Genuchten α and m parameters.

Layer 
Core 

sample no. μ log(α) σlog(α) μm σm

CCR & CUC 3 0.004 0.244 0.388 0.081
CUL & CW 10 −0.509 0.199 0.280 0.046
CMW 6 −0.488 0.192 0.259 0.044
CNW 8 1.207 0.269 0.245 0.038
BT4 8 1.164 0.169 0.219 0.019
TPY 2 0.391 0.728 0.247 0.104
BT3 3 1.897 0.375 0.182 0.028
TPP 3 1.015 0.189 0.300 0.039
BT2 11 1.992 0.335 0.126 0.017
TC 4 0.939 0.544 0.218 0.068
TR 5 0.055 0.118 0.290 0.025
TUL 4 −0.210 0.114 0.283 0.025
TMN 3 −0.074 0.776 0.317 0.122
TLL 5 0.032 0.447 0.216 0.058
TM2 & TM1 3 −0.081 0.934 0.442 0.173
PV3 5 −0.206 0.446 0.286 0.092
PV2a 1 −0.337 0.156 0.059 0.007
PV2v 1 0.686 0.043 0.293 0.011
BT1a 3 −1.678 0.183 0.349 0.073
BT1v 3 0.940 0.050 0.240 0.008
CHV 5 1.413 0.092 0.158 0.008
CHZ 4 −0.648 0.094 0.257 0.022
BTa 1 −1.807 0.043 0.499 0.036
BTv 1 0.196 0.253 0.147 0.025
PP4 3 −1.349 0.513 0.474 0.200
PP3 5 −0.055 0.094 0.407 0.033
PP2 3 −0.622 0.168 0.309 0.044
PP1 3 −1.036 0.442 0.272 0.116
BF3 2 0.098 0.940 0.193 0.077
BF2 1 −1.921 0.032 0.617 0.070

F®¦. 2. Plan view of the three-dimensional unsaturated zone 
numerical model grid showing the model domain, faults, proposed 
high-level radioacƟ ve waste repository layout, and locaƟ ons of 
several boreholes (modifi ed from Bechtel SAIC Company, 2004).
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random variables; this study further incorporates the matrix water 

retention parameters as random variables.

Maximum Likelihood Method 
of EsƟ maƟ ng Probability Density FuncƟ ons

Th is study determined the PDFs of the water retention 

parameters based on the ML theory of Berger (1985, p. 224): 

“Suppose that X1, X2, …, XN are i.i.d. from the density f0(xi|β), 

β = (β1, β2, …, βp)T being an unknown vector of parameters. 

(We will write x = (x1, x2, …, xN)T and f(x|β) = Π 1
N
i= f(xiβ), as 

usual.) Suppose π(β) is a prior density, and that π(β) and f(xi|β) 

are positive and twice diff erential near β̂ , the (assumed to exist) 

maximum likelihood estimate (MLE) of β. Based on Bayes’ theo-

rem, the posterior density of β

( ) ( ) ( ) ( )| |p f m= πx x xβ β β  [2]

[m(x) being a normalizing factor], can be approximated by a 

multivariate normal distribution, Np( β̂,[ Ι̂(x)]−1), where Î  is 

the observed (or conditional) Fisher information matrix, having 

(i,j) elements
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Taking x as the retention data and β as the water retention param-

eters (or their transforms such as logarithmic), this ML approach 

provides a method of estimating the PDFs of the water retention 

parameters. Without having large number of measurements of 

the water retention parameters and knowing the prior PDF, the 

posterior PDF is approximated as multivariate Gaussian. Th is 

feature renders the ML theory the only way of identifying the 

PDF of the retention parameters for the UZ and other sites in a 

similar situation.

