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Abstract. A physically based numerical approach is presented for modeling multi-
phase flow and transport processes in fractured rock. In particular, a general frame-
work model is discussed for dealing with fracture-matrix interactions, which is appli-
cable to both continuum and discrete fracture conceptualization. The numerical mod-
eling approach is based on a general multiple-continuum concept, suitable for mod-
eling any types of fractured reservoirs, including double-, triple-, and other multiple-
continuum conceptual models. In addition, a new, physically correct numerical scheme
is discussed to calculate multiphase flow between fractures and the matrix, using conti-
nuity of capillary pressure at the fracture-matrix interface. The proposed general mod-
eling methodology is verified in special cases using analytical solutions and labora-
tory experimental data, and demonstrated for its application in modeling flow through
fractured vuggy reservoirs.
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1 Introduction

Since the 1960s, significant progress has been made in mathematical modeling of flow
and transport processes in fractured rock. Research efforts, driven by the increasing
need to develop petroleum and geothermal energy in reservoirs, other natural under-
ground resources, and to resolve concerns of subsurface contamination, have developed
many numerical modeling approaches and techniques (Barenblatt et al., 1960; Warren
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and Root, 1963; Kazemi, 1969; Pruess and Narasimhan, 1985). Mathematical modeling
approaches developed in the past few decades in general rely on continuum approaches
and involve developing conceptual models, incorporating the geometrical information
of a given fracture-matrix system, setting up mass and energy conservation equations for
fracture-matrix domains, and then solving discrete nonlinear algebraic equations. Most
computational effort is consumed in solving the governing equations that couple multi-
phase fluid flow with other physical processes either analytically or numerically. The key
issue for simulating flow in fractured rock, however, is how to handle facture-matrix in-
teraction under different conditions (involving multiple phase flow). This is because the
fracture-matrix interaction distinguishes the flow through fractured porous media from
the flow through homogeneous or heterogeneous single-porosity porous media.

To model fracture-matrix interaction during flow in fractured porous media, inves-
tigators have developed and applied many different conceptual models and modeling
approaches (e.g., Berkowitz, 2002; Neuman; 2005). In modeling multiphase flow and
transport, and heat transfer in fractured porous media, the most critical issue is how to
handle inter-”flow” or interaction of mass and thermal energy at fracture-matrix inter-
faces under multiphase and non-isothermal condition. Commonly used mathematical
methods for dealing with fracture-matrix interaction include:

• an explicit discrete-fracture and matrix model (e.g., Snow, 1969; Stothoff, 2000),

• the dual-continuum method, including double- and multi-porosity, dual-
permeability, or the more general ”multiple interacting continua” (MINC) method
(e.g., Barenblatt et al., 1960; Warren and Root, 1963; Kazemi, 1969; Pruess and
Narasimhan, 1985; Wu and Pruess, 1988),

• the effective-continuum method (ECM) (e.g., Wu, 2000a).

The explicit discrete-fracture approach is, in principle, a more rigorous model. How-
ever, the application of this method to field studies is currently limited because of the
computational intensity involved as well as the lack of detailed knowledge of fracture
and matrix geometric properties and their spatial distributions at a given subsurface site.
On the other hand, the dual-continuum method is conceptually simpler and computa-
tionally much less demanding than the discrete-fracture approach, and is able to handle
fracture-matrix interaction more easily than the discrete-fracture model. For these rea-
sons, the dual-continuum approach has been used as the main approach for modeling
fluid flow, heat transfer, and chemical transport through fractured reservoirs (e.g., Wu et
al., 1999 and 2007).

Dual-continuum approaches, as discussed in this paper, include the classical double-
porosity model (Barenblatt et al., 1960; Warren and Root, 1963), the dual-permeability
concept, and the more rigorous dual-continuum generalization of the MINC (Pruess and
Narasimhan, 1985) for modeling flow in fractured porous media. In the double-porosity
model, a flow domain is composed of matrix blocks with low permeability, embedded
in a network of interconnected fractures. Global flow and transport in the formation oc-
cur only through the fracture system, conceptualized as an effective continuum. This
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model treats matrix blocks as spatially distributed sinks or sources to the fracture sys-
tem without accounting for global matrix-matrix flow. In comparison, the MINC concept
(Pruess and Narasimhan, 1985) is able to describe gradients of pressures, temperatures,
or concentrations near matrix surface and inside the matrix-by further subdividing in-
dividual matrix blocks with one- or multidimensional strings of nested meshes. There-
fore, the MINC model in general provides a better numerical approximation for transient
fracture-matrix interactions than the double-porosity model.

Because of its computational efficiency and its ability to match many types of
laboratory- or field-observed data simultaneously (e.g., Kazemi, 1979; Wu et al., 1999;
2007), the dual-continuum model, such as double-porosity and dual-permeability con-
cept, has perhaps been the most widely used method in petroleum and geothermal engi-
neering, and groundwater hydrogeology. For example, it has also been implemented in
many commercially available reservoir simulators. In comparison, the effective contin-
uum approach, as a simplified method, the ECM represents fractures and rock matrix by
a single effective continuum. The ECM has long been used for modeling fracture-matrix
flow because of its simple data requirements and computational efficiency. This approach
may be applicable to modeling multiphase, nonisothermal flow and solute transport in
fractured porous media under near-thermodynamic-equilibrium conditions (Wu et al.,
1999). When rapid flow and transport processes occur in subsurface fractured reservoirs,
however, thermodynamic equilibrium conditions cannot in general hold. Therefore, the
instantaneous equilibrium assumption for fracture-matrix systems limits the application
of the ECM approach for modeling general multiphase flow, transport, and heat transfer
processes.

In this paper, a physically based, unified numerical approach is presented for mod-
eling multiphase flow and transport processes in fractured rock. In particular, we dis-
cuss a general mathematical framework model for dealing with fracture-matrix interac-
tions, which is applicable to both continuum and discrete fracture conceptualization. In
this approach, a subsurface domain is discretized using an unstructured grid with reg-
ular or irregular meshes, followed by time discretization carried out using a backward,
first-order, finite-difference method. The final discrete linear or nonlinear equations are
handled fully implicitly using Newton iteration. In addition, the fracture medium is
handled using a general dual-continuum concept with continuum or discrete modeling
approaches.

