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Numerical modeling approaches for multiphase fl ow and 
tracer or chemical transport in porous media are gener-

ally based on methodologies developed for reservoir simulation 
and groundwater modeling. They involve solving coupled mass-
conservation equations that govern the transport processes of all 
chemical components in isothermal and nonisothermal subsur-
face systems using fi nite-difference or fi nite-element schemes. 
Since the 1960s, in parallel with rapid advances in multiphase 
fl ow simulation and groundwater modeling, signifi cant progress 
has been made in understanding and modeling solute transport 
through porous and fractured media (Scheidegger, 1961; Bear, 
1972; Huyakorn et al., 1983; Istok, 1989; Falta et al., 1992; 
Unger et al., 1996; Forsyth et al., 1998; Wu and Pruess, 2000).

Since the 1970s, transport problems involving solute and 
contaminant migration in porous and fractured formations have 
received increasing attention in the groundwater and soil science 

literature. As demanded by site characterization, remediation, 
and other environmental concerns, many quantitative modeling 
approaches have been developed and applied (van Genuchten 
and Alves, 1982; Abriola and Pinder, 1985; Corapcioglu and 
Baehr, 1987; Adenekan et al., 1993; Forsyth, 1994). More 
recently, suitability evaluation of storing high-level radioactive 
wastes in underground, unsaturated fractured rock has generated 
renewed interest in investigating tracer or radionuclide transport 
in a nonisothermal, multiphase fractured geological system (e.g., 
Viswanathan et al., 1998; Robinson et al., 2003; Moridis et al., 
2003). In addition, the application of tracer tests, including envi-
ronmental and manmade tracers, has become an important tech-
nique for characterizing subsurface porous-medium systems.

Even with the continual progress in both computational 
algorithms and computer hardware made in the past few decades, 
modeling the coupled processes involved in multiphase fl uid fl ow 
and chemical migration in porous and fractured media remains a 
mathematical challenge. Many unresolved issues and limitations 
with current numerical approaches still exist. One concern is 
that severe numerical dispersion often occurs when using a mul-
tidimensional control-volume–type numerical grid in fi eld-scale 
modeling studies. The problem becomes even greater when deal-
ing with tracer transport, in which a general three-dimensional, 
coarse, irregular grid is used to solve advection–dispersion–type 
governing equations for handling tracer transport. To overcome 
these numerical diffi culties, scientists have investigated a number 
of TVD or fl ux-limiter schemes and applied them in transport 
modeling, with varying success (Sweby, 1984; Liu et al., 1994; 
Unger et al., 1996; Forsyth et al., 1998; Oldenburg and Pruess, 

Effi cient Schemes for Reducing Numerical 
Dispersion in Modeling Multiphase Transport 
through Heterogeneous Geological Media
Yu-Shu Wu* and P. A. Forsyth

Y.-S. Wu, Lawrence Berkeley National Lab., Berkeley, CA 94720; 
P.A. Forsyth, School of Computer Science, Univ. of Waterloo, Wa-
terloo, ON, Canada. Received 30 May 2006. *Corresponding author 
(YSWu@lbl.gov).

Vadose Zone J. 7:340–349
doi:10.2136/vzj2006.0076

© Soil Science Society of America
677 S. Segoe Rd. Madison, WI 53711 USA.
All rights reserved. No part of this periodical may be reproduced or 
transmitted in any form or by any means, electronic or mechanical, 
including photocopying, recording, or any information storage and 
retrieval system, without permission in writing from the publisher.

ABBREVIATIONS: REV, representative elementary volume; TVD, total variation diminishing.
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When modeling transport of chemicals or solute in realistic large-scale subsurface systems, numerical issues are a serious con-
cern, even with the continual progress made over the past few decades in both simulation algorithms and computer hardware. 
The problem becomes even more diffi cult when dealing with chemical transport in a vadose zone or multiphase fl ow system 
using coarse, multidimensional regular or irregular grids because of the known effects of numerical dispersion associated with 
moving plume fronts. We have investigated several total variation diminishing (TVD) or fl ux-limiter schemes by implementing 
and testing them in the T2R3D code, one of the TOUGH2 family of codes. The objectives of this paper are (i) to investigate 
the possibility of applying these TVD schemes, using multidimensional irregular unstructured grids, and (ii) to help select more 
accurate spatial averaging methods for simulating chemical transport, given a numerical grid or spatial discretization. We present 
an application example to show that such TVD schemes can effectively reduce numerical dispersion.
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1997, 2000). Many of these investigations, however, were dem-
onstrated using one- or two-dimensional regular grids. Our work 
continues the effort to reduce numerical dispersion in simulating 
tracer or chemical plumes as they travel spatially through porous 
or fractured media. In this study, we examine the effectiveness 
of these TVD schemes as they are used in two- or three-dimen-
sional, irregular, and unstructured grids. Our objectives are (i) 
to develop a general scheme for implementing different TVD 
schemes into multidimensional, irregular, unstructured grids of 
porous or fractured media; (ii) to investigate the applicability of 
these TVD schemes to such irregular unstructured grids; and 
(iii) to help select more accurate spatial averaging methods for 
simulating chemical transport, given a numerical grid or spatial 
discretization.