Th e ML approach only gives the expression of the Gaussian 

PDF, Np( β̂,[ Ι̂ (x)]−1); this study shows that its mean (the MLE) 

is the same as the least square estimate and that its covariance 

can be estimated from the sensitivity matrix also obtained from 

the LS method. Assuming that residuals, r = θ − θ̂ (β), between 

the observed water saturation data (θ) and the estimated data ( θ̂
) using the van Genuchten model follow a normal distribution 

with a mean of zero and covariance matrix of σ2ω−1 (where σ2 

is unknown and the same for all xi and ω is a weight matrix of 

the residuals related to measurement error and model quality) 

(Carrera and Neuman, 1986), the likelihood function is
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( )

2
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Taking its natural logarithm and multiplying it by −1 on both 

sides gives
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One of the diff erences between the ML and LS methods is that 

the ML estimates both β and σ2, while the LS only estimates β. 

Considering that β and σ2 are independent, the ML estimate β̂  

of β can be obtained by setting −∂ln[f(x|β,σ2)]/∂β = 0 without 

knowing σ2. Since Nzln(2π), Nzlnσ
2, and ln|ω−1| in Eq. [5] are 

independent of β, this is equivalent to minimizing the LS objec-

tive function:

( ) ( ) ( )ˆ ˆT
TO ⎡ ⎤ ⎡ ⎤= = θ−θ θ−θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦r rβ ω β ω β  [6]

Th erefore, the ML estimate β̂  is the same as the LS estimates. 

Th e equivalence between the MLE and LS estimate is achieved 

based on the assumption that the residuals, r, are Gaussian, a rea-

sonable assumption according to Press et al. (1992) and Carrera 

and Neuman (1986). A general comparison between the ML 

and LS methods can be found in Hollenbeck and Jensen (1998), 

Hill and Tiedeman (2007), and Ye et al. (2008). One can then 

estimate σ2, a posteriori, by setting −∂ln[f ( β̂ ,σ2|x)]/∂σ2 = 0, 

which results in the MLE (Carrera and Neuman, 1986; Seber 

and Wild, 1989; Seber and Lee, 2003):

2
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T

N
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σ =
r r

β β

ω
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To estimate the Fisher information matrix in Eq. [3], taking the 

second-order derivative of Eq. [5] with respect to the water reten-

tion parameters gives
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which can be approximated by (Nelles, 2001)

( )
2

1ˆ
ˆ

T=
σ

I x J Jω  [9]

where J is the Jacobian matrix with element Jij = ∂ ˆix /∂βj 

evaluated at β̂ . Th e covariance matrix explicitly measures the 

correlation between the water retention parameters. Th e expres-

sion of Eq. [9] can be also be found in Carrera and Neuman 

(1986), Hill and Tiedeman (2007), and Ye et al. (2008). Th e ML 

approach was applied to the hydrogeologic layers of the UZ, and 

the approximated Gaussian PDFs were evaluated in two ways 

described below.

Results
In addition to the numerical evaluation of the approximated 

Gaussian PDF, we also discuss the eff ect of the uncertainty in the 

water retention parameters on the predictive uncertainty of the 

unsaturated fl ow and tracer transport. Random parameters in 

this study included not only the water retention parameters but 

also the matrix permeability, porosity, and sorption coeffi  cient. 

Uncertainty of the latter three parameters was addressed in Ye et 

al. (2007b). By comparing the statistics in this study with those 

of Ye et al. (2007b), the relative (to permeability and porosity) 

eff ect of the uncertainty in the water retention parameters to the 
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predictive uncertainty of unsatu-

rated fl ow and tracer transport at 

the UZ of YM was investigated.

Uncertainty of Matrix 
van Genuchten α and m

Following the tradition of 

fi tting water retention data, the 

logα and m were fitted from 

water retention data for each 

hydrogeologic layer of the UZ, 

and the fi tted mean and variance 

of the two parameters are listed in 

Table 1. Values of the mean and 

variance are significantly differ-

ent for diff erent layers, refl ecting 

the layering structure of the UZ. Uncertainty in logα is particu-

larly large, resulting in an uncertain fl ow path in the matrix and 

between the matrix and the fracture. Figure 3 plots the cumula-

tive distribution function (CDF) of the two parameters together 

with the fi ve parameters fi tted from core samples using the RETC 

software for the TLL layer. Th e CDF was estimated based on 200 

random numbers of the retention parameters generated using the 

Latin hypercube sampling (LHS) method (McKay et al., 1979). 