The main contribution of this work is to show that it is possible to formulate a uni-
form, generalized mathematical model as well as numerical scheme that can be used to
simulate any types of flow and transport in fractured reservoirs, using different fracture-
matrix conceptual model. We demonstrate that with this unified approach, modeling
a particular process of porous-medium or fractured-media flow and transport becomes
simply a matter of defining a set of state variables, along with their interrelations or mu-
tual effects, once a fractured-medium system is discretized using the multi-continuum
approach.
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2 Generalized governing equations

The physical processes associated with flow and transport in fractured porous media are
governed by the same fundamental conservation laws as those used in other branches
of the sciences and engineering: conservation of mass, momentum, and energy governs
the behavior of fluid flow, chemical transport, and heat transfer in rock. These physical
laws are often represented mathematically on the macroscopic level by a set of partial
differential or integral equations, called governing equations. These governing equations
are generally nonlinear as long as compressible or multiphase fluids or heat transfer is
involved and needed to quantitatively model the flow and transport processes occurring
in porous or fractured media. Based on the general conservation laws, we present a set of
generalized governing equations for multiphase fluid flow, multicomponent transport,
and heat transfer in porous and fractured media, providing a framework for numerical
formulations to cover all possible scenarios for flow and transport in porous media.

Let us consider a multiphase, nonisothermal system consisting of several fluid phases,
such as gas, water, and oil (NAPL), with each fluid phase in turn consisting of a number
of mass components. To derive a set of generalized governing equations for multiphase
fluid flow, multicomponent transport, and heat transfer, we assume that these processes
can be described using a continuum approach within a representative elementary vol-
ume (REV) in a porous or fractured medium (Bear, 1972). In addition, a condition of local
thermodynamic equilibrium is assumed so that at any time temperatures, phase pres-
sures, densities, viscosities, enthalpies, internal energies, and component concentrations
(or mass fractions) are the same locally at each REV of the porous medium.

According to mass and energy conservation principles, a generalized conservation
equation of mass components and energy in the porous continuum can be written as
follows:

∂Mk

∂t
=Gk+qk+Fk, (2.1)

where superscript k is the index for the components, k = 1,··· ,Nc, with Nc being the to-
tal number of mass components and with k = Nc+1 for energy ”component” (note that
heat energy is here regarded as a component for convenience); M is the accumulation
term of component k; Gk is the decay or internal generation (reaction) term of mass or
energy components; qk is an external source/sink term or fracture-matrix exchange term
for mass or energy component k and energy; and Fk is the ”flow” term of mass or en-
ergy movement or net exchange from single-phase and multiphase flow, or diffusive and
dispersive mass transport, or heat transfer, as discussed below.

In addition to the conservation or continuity equations of mass and thermal energy,
shown in Eq. (2.1), we also need specific relationships or mechanisms that describe why
and how fluid flow, solute transport, and heat transfer occur in porous and fractured
media. This is to define the ”flow” term in Eq. (2.1), and the following specific laws act as
such mechanisms by governing local fluid flow, component transport, and heat transfer
processes in porous media.
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2.1 Single-phase and multiphase flow

For single-phase liquid or gas flow, Richards’ equation, two active or three phase flow, if
these fluids are treated as immiscible or mass exchange between phases can be ignored,
the accumulation terms in Eq. (2.1) for gas (air), water and/or oil (NAPL) components in
are evaluated as

Mβ =∑
β

(

φρβSβ

)

, (2.2)

where superscript and subscript β is an index for fluid phase (β = g for gas, = w for
aqueous phase, = o for oil); φ is the porosity of porous media; ρβ is the density of phase
β; and Sβ is the saturation of phase β. Note that in this special case, component k (by
superscript) and phase (by subscript) are interchangeable.

In this case, the decay or generation term is negligible with

Gβ =0. (2.3)

The mass flow term is determined by

Fβ =∇•
(

ρβvβ

)

, (2.4)

where vβ is a vector of the Darcy’s velocity or volumetric flow, defined by Darcy’s law to
describe the flow of single or multiple immiscible fluids as

vβ =−
kkrβ

µβ

(

∇Pβ−ρβg∇z
)

, (2.5)

where Pβ, µβ, and g are pressure, viscosity of fluid phase β, and gravitational constant,
respectively; z is the vertical coordinate; k is absolute or intrinsic permeability (a tensor
in general); and krβ is the relative permeability to phase β (equal to one for single-phase
flow, i.e., single-phase is considered as a special case of multiphase flow in this paper).

2.2 Mass or chemical transport

The movement of dissolved mass components or chemical species in a multiphase porous
medium system can also be handled as a special case of Eq. (2.1). The accumulation terms
for component k is

Mk =φ∑
β

(

ρβSβXk
β

)

+(1−φ)ρsρwXk
wKk

d (k=1,··· ,Nc), (2.6)

where Xk
β is the mass fraction of component k in fluid β; ρs is the density of rock solids;

and Kk
d is the distribution coefficient of component k between the aqueous phase and rock

solids to account for adsorption effects.
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In the case in which components are subject to a first-order radioactive decay, the
decay/generation term is

Gk =φλk

(

∑
β

(

ρβSβXk
β

)

+(1−φ)ρsρwXk
wKk

d

)

(k=1,··· ,Nc), (2.7)

where λk is the radioactive decay constant of component k.
The mass component transport is governed in general by processes of advection, dif-

fusion, and dispersion, and is also subject to other processes such as radioactive decay,
adsorption, dissolution and precipitation, mass exchange and partition between phases,
or chemical reactions. Advective transport of a component or solute is carried by flow of
a fluid, and diffusive and dispersive flux is contributed by molecular diffusion and me-
chanical dispersion, or hydrodynamic dispersion. These processes are described using a
modified Fick’s law for transport through a single-phase porous medium (Scheidegger,
1961). Then, the total mass flow term for a component k, by advection and dispersion, is
written as