The TVD schemes were implemented using the T2R3D 
code (Wu et al., 1996), one of the TOUGH2 family of codes 
(Pruess, 1991). In the TOUGH2 numerical approach, a sub-
surface domain is discretized using an unstructured integrated 
fi nite-difference grid, followed by time discretization using a 
backward, fi rst-order, fi nite-difference method. The resulting 
discrete linear or nonlinear equations are handled fully implic-
itly, using Newtonian iteration, with the fractured medium han-
dled using a general multicontinuum modeling approach. Also, 
we present an application example to demonstrate that TVD 
schemes can in general effectively reduce numerical dispersion 
when modeling transport through heterogeneous geological 
fractured reservoirs.

Model Formulation

The physical processes associated with fl uid fl ow and chemi-
cal transport in porous media are governed by fundamental con-
servation laws, represented mathematically (on the macroscopic 
level) by a set of governing equations. In addition, the movement 
of dissolved mass components or chemical species within a fl uid 
in a multiphase porous-medium system is governed by advec-
tive, diffusive, and dispersive processes and is further infl uenced 
by other processes, such as radioactive decay, adsorption, dis-
solution and precipitation, mass exchange or partition between 
phases, and other chemical reactions. The formulation discussed 
in this section and the next is, for completeness, to model a fully 
coupled fl uid and heat fl ow and tracer transport process. For a 
simple case of steady-state fl ow, the model formulation could be 
signifi cantly simplifi ed.

Governing Equation

Consider a multiphase, nonisothermal system consisting of 
several fl uid phases, such as gas, water, and oil (nonaqueous phase 
liquid), with each fl uid phase in turn consisting of a number of 
mass components. To derive a set of generalized governing equa-
tions for multiphase fl uid fl ow, multicomponent transport, and 
heat transfer, we assume that these processes can be described 
using a continuum approach within a representative elementary 
volume (REV) in a porous or fractured medium (Bear, 1972). 
In addition, a condition of local thermodynamic equilibrium is 
assumed so that at any time, temperatures, phase pressures, den-
sities, viscosities, enthalpies, internal energies, and component 
concentrations (or mass fractions) are the same locally within 
each REV of the porous medium.

According to mass- and energy-conservation principles, 
a generalized conservation equation of mass components and 
energy in the porous continuum can be written as follows:

k
k k kM G q F

t
∂

= + +
∂

 [1]

where superscript k is the index for the components, k = 1, 2, 
3,…, Nc, with Nc being the total number of mass components 
and with k = Nc + 1 for the energy “component” (thermal energy 
is treated as a component for convenience); Mk is the accumula-
tion term of component k; Gk is the decay or internal generation 
(reaction) term of mass or energy components; qk is an exter-
nal source–sink term or fracture–matrix exchange term for mass 
or energy component k and energy; and Fk is the “fl ow” term, 
describing mass or energy movement, contributed by multiphase 
fl ow, or diffusive and dispersive mass transport, or heat transfer, 
as discussed and defi ned below.

Under equilibrium adsorption, the accumulation term Eq. 
[1] for component k is

( ) ( ) s w w d

c

1

(  = 1, 2, 3,..., )

k k k kM S X X K

k N

β β β
β

=φ ρ + −φ ρ ρ∑
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where φ is the porosity of porous media; β is an index for fl uid 
phase (β = g for gas, w for aqueous phase); ρβ is the density of 
phase β; Sβ is the saturation of phase β; X κ

β  is the mass fraction 
of component k in fl uid β; ρs is the density of rock solids; and 

d
kK  is the distribution coeffi cient of component k between the 

aqueous phase and rock solids to account for adsorption effects. 
In the case in which components are subject to a fi rst-order 
radioactive decay, the decay generation term is

( ) ( ) s w w

c

1

(  = 1, 2, 3,..., )

k k k k k
dG S X X K

k N

β β β
β

⎡ ⎤
⎢ ⎥= φλ ρ + −φ ρ ρ⎢ ⎥
⎢ ⎥⎣ ⎦
∑  [3]

where λk is the radioactive decay constant of component k. The 
generation term may also be subject to other processes such 
as dissolution and precipitation, mass exchange and partition 
between phases, or chemical reactions under equilibrium or 
nonequilibrium condition.

The accumulation term in Eq. [1] for the heat equation is 
usually defi ned as

( ) ( )c 1
s s1NM S U U+

β β β
β

= φρ + −φ ρ∑  [4]

where Uβ and Us are the internal energies of fl uid β and rock 
solids, respectively.