It is well known that the LHS is more effi  cient for sampling the 

parameter space than random sampling methods. Th e parameter 

correlation was measured using the Spearman rank correlation 

coeffi  cient, which can measure nonlinear correlation and is thus 

superior to the commonly used Pearson correlation coeffi  cient 

(Iman and Conover, 1982; Helton and Davis, 2003). To obtain 

the rank correlation from the covariance matrix, the statistical 

software Minitab (Minitab Inc., State College, PA) was used to 

generate 2000 realizations based on the multivariate Gaussian 

PDF, and the Spearman rank correlation was estimated based 

on the 2000 realizations. Figure 3 shows that the fi tted param-

eter values are within the range of their 

respective CDFs, indicating that the 

approximated Gaussian distribution was 

able to describe the uncertainty in the 

water retention parameters.

PredicƟ ve Uncertainty of 
Unsaturated Flow

Figure 4 shows the mean and uncer-

tainty bounds of the simulated matrix 

saturation and corresponding observations 

at Borehole SD-12 (its location is shown 

in Fig. 2). Th e uncertainty bounds are the 

5th and 95th percentiles of the simulated 

state variables (e.g., saturation and perco-

lation fl uxes) based on 200 Monte Carlo 

realizations. Both the variance and uncer-

tainty bounds were used to measure the 

predictive uncertainty. Since the uncer-

tainty bounds correspond to the 5th and 

95th percentiles and directly reveal the 

variability of the simulated variables, they 

were considered more informative than 

the variance. Th e mean predictions capture the observed varia-

tion trend reasonably well, and the uncertainty bounds bracket a 

large portion of the observations. Th is suggests that the approxi-

mated Gaussian PDFs of the water retention parameters resulted 

in reasonable simulations of the observed state variables.

Figure 4 also includes the same statistics obtained in Ye et al. 

(2007b), in which the uncertainty in the water retention param-

eters was not considered. Th e mean predictions of both cases 

(with and without considering uncertainty in the water reten-

tion parameters) captured the observed variation trend reasonably 

well. In Topopah Spring welded unit (TSw) where the potential 

repository will be located, 75% of the observations are covered 

by the uncertainty bounds (solid lines) of this study, while the 

uncertainty bounds (dashed lines) of Ye et al. (2007b) cover only 

65% of the observations. Th is is attributed to the fact that uncer-

tainty in the water retention parameters was not incorporated in 

Ye et al. (2007b).

Percolation fl ux and its variations through the UZ can sig-

nifi cantly aff ect the migration of radionuclide released from the 

F®¦. 3. CumulaƟ ve distribuƟ on funcƟ ons (CDFs) of the matrix van Genuchten α and m in the TLL layer. 
FiƩ ed parameter values of fi ve core samples in the layer are also ploƩ ed as solid triangles on the x 
axis. (1 bar = 0.1 MPa.)

F®¦. 4. Comparison of the observed and simulated matrix liquid saturaƟ on with (solid line) and 
without (dashed line) considering the water retenƟ on parameter uncertainty for Borehole SD-12.
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potential repository. Figures 5a and 

5b plot the mean and variance of the 

simulated percolation fluxes at the 

water table, and Fig. 5c and 5d are 

those of Ye et al. (2007b) in which 

the water retention parameters were 

treated as deterministic. Comparison 

of the mean values (Fig. 5a and 5c) 

shows that the magnitude and spatial 

pattern are similar across the entire 

domain, suggesting a limited eff ect of 

the uncertainty in the water retention 

parameters on the mean predictions. 

Comparing Fig. 5b and 5d, however, 

reveals that the variance of the perco-

lation fl ux increased signifi cantly after 

the uncertainty in the water retention 

parameters was incorporated. On 

average across the simulation domain, 

the variance increased by about 38%; 

the number of grid blocks at the water 

table with a variance >10 mm2 yr−2 is 

almost doubled.