Fk =−∑
β

∇•
(

ρβXk
βvβ

)

+∑
β

∇•
(

Dk
β•∇

(

ρβXk
β

))

(k=1,··· ,Nc). (2.8)

Eq. (2.8) indicates that the mass flow consists of two parts, the first part, i.e., the first term
on the left-hand side of (2.8), is contributed by advection in all phases and the second
part (the second term on the left-hand side of (2.8)) is diffusive flux by hydrodynamic
dispersion. In Eq. (2.8), Dk

β is the hydrodynamic dispersion tensor accounting for both
molecular diffusion and mechanical dispersion for component k in phase β, defined by
an extended dispersion model (Scheidegger, 1961) to include multiphase effects (Wu and
Pruess, 2000b) as

Dk
β =α

β
T

∣

∣vβ

∣

∣δij+
(

α
β
L−α

β
T

) vβvβ
∣

∣vβ

∣

∣

+φSβτdk
βδij (k=1,··· ,Nc), (2.9)

where α
β
T and α

β
L are transverse and longitudinal dispersivities, respectively, in fluid β

of porous media; τ is tortuosity of the porous medium; dk
β is the molecular diffusion

coefficient of component k within fluid β; and δij is the Kronecker delta function (δij = 1
for i= j, and δij =0 for i 6= j), with i and j being coordinate indices.

2.3 Heat transfer

The accumulation term for the heat equation is usually is defined as

MNc+1 =∑
β

(

φρβSβUβ

)

+(1−φ)ρsUs, (2.10)

where ρs is the density of rock solids; and Uβ and Us are the internal energies of fluid β
and rock solids, respectively.
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Heat transfer in porous media is in general a result of both convective and conductive
processes, although in certain cases, radiation may also be involved. These heat-transfer
processes are complicated by interactions between multiphase fluids, multicomponents,
and associated changes in phases, internal energy, and enthalpy. Heat convection is con-
tributed by thermal energy carried mainly by bulk flow of all fluids as well as by dis-
persive mass fluxes. On the other hand, heat conduction or radiation is driven by tem-
perature gradients and may follow Fourier’s law or Stefan-Boltzmann’s law, respectively.
Then the combined, overall heat flux term, owe to convection, conduction and radiation
in a multiphase, multicomponent, porous medium system, may be described as

FNc+1 =−∑
β

∇•
(

hβρβvβ

)

+∑
β

∑
k

∇•
(

h
k
β Dk

β•∇
(

ρβXk
β

))

+∇•(KT∇T)−εσ0T4, (2.11)

where hβ and hk
β are specific enthalpies of fluid phase β and of component k in fluid β,

respectively; KT is the overall thermal conductivity; T is temperature; ε is a radiation
emissivity factor, and σo (=5.6687×10−8 J/m2 K4) is the Stefan-Boltzmann constant.

As shown in Eq. (2.11), the total heat flow in a multiphase, multicomponent system
is determined by heat convection of flow and mass dispersion (the first two terms on the
right-hand side of (2.11)), heat conduction (the third term on the right-hand side), and
thermal radiation when occurring (the last term on the right-hand side).

2.4 Constitutive relationships

To complete the mathematical description of multiphase flow, multicomponent transport,
and heat transfer in porous media, Eq. (2.1), a generalized mass- and energy-balance
equation, needs to be supplemented with a number of constitutive equations. These
constitutive correlations express interrelationships and constraints of physical processes,
variables, and parameters, and allow the evaluation of secondary variables and parame-
ters as functions of a set of primary unknowns or variables selected to make the govern-
ing equations solvable. Table 1 lists a commonly used set of constitutive relationships for
describing multiphase flow, multicomponent mass transport, and heat transfer through
porous media. Many of these correlations for estimating properties and interrelation-
ships are determined by experimental studies.

3 Numerical formulation

The methodology for using numerical approaches to simulate multiphase subsurface
flow and transport, and heat transfer consists in general of the following three steps:
(1) spatial discretization of mass and energy conservation equations, (2) time discretiza-
tion; and (3) iterative approaches to solve the resulting nonlinear, discrete algebraic equa-
tions. Among various numerical techniques for simulation studies, a mass- and energy-
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Table 1: Constitutive relationships and functional dependence.

Definition Function Description
Fluid saturation ∑

β
Sβ =1 Constraint on summation of total fluid saturation.

Mass fraction ∑
k

Xk
β =1 Constraint on mass fractions within phase β.

Capillary pressure PCβ = PCβ

(

Sβ

)

In a multiphase system, the capillary pressure re-
lates pressures between the phases and is defined
as functions of fluid saturation.

Relative permeability krβ = krβ

(

Sβ

)

The relative permeability of a fluid phase in a mul-
tiphase system are normally assumed to be func-
tions of fluid saturation.

Fluid density ρβ =ρβ(P,T,Xk
β) Density of a fluid phase is treated as a function of

pressure and temperature, as well as mass compo-
sitions (k=1,2,3,· · · ,Nc).

Fluid viscosity µβ =µβ

(

P,T,Xk
β

)

The functional dependence or empirical expres-
sions of viscosity of a fluid is treated as a function
of pressure, temperature, and composition.

Henry’s law Pk
g =Kk

Hωk
w Pk

g is partial pressure of component k in gas phase;

Kk
H is Henry’s constant for component k; and ωk

w is
the mole fraction of component k in water phase.

Equilibrium partition-
ing

ωk
α =Kk

α:βωk
β ωα and ωk

β are the mole fraction of component k in

phase α and β, respectively; and Kk
α:β is the equi-

librium partitioning coefficient of component k be-
tween phases α and β.

Partitioning coeffi-
cient

Kk
α:β =Kk

α:β

(

Pβ,T,Xk
β

)

Depends on chemical properties of the component
and is a function of temperature, pressure and
composition.

Specific enthalpy of
liquid

hβ =Uβ +
Pβ

ρβ
Internal energy, Uβ, of liquid phase β is a function
of pressure and temperature.

Specific enthalpies of
gas

hk
g =Uk

g+
Pk

g

Ck
g

Uk
g the specific internal energy of component k in

the gas phase; Ck
g concentration of component k in

gas phase (kg/m3).
Thermal conductivity KT =KT

(

Sβ

)

The thermal conductivity of the porous medium is
treated as a function of fluid saturation.

Porosity φ=φo(1+Cr(P−Po)−CT(T−To)) φo is the effective porosity at a reference pressure,
Po, and a reference temperature, To; and Cr and
CT are the compressibility and thermal expansion
coefficient of the medium, respectively.

Equilibrium adsorp-
tion

Xk
s =Kk

dρβXk
β Xk

s is the mass of component k sorbed per mass

of solids; and the distribution coefficient, Kk
d, is

treated as a constant or as a function of the con-
centration or mass fraction in a fluid phase under
the local chemical equilibrium condition.

Radioactive decay Ck
β =Ck

β0e−λkt Ck
β is the concentration of component k in phase β

and is equal to Ck
β0 at t = 0; λk is the radioactive

decay constant.

First-order decay con-
stant

λk = ln(2)
T1/2

T1/2 is the half-life of the radioactive component.

conserving discretization scheme, based on finite or integral finite-difference or finite-
element methods, is the most commonly used approach, and is discussed here.
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3.1 Discrete equations

The component mass- and energy-balance Eq. (2.1) are discretized in space using a
control-volume concept. The control-volume approach provides a general spatial dis-
cretization scheme that can represent a one-, two- or three-dimensional domain using
a set of discrete meshes. Each mesh has a certain control volume for a proper averag-
ing or interpolation of flow and transport properties or thermodynamic variables. The
control volume concept includes the conventional finite-difference scheme (Narasimhan
and Witherspoon, 1975; Pruess et al. 1999), an integral finite-difference method (Fig. 1)
(Pruess, 1991), a control-volume finite element (Forsyth, 1994), and Galerkin finite-
element methods (Huyakorn et al. 1994). These are the most widely used discretization
schemes for multiphase flow simulation.

Figure 1: Space discretization and flow-term evaluation in the integral finite difference method (Pruess, 1991).

Time discretization is carried out using a backward, first-order, fully implicit finite-
difference scheme. The discrete nonlinear equations for components of water, gas and
oil, and heat at gridblock or node i can be written in a general form:

{

Ak,n+1
i +Gk,n+1

i ∆t−Ak,n
i

} Vi

∆t
= ∑

j∈ηi

f lowk,n+1
ij +Qk,n+1

i ,

(k=1,··· ,Nc,Nc+1) and (i=1,··· ,N), (3.1)

where superscript k serves also as an equation index for all mass components with k =
1,··· ,Nc and k = Nc+1 denoting the heat equation; superscript n denotes the previous
time level, with n+1 the current time level to be solved; subscript i refers to the index of
gridblock or node I, with N being the total number of nodes in the grid; ∆t is time step
size; Vi is the volume of node i; ηi contains the set of direct neighboring nodes (j) of node
i; Ak

i , Gk
i , flowk

ij, and Qk
i are the accumulation and decay/generation terms, respectively,

at node i; the ”flow” term between nodes i and j, and sink/source term at node i for
component k or thermal energy, respectively, are defined below. Eq. (3.1) has the same
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form regardless of the dimensionality of the system, i.e., it applies to one-, two-, or three-
dimensional flow, transport, and heat-transfer analyses.

The accumulation and decay/generation terms for mass components or thermal en-
ergy are evaluated using Eqs. (2.6), (2.7), and (2.11), respectively, at each node i. The
”flow” terms in Eq. (3.1) are generic and include mass fluxes by advective and disper-
sive processes, as described by Eq. (2.4) or (2.8), as well as heat transfer, described by
Eq. (2.11).

The mass flow term of Eq. (3.1) for single-phase, Richards’ or multiphase flow is de-
scribed by a discrete version of Darcy’s law, i.e., the mass flux of fluid phase β along the
connection is given by

f low
β
ij =λβ,ij+1/2γi j

[

ψβ j−ψβi

]

, (3.2)

where λβ,ij+1/2 is the mobility term to phase β, defined as

λβ,ij+1/2 =

(

ρβkrβ

µβ

)

ij+1/2

. (3.3)

In Eq. (3.2), γij is transmissivity and is defined differently for finite-difference or finite-
element discretization. If the integral finite-difference scheme (Pruess et al. 1999) is used,
the transmissivity is evaluated as

γi j =
Ai j ki j+1/2

Di+Dj
, (3.4)

where Aij is the common interface area between connected blocks or nodes i and j (Fig. 1);
and Di is the distance from the center of block i to the interface between blocks i and j
(Fig. 1). The flow potential term in Eq. (3.2) is defined as

ψβi = Pβi−ρβ,i j+1/2 g Zi, (3.5)

where Zi is the depth to the center of block i from a reference datum.
For mass component transport, the flow term, or the net mass flux by advection and

hydrodynamic dispersion of a component along the connection of nodes i and j, is deter-
mined by

f lowk
ij = Fk

A,ij+Fk
D,ij (k=1,··· ,Nc), (3.6)

where Fk
A,ij and Fk

D,ij are the net mass fluxes by advection and hydrodynamic dispersion

along the connection, respectively, with

Fk
A,ij = Aij∑

β

(

Xk
β

)

ij+1/2
Fβ,ij, (3.7)

Fk
D,ij =−nij•Aij∑

β

Dk
β•∇

(

ρβXk
β

)

, (3.8)
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where nij is the unit vector along the connection of the two blocks i and j.
The total heat flux along the connection of nodes i and j, including advective, diffu-

sive, conductive and radiation terms, may be evaluated, when using a finite-difference
scheme, by

f lowNc+1
ij =∑

β

[

(

hβ

)

ij+1/2
Fβ,ij

]