PredicƟ ve Uncertainty of 
Unsaturated Tracer Transport

Transport of a conservative 

tracer, technetium (99Tc), and a reac-

tive tracer, neptunium (237Np) was 

simulated for a scenario in which a 

constant-concentration source was 

released instantaneously from the 

fracture continuum grid blocks rep-

resenting the potential repository (Fig. 

2). Predictive uncertainty of the tracer 

transport was quantifi ed in terms of 

the plume and breakthrough of the 

tracers at the water table. Spatial 

distribution of the normalized cumu-

lative mass arrival at the water table 

is an important variable in inves-

tigating transport patterns and in 

estimating the potential locations of 

high radionuclide concentrations. Th e 

cumulative mass arrival is the cumula-

tive mass arriving at each cell of the 

water table with time, normalized by 

the total mass of the released tracers 

from the repository. Figures 6a and 

6b show the mean and variance of the 

normalized cumulative mass arrival 

contours of 237Np at the water table 

after 1,000,000 yr. The mean and 

variance are large in the area directly 

below the footprint of the proposed 

repository. Th e spatial pattern of the 

variance (Fig. 6b) is similar to that of 

the fl ow variance contour shown in 

F®¦. 6. Mean and variance of the normalized cumulaƟ ve mass arrival contours of the reacƟ ve 
tracer (237Np) at the water table aŌ er 1,000,000 yr with (a and b) and without (c and d) consider-
ing the water retenƟ on parameter uncertainty.

F®¦. 5. Mean and variance of the simulated percolaƟ on fl uxes at the water table with (a and b) and 
without (c and d) considering the water retenƟ on parameter uncertainty.
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Fig. 5b, indicative of correlation between the uncer-

tainty of fl ow and tracer transport. Figures 6c and 6d 

depict the same mean and variance of the normalized 

cumulative mass without considering the uncertainty 

in the water retention parameters (Ye et al., 2007b). 

Comparing contours of the mean predictions in Fig. 

6a and 6c suggests a limited eff ect of the uncertainty 

in the water retention parameters on the mean pre-

dictions of the tracer transport. Th e variance shown 

in Fig. 6b is signifi cantly larger than that of Fig. 6d, 

however—almost doubled on average across the whole 

domain. In addition, the area with a variance >0.01 

in Fig. 6b also increased by about 3% relative to that 

shown in Fig. 6d.

Tracer travel time from the potential repository 

to the water table is another important variable for 

performance assessment of the proposed repository. 

Different from calculating the normalized cumula-

tive mass arrival, the tracer travel time is obtained by 

summing the cumulative mass arriving at the water 

table for all blocks at a given time. Figure 7 plots the 

simulated breakthrough curves as the fractional cumu-

lative mass arriving at the water table for the 99Tc and 
237Np. Th e uncertainty bounds of the breakthrough 

curves in Fig. 7 show that fractional mass arrival is sig-

nifi cantly uncertain. Figure 7 also includes the same 

statistics without considering the uncertainty in the 

water retention parameters (Ye et al., 2007b). Due to 

the large time scale used in Fig. 7, for better evaluation 

of the travel time uncertainty, Table 2 lists the 5th and 

95th percentiles at the 10, 25, 50, 75, and 90% mass 

fractional breakthrough for both cases. Similar to what 

has been observed from the contours, the mean break-

through was aff ected only slightly by considering the 

uncertain water retention parameters, while the uncer-

tainty bounds increased more signifi cantly. For example, 

with the random water retention parameters, the 5th 

and 95th percentiles of the simulated travel time of 
99Tc are 8.05 × 103 and 9.43 × 102 yr until 50% of 

the radionuclide would have arrived at the water table. 