+∑
β

∑
k

{

(

h
k
β

)

ij+1/2
Fk

D,ij

}

+Aij(KT)ij+1/2

[

Tj−Ti

Di+Dj

]

+Aijσ0ε ij+1/2

(

T4
j −T4

i

)

. (3.9)

In evaluating the ”flow” terms in the above Eqs. (3.2)-(3.5), (3.7) and (3.9), subscript ij+
1/2 is used to denote a proper averaging or weighting of fluid flow, component transport,
or heat transfer properties at the interface or along the connection between two blocks or
nodes i and j. The convention for the signs of flow terms is that flow from node j into
node i is defined as ”+” (positive) in calculating the flow terms. Wu and Pruess (2000b)
present a general approach to calculating these flow terms associated with advective and
dipersive mass transport and heat transfer in a multiphase system, using an irregular and
unstructured, multidimensional grid.

The mass or energy sink/source in Eq. (3.1) at node i, Qk
i , is defined as the mass or en-

ergy exchange rate per unit volume of rocks or soils. It is normally used to treat boundary
conditions, such as surface infiltration, pumping, and injection through wells. Note that
we present explicit, discrete expressions for estimating all the flow terms above, except
for dispersive fluxes in Eq. (3.7). This is because of the numerical difficulties introduced
in handling the hydrodynamic tensor of dispersion, which is treated very differently with
different numerical approaches, such as finite difference or finite element. In most for-
mulations for solute transport, the off-diagonal terms and contributions of the dispersion
tensor are ignored, and dispersive transport is considered only along the principal direc-
tions. However, a general procedure for using the integral finite difference to incorporate
a full dispersion tensor is presented by Wu and Pruess (2000b).

Note that Eq. (3.1) presents a precise form of the balance equation for each mass com-
ponent and heat in a discrete form. It states that the rate of change in mass or energy
accumulation (plus decay/generation, if existing) at a node over a time step is exactly
balanced by inflow/outflow of mass and energy and also by sink/source terms, when
existing for the node. As long as all flow terms have flow from node i to node j equal
to and opposite to that of node j to node i for fluids, components, and heat, no mass
or energy will be lost or created in the formulation during the solution. Therefore, the
discretization in (3.1) is conservative.

3.2 Numerical solution scheme

There are a number of numerical solution techniques that have been developed in the
literature over the past few decades to solve the nonlinear, discrete equations of reser-
voir simulations. When handling multiphase flow, multicomponent transport, and heat
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transfer in a multiphase flow system, the predominant approach is to use a fully im-
plicit scheme. This is due to the extremely high nonlinearity inherent in those discrete
equations and the many numerical schemes with different level of explicitness that fail to
converge in practice. In this section, we discuss a general procedure to solve the discrete
nonlinear Eq. (3.1) fully implicitly, using a Newton iteration method.

Let us write the discrete non-linear equation (3.1) in a residual form as

Rk,n+1
i =

{

Ak,n+1
i +Gk,n+1

i −Ak,n
i

} Vi

∆t
− ∑

j∈ηi

f lowk,n+1
ij −Qk,n+1

i =0

(k=1,··· ,Nc+1; i=1,··· ,N). (3.10)

Eq. (3.9) defines a set of (Nc+1)×N coupled nonlinear equations that need to be solved
for every balance equation of mass components and heat, respectively. In general,
(Nc+1) primary variables per node are needed to use the Newton iteration for the as-
sociated (Nc+1) equations per node. The primary variables are usually selected among
fluid pressures, fluid saturations, mass (mole) fractions of components in fluids, and tem-
peratures. In many applications, however, primary variables cannot be fixed and must
be allowed to vary dynamically in order to deal with phase appearance and disappear-
ance (Forsyth, 1994). The rest of the dependent variables, such as relative permeability,
capillary pressures, viscosity and densities, partitioning coefficients, specific enthalpies,
thermal conductivities, dispersion tensor, etc., as well as nonselected pressures, satura-
tions, and mass (mole) fractions, are treated as secondary variables.

In terms of the primary variables, the residual equation (3.10) at a node i is regarded as
a function of the primary variables at not only node i, but also at all its direct neighboring
nodes j. The Newton iteration scheme gives rise to

∑
m

∂Rk,n+1
i

(

xm, p

)

∂xm

(

δxm, p+1

)

=−Rk,n+1
i

(

xm, p

)

, (3.11)

where xm is the primary variable m with m = 1,··· ,Nc+1, respectively, at node i and all
its direct neighbors; p is the iteration level; and i = 1,··· ,N. The primary variables in
Eq. (3.11) need to be updated after each iteration:

xm, p+1 = xm, p+δxm, p+1. (3.12)

The Newton iteration process continues until the residuals Rk,n+1
n or changes in the pri-

mary variables δxm,p+1 over an iteration are reduced below preset convergence toler-
ances.

Numerical methods are generally used to construct the Jacobian matrix for Eq. (3.11),
as outlined in Forsyth et al. (1995). At each Newton iteration, Eq. (3.11) represents a sys-
tem of (Nc+1)×N linearized algebraic equations with sparse matrices, which are solved
by a linear equation solver.
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3.3 Treatment of initial and boundary conditions

A set of initial conditions is required to start a transient simulation, i.e., a complete set of
primary variables need to be specified for every gridblock or node. A commonly used
procedure for specifying initial conditions is the restart option, in which a complete set
of initial conditions or primary unknowns is generated in a previous simulation with
proper boundary conditions described.

Because of more physical and chemical constraints, boundary conditions for a mul-
tiphase flow and transport problem are generally much more difficult to handle than
for a single-phase situation. When using a block-centered grid, first-type or Dirichlet
boundary conditions, can be effectively treated with the ”inactive cell” or ”big-volume”
method, as normally used in the TOUGH2 code (Pruess et al. 1999). In this method,
a constant pressure/saturation/concentration/temperature node is specified as an inac-
tive cell or with a huge volume, while keeping all the other geometric properties of the
mesh unchanged.

With finite-element or edge-centered finite-difference grids, first-type boundary
conditions and Neuman boundary conditions can be treated using a generalized,
sink/source term approach (Wu et al. 1996a). Certain flux-type boundary conditions
are easy to handle for a situation where flux distribution along the boundary is known,
such as in dealing with surface infiltration. However, a description of more general types
of flux- or mixed-boundaries, such as seepage faces and multilayered wells, is part of the
solution, and general procedures of handling such boundary conditions are discussed in
(Wu et al. 1996a; Wu 2000).

4 Treatment of fracture-matrix interaction

The mathematical and numerical formulations discussed above are applicable to both
single-continuum and multi-continuum media using the generalized multicontinuum
concept, as long as the physical processes concerned can be described in a continuum
sense within either continuum. Fig. 2 shows several commonly used conceptual mod-
els for modeling fracture-matrix flow in fractured reservoirs. Fig. 3 presents an example
of extended multi-continuum concept to include small fractures and vugs in petroleum
reservoirs (Kang et al. 2006). All these cases and scenarios could all be considered to be
special cases of the model formulation we discussed above.

The technique used in this paper for handling multiphase flow through fractured
rock follows the dual-continuum methodology (Warren and Root, 1963; Pruess and
Narasimhan, 1985; Wu and Pruess, 1988). This method treats fracture and matrix flow
and interactions using a multi-continuum numerical approach, including the double-
or multiporosity method, the dual-permeability method, and the more general MINC
method (Fig. 2). Note that in the following discussion, we focus only on multiphase
flow simulation. The multiphase flow formulation, Eq. (3.2) is applicable to both single-
continuum and multi-continuum media. Using the dual-continuum concept, Eqs. (2.1)
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Figure 2: Schematic of different conceptualizations for handling fracture-matrix interactions: (a) effective-
continuum model (ECM); (b) double-porosity model; (c) dual-permeability model; and (d) triple-continuum
model. (M=matrix; F=large-fractures; f=small-fractures).

and (3.2) can be used to describe multiphase flow both in fractures and inside matrix
blocks, as well as fracture-matrix interaction. However, special attention needs to be paid
to treating fracture-matrix flow. The flow between fractures and the matrix is still eval-
uated using Eq. (3.2); however, the transmissivity for the fracture-matrix flow is given
by

γi j =
AFMkM

lFM
, (4.1)

where AFM is the total interfacial area between fractures and the matrix of elements i

Figure 3: Conceptualization of vuggy fractured rock as a triple-continuum system with vugs indirectly connected
to fractures through small fractures (Kang et al.2006).
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Table 2: Characteristic distances∗ for evaluating flow terms between fractures (F), vugs (V), and matrix (M)
systems.

Fracture

Sets

Dimensions

of Matrix

Blocks (m)

Characteristic

F-M Distances

(m)

Characteristic

F-V Distances 

(m)

Characteristic

V-M Distances 1

(m)

Characteristic

V-M Distances 2

(m)

1-D A 6/AFMl xFV ll 6/aVMl 2/dA cVMl

2-D A, B

)BA(4/

ABFMl

2

yx

VF

ll
l

)ba(4/

abVMl

4

d2BA c
VMl

3-D A,  B,  C 

)CABCAB/(

10/ABC3FMl

6

d3C-BA
fFl

3

zyx

fF

lll
l

)cabcab/(

10/abc3VMl

* Note in Table 2, A, B, and C are dimensions of matrix blocks along x, y, and z directions, respectively.
1 Characteristic V-M distances are estimated for the case (Fig. 3), i.e., vuggy-matrix connections are dominated

by small fractures, where dimensions a, b, and c are fracture-spacings of small fractures along x, y, and z

directions, respectively.
2 Characteristic V-M distances are used for the case that vugs are isolated from fractures.

and j (one of them is a fracture and the other a matrix block); kM is the matrix absolute
permeability along the fracture-matrix connection; and lFM is a characteristic distance
for flow crossing fracture-matrix interfaces, which can be determined for idealized 1-
D, 2-D and 3-D dimensional rectangular matrix blocks when using the double-porosity
model (Warren and Root, 1963). Table 2 lists several correlations for determining the
characteristic distance in a fracture-vug-matrix system (Kang et al. 2006).

The appropriate spatial weighting scheme for averaging flow properties, such as the
mobility of Eq. (3.2), in a heterogeneous formation has been an important issue in reser-
voir simulation and groundwater-modeling literature (Peaceman, 1977; Huyakorn and
Pinder, 1983). Single-point or fully upstream weighting has been the exclusive approach
for averaging mobility or relative permeability in calculating flow term, using a discrete
Darcy’s law for multiphase flow in heterogeneous petroleum reservoirs (Aziz and Settari,
1979). Recently, several theoretical studies (Forsyth et al., 1995; Forsyth and Kropinski,
1997) have shown that the upstream weighting scheme, if used with the control-volume
discretization of the Richards’ equation, will satisfy monotonicity conditions regardless
of time step or mesh size. It will guarantee that converged numerical solutions are physi-
cally correct, while other weighting schemes, such as central weighting, may converge to
an incorrect, unphysical solution (Forsyth and Kropinski, 1997). However, determining
flow along fracture-matrix connections (i.e., flow across fracture-matrix interfaces in the
direction perpendicular to fracture planes) is different from fracture-fracture flow and the
conventional upstream weighting scheme may no longer be applicable. This is because
fracture relative permeability functions are fracture flow properties describing flow along
fractures, determined independently from matrix flow, while fracture-matrix flow or in-
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teraction normally occurs along the directions perpendicular to fractures and is largely
controlled by matrix properties or by flow resistance within the matrix block. The physi-
cal inconsistency in selecting fracture relative permeability for calculating fracture-matrix
flow may lead to unphysical solutions or significant numerical errors.