With the deterministic water retention parameters, the 

corresponding travel times are 7.17 × 103 and 8.22 × 

102 yr. Th e uncertainty range increases from 6348 to 

7107 yr if the uncertainty in water retention parameters 

is considered. Similarly, for 50% of the reactive tracer 

(237Np) arriving at the water table, the uncertainty 

range increases from 255,000 to 278,100 yr.

Conclusions
Th is study addressed two problems in numerical 

simulations of unsaturated fl ow and contaminant trans-

port. Th e fi rst one is how to estimate the PDFs of the 

water retention parameters when measurements of the parameters 

are sparse and the prior PDFs are unknown; the other question 

is whether the uncertainty in the water retention parameters is 

important in the predictive uncertainty of unsaturated fl ow and 

contaminant transport. Th e fi rst problem was resolved using the 

unconventional ML approach (Berger, 1985), which approxi-

mates the PDFs as multivariate Gaussian without requiring the 

prior PDFs and a large number of parameter measurements. Th is 

study developed the method of estimating the mean and covari-

ance of PDFs based on the LS fi tting results, which can be easily 

estimated from existing software such as RETC. For the case study 

of the YM UZ, water retention parameter ranges obtained from 

the Gaussian distributions encompassed the parameter values of 

individual samples, and were signifi cantly larger than the ranges 

T��½� 2. Comparison of the 5th and 95th percenƟ les of the simulated travel 
Ɵ me of the conservaƟ ve (99Tc) and reacƟ ve (237Np) tracers arriving at the 
water table at 10, 25, 50, 75, and 90% mass fracƟ on breakthrough with (this 
study) and without (Ye et al., 2007b) considering the water retenƟ on param-
eter uncertainty.

Breakthrough 
curve

Mass 
fracƟ on

Travel Ɵ me of this study Travel Ɵ me of Ye et al. (2007b)
99Tc 237Np 99Tc 237Np

% ———————————————— yr ————————————————
5th percenƟ le 10 4.97 × 101 1.43 × 104 1.87 × 101 1.99 × 104

25 7.53 × 102 1.05 × 105 1.08 × 103 9.40 × 104

50 8.05 × 103 3.03 × 105 7.17 × 103 2.75 × 105

75 2.55 × 104 9.42 × 105 2.32 × 104 8.38 × 105

90 1.23 × 105 >1.00 × 106 1.17 × 105 >1.00 × 106

95th percenƟ le 10 3.72 5.91 3.86 5.34
25 1.08 × 101 3.00 × 103 1.03 × 101 1.98 × 103

50 9.43 × 102 2.49 × 104 8.22 × 102 2.00 × 104

75 8.66 × 103 1.33 × 105 9.00 × 103 1.29 × 105

90 4.19 × 104 4.01 × 105 4.70 × 104 5.80 × 105

F®¦. 7. Simulated breakthrough curves of the cumulaƟ ve mass arriving at the 
water table for (a) the conservaƟ ve tracer (99Tc) and (b) the reacƟ ve tracer 
(237Np) with (this study) and without (Ye et al, 2007b) considering the water 
retenƟ on parameter uncertainty.
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of the measured parameter values. Th is indicates that uncertainty 

in the water retention parameters should not be ignored.

Th e relative eff ect of the uncertainty in the water retention 

parameters on the predictive uncertainty of fl ow and transport 

was evaluated using the Monte Carlo method. After the random 

water retention parameters were taken into account, the variabil-

ity of the observed matrix saturations was better represented in 

that 10% more observations were bracketed by the uncertainty 

bounds. Th e predictive variance of the percolation fl ux increased 

when the random water retention parameters were taken into 

account, while the uncertain water retention parameters had a 

limited eff ect on the mean prediction of percolation fl uxes. A 

similar conclusion was also drawn for the magnitude and spatial 

pattern of the simulated plume of both conservative and reactive 

tracers. Th e travel time of the two types of tracers also became 

more uncertain after incorporating the uncertain water retention 

parameters, signifi ed by the result that the uncertainty bounds of 

the tracer travel time increased by tens of thousands of years.
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