To overcome these limitations, Wu et al. (2004a) presents a modified upstream
weighting scheme to select appropriate mobility for fracture-matrix interaction. This
new scheme is based on the principle that the capillary pressure is continuous at the
fracture-matrix interface, and the assumption that there is instantaneous local equilib-
rium in pressure for each phase on the matrix surface between fracture and matrix sys-
tems. This should hold true for most subsurface fractured reservoirs, because fracture
aperture is normally very small and fracture lateral boundaries are defined by matrix
surfaces. Any dynamic changes in fractures, such as capillary pressures, could be in-
stantaneously equilibrated locally with that at contacted matrix surfaces. As a result, the
matrix relative permeability at the matrix surface can be readily determined as a func-
tion of fracture capillary pressure, or the matrix saturation corresponding to that fracture
capillary pressure. Therefore, the new scheme, when the upstream direction for fracture-
matrix flow is at the fractures, uses the matrix relative permeability function (instead
of the fracture relative permeability function, as in the conventional upstream weighting
scheme) to calculate the mobility. Physically, this is equivalent to evaluating flow through
the fracture-matrix interface into the matrix with the effective matrix permeability at that
interface.

The proposed weighting scheme is still dependent on the upstream fracture condi-
tion, and therefore does not lose the advantages of upstream schemes. In addition, in case
fracture-matrix flow is from matrix to fractures, such as in a situation of drainage or flow
between globally connected fractures or along global or local matrix-matrix connections,
the conventional upstream weighting scheme should still be used. We call this hybrid
mobility-averaging scheme physically based upstream weighting to determine mobility
terms for fracture-matrix flow. Mathematically, the proposed mobility-weighting scheme
requires the appropriate selection of relative permeability for fracture-matrix flow, used
for calculating the mobility term in Eq. (3.3), as

krβ,FM = krβ,M

(

S∗
β,M

)

for ΨβF ≥ΨβM (4.2)

and
krβ,FM = krβ,M

(

Sβ,M

)

for ΨβM >ΨβF, (4.3)

where krβ,FM is the physically upstream relative permeability for estimating fracture-
matrix flow of phase β; krβ,M is relative permeability of phase β in matrix, a function
of matrix saturation (Sβ,M); and S∗

β,M is matrix saturation of phase β on matrix surface,

determined from inverting the matrix capillary pressure function by setting matrix cap-
illary pressure equal to fracture capillary pressure.

Within the context of the dual-continuum concept, the proposed approach can be
applied to different matrix discretizations, such as double-porosity, dual-permeability,
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or MINC grids. The proposed physical upstream weighting scheme has been tested in
two multidimensional reservoir simulators with a series of numerical experiments con-
ducted for commonly used dual-continuum models. In all test cases, this new weighting
scheme is found to work efficiently, similarly to using the traditional single-point up-
stream weighting, without serious numerical difficulties. This new scheme should be
applicable for discrete fracture-network models as well.

When handling flow and transport through a fractured rock using the generalized
numerical formation of this paper, fractured media (including explicit fracture, dual, or
multiple continuum models) can be considered as special cases of unstructured grids
(e.g., Pruess, 1991). Then, a large portion of the work of modeling flow in fractured rock
consists of generating a mesh that represents both the fracture system and the matrix
system under consideration. Several fracture and matrix subgridding schemes exist for
designing different meshes for different fracture-matrix conceptual models (Pruess and
Narasimhan, 1985; Pruess 1983).

Once a proper grid of a fracture-matrix system is generated, fracture and matrix
blocks are identified to represent fracture and matrix domains, separately. Formally they
are treated identically for the solution in the model simulation. However, physically
consistent fracture and matrix properties, parameter weighting schemes, and modeling
conditions must be appropriately specified for both fracture and matrix systems.

5 Application

In an effort to demonstrate usefulness of the proposed generalized modeling approach
in fractured reservoir simulation, we present two application examples. In the case of
multiphase flow in isothermal condition, the proposed model formulation has been im-
plemented and tested in the general-purpose reservoir simulator of MSFLOW (Wu, 2000),
which is used in the following application examples. The first example is to match pub-
lished laboratory experiment results of water imbibition and oil displacement conducted
on fractured cores (Kazemi, 1979). The second problem is simulating single-phase flow
through fractured vuggy rock with comparison with the existing analytical solution.

In the literature, there are several more examples for demonstrations, in which the
work can be or were done using the model formulation discussed in this paper. They in-
clude (1) unsaturated multiphase fluid and heat flow in unsaturated porous or fractured
media (Forsyth et al., 1995; Wu et al., 1999); (2) multi-phase flow in triple-continuum
fractured system with small-fracture effect (Wu et al., 2004b); (3) multiphase flow in
fractured-vuggy reservoirs (Kang et al., 2006); and (4) multiphase and heat flow and
trace transport in fractured rock (Wu and Pruess, 2000).

5.1 Comparison with laboratory experimental results

Kazemi (1979) presented a series of laboratory experimental results of water imbibition
into fractured matrix cores to displace oil. The laboratory tests were conducted on three
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sets of artificial fractured cores using cylindrical and rectangular blocks, with one frac-
ture along the long axis for each set. The cylindrical and rectangular matrix blocks were
actually cut from Berea sandstone. The laboratory model we consider here consists of a
fractured core with two brick-type matrix blocks. Each matrix block has a brick shape
with dimension of width, height, and length (50.8×50.8×101.6 mm’s) as shown in Fig. 4.
The fracture formed between the two matrix cores has an aperture of 0.30 mm. The ex-
perimental data used in this study was from Test 38423 (Kazemi, 1979) as an example.
In the experiment, flow channels were left open only at the inlet and outlet ends of the
fracture (i.e., for water injection and for oil and water flow out), and side fracture and
matrix surfaces were sealed. Initially, the fracture and matrix system was fully saturated
uniformly with oil (diesel), and then water was injected with a constant rate at the inlet
(Fig. 4) to displace the oil.

Figure 4: Schematic of fractured cores used the experimental studies (Kazemi, 1979; Wu et al. 2004).

Basic model experimental and modeling parameters are listed in Table 3. The rel-
ative permeability and capillary pressure curves used in this case are presented in Wu
et al. (2004), using the equations given in Kazemi (1979), and the matrix capillary pres-
sure curve was taken from the capillary-pressure curve on the Berea core of Figure 12
in Kazemi (1979). However, several important parameters were not provided in Kazemi
(1979), including residual water saturation, residual oil saturation, and fracture capillary
pressure curves. Actual values used for these missing parameters were determined in
this work by model calibration, with the final estimates given in Table 3.

Here, this test is analyzed using a double-porosity approach (equivalent to the
explicit-fracture model in this case) to examine the numerical scheme for handling
fracture-matrix interaction under multiphase flow conditions. The fracture-matrix set
of Fig. 4 is treated as a 2-D system along the longitudinal (x) direction (from inlet to out-
let). Because of the symmetry, only half of the 2-D model domain (one matrix block and
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Table 3: Parameters used in the comparison with laboratory testing results.

Parameter Value Unit

Fracture aperture b = 0.0003 m

Fracture porosity F = 1.0 

Matrix porosity M = 0.21

Absolute fracture permeability kF = 1  10-11 m2

Absolute matrix permeability kM = 4,23  10-13 m2

Water density w = 1,000 kg/m3

Water viscosity w = 1  10-3 Pa  s 

Oil (diesel) density w = 828 kg/m3

Oil (diesel)  viscosity w = 4.6  10-3 Pa  s 

Residual fracture water saturation Swr,F = 0.10 

Residual matrix water saturation Swr,M = 0.20 

Residual fracture oil saturation Sor,F = 0.0001 

Initial fracture water saturation Swi,F = 0.00 

Initial matrix water saturation Swi,M = 0.00 

Water injection rate q = 2.568  10-5 m3/d

half the fracture) is discretized into a double-porosity grid, using a 1-D parallel fracture
concept, with one (actually half) fracture element corresponding to one matrix element
in the transverse direction (perpendicular to the fracture plane). Along the x direction,
a uniform linear grid of 10 elements is generated for both the fracture and the matrix
block, with a uniform grid spacing of ∆x = 10.16 mm. The final simulation results us-
ing the proposed physical upstream weighting scheme are compared with the laboratory
experimental data in Fig. 5. Fig. 5 shows excellent agreement between measured and
simulated volumetric fractional oil recovery versus pore volume of water injected. This
result indicates that the numerical model formulation is able to capture the main factors
that control fracture-matrix interaction during the oil-water displacement for this test
problem.

5.2 Comparison with analytical solution

In this example, thee numerical model results are examined using an analytical solution
(Lui et al, 2003; Wu et al. 2004b). The problem concerns typical transient flow towards
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Figure 6: Comparison between analytical and numerical solutions for single-phase transient flow through vuggy
fractured formation.

a well that fully penetrates a radially infinite, horizontal, and uniformly vuggy fractured
reservoir. Numerically, a radial reservoir (re = 10,000 m) of 20 m thick is represented by
a 1-D (primary) grid of 2,100 intervals. A triple-continuum mesh is then generated using
a 1-D vuggy-fracture-matrix conceptual model, consisting of a horizontal large-fracture
plate network with a uniform disk-shaped matrix block. Uniform spherical vugs are
contained inside the matrix and connected to fractures through small fractures. Fracture,
vugs and matrix parameters are given in Table 4.

Fig. 6 compares numerical-modeling results with the analytical solution for a single-
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Table 4: Parameters used in the second problem of flow in the triple-continuum, vuggy fractured reservoir.reservoir 
Parameter Value Unit

Matrix porosity M = 0.263 

Fracture porosity F = 0.001 

Vuggy porosity V = 0.01 

Fracture spacing A = 5  m

Small-fracture spacing a = 1.6 m 

F characteristic length lx = 3.472 m

F-M/F-V areas per unit volume rock AFM =AFV = 0.61 m2/m3

Reference water density i = 1,000 kg/m3

Water phase viscosity = 1 10-3 Pa s

Matrix permeability kM = 1.572 10-16 m2

Fracture permeability kF = 1.383 10-13 m2

Small-fracture or vug permeability kV = 1.383 10-14 m2

Water Production Rate q = 100 m3/d 

Total compressibility of three media CF=CM=CV= 1.0 10-9 1/Pa 

Well radius rw = 0.1 m 

Formation thickness h = 20  m 

phase transient flow case (in terms of dimensionless variables). Excellent agreement ex-
ists between the two solutions, which provides some verification of the numerical forma-
tion and its implementation.

6 Summary

A unified, generalized numerical formulation has been discussed for modeling fluid flow,
mass transport, and heat-transfer processes through fractured porous media. This work
takes advantage of the fact that governing equations used for describing various flow
and transport phenomena in porous media are all generally based on the same form of
mass and/or energy conservation laws. This indicates that there may exist a unified for-
mulation and numerical scheme applicable to all of these physical processes. This paper
explores such a possibility by proposing a generalized framework as well as mathemati-
cal formulation for modeling all known transport phenomena in fractured porous media.

As demonstrated in this paper, the proposed unified numerical modeling approach,
based on a general multiple-continuum concept, is suitable for modeling any types of
fractured reservoirs, including double-, triple-, and other multiple-continuum concep-
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tual models. In addition, a new, physically correct mathematical scheme is discussed to
calculate multiphase flow between fractures and the matrix, using continuity of capillary
pressure at the fracture-matrix interface. The numerical implementation of the unified
formulation is based on a control-volume spatial discretization with an unstructured grid
and time discretization with a fully implicit finite-difference method. The final discrete
linear or nonlinear equations are handled fully implicitly, using Newton iteration. The
proposed general modeling methodology is demonstrated for its application in special
cases where analytical solutions and laboratory experimental data.
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