The mass component transport is governed in general by 
processes of advection, diffusion, and dispersion. Advective 
transport of a component or solute is carried by fl uid fl ow, and 
diffusive and dispersive fl ux is contributed by molecular diffu-
sion and mechanical dispersion, or hydrodynamic dispersion. 
These processes are described using a modifi ed Fick’s law for the 
total mass fl ow term for a component k, by advection and dis-
persion, written as

( ) ( )

c(  = 1, 2, 3,..., )

kk k kF X D X

k N

β β β β ββ
β β

⎡ ⎤=− ∇• ρ + ∇• •∇ ρ⎢ ⎥⎣ ⎦∑ ∑v
 [5]
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where vβ is a vector of the Darcy’s velocity or volumetric fl ow, 
defi ned by Darcy’s law to describe the fl ow of single or multiple 
immiscible fl uids as

( )rkk
P zβ

β β β
β

=− ∇ −ρ ∇
μ

v g  [6]

where Pβ, μβ, and g are pressure, viscosity of fl uid phase β, and 
gravitational acceleration constant, respectively; z is the verti-
cal coordinate; k is absolute or intrinsic permeability; krβ is the 
relative permeability to phase β, and g is gravitational constant 
(vector). In Eq. [5], kDβ  is the hydrodynamic dispersion tensor 
accounting for both molecular diffusion and mechanical disper-
sion for component k in phase β, defi ned by an extended disper-
sion model (Scheidegger, 1961; Bear, 1972) to include multi-
phase effects as

( )

c(  =  1, 2, 3,..., )

k k
ij ijLT TD S d

k N

β ββ β β
β β β β

β

=α δ + α −α +φ τ δ
v v

v
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where T
βα  and L

βα  are transverse and longitudinal dispersivi-
ties, respectively, in fl uid β of porous media; τ is tortuosity of 
the porous medium; kdβ  is the molecular diffusion coeffi cient 
of component k within fl uid β; and δij is the Kronecker delta 
function (δij = 1 for i = j, and δij = 0 for i ≠ j), with i and j being 
coordinate indices.

Equation [5] indicates that the mass fl ow consists of two 
parts. The fi rst part, the fi rst term on the right-hand side of Eq. 
[5], is contributed by advection in all phases, and the second 
part, the second term on the right-hand side of Eq. [5], is dif-
fusive fl ux by hydrodynamic dispersion.

Heat transfer in porous media is in general a result of both 
convective and conductive processes, although in certain cases, 
radiation may also be involved. These heat-transfer processes are 
complicated by interactions between multiphase fl uids, multi-
components, and associated changes in phases, internal energy, 
and enthalpy. Heat convection is contributed by thermal energy 
carried mainly by bulk fl ow of all fl uids as well as by dispersive 
mass fl uxes. On the other hand, heat conduction or radiation is 
driven by temperature gradients and may follow Fourier’s law or 
Stefan–Boltzmann’s law, respectively. Then, the combined, over-
all heat fl ux term, due to convection, conduction, and radiation 
in a multiphase, multicomponent, porous medium system, may 
be described as
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where hβ and khβ  are specifi c enthalpies of fl uid phase β and of 
component k in fl uid β, respectively; KT is the overall thermal 
conductivity; T is temperature; εo is a radiation emissivity factor, 
and σo (= 5.6687 × 10−8 J m –2 K–4) is the Stefan–Boltzmann 
constant.

As shown in Eq. [8], the total heat fl ow in a multiphase, 
multicomponent system is determined by heat convection of 
fl ow and mass dispersion (the fi rst two terms on the right-hand 
side of Eq. [8]), heat conduction (the third term on the right-

hand side), and thermal radiation (the last term on the right-
hand side).

Constitutive Relationships

To complete the mathematical description of multiphase 
fl ow, multicomponent transport, and heat transfer in porous 
media, Eq. [1], a generalized mass- and energy-balance equa-
tion, needs to be supplemented with a number of constitutive 
equations. These constitutive correlations express interrelation-
ships and constraints of physical processes, variables, and param-
eters and allow the evaluation of secondary variables and param-
eters as functions of a set of primary unknowns or variables 
selected to make the governing equations solvable. Table 1 lists 
a commonly used set of constitutive relationships for describ-
ing multiphase fl ow, multicomponent mass transport, and heat 
transfer through porous media. Many of these correlations for 
estimating properties and interrelationships are determined by 
experimental studies.

Numerical Formulation

The methodology for using numerical approaches to simu-
late multiphase subsurface fl ow and transport consists in general 
of the following three steps: (i) spatial discretization of mass and 
energy-conservation equations of Eq. [1], (ii) time discretization, 
and (iii) iterative approaches to solve the resulting nonlinear, dis-
crete algebraic equations. Among various numerical techniques 
for simulation studies, a mass- and energy-conserving discretiza-
tion scheme, based on fi nite volume or integral fi nite-difference 
or fi nite-element methods, is the most commonly used approach, 
and the one discussed here.

Discrete Equations

The component mass and energy balance, as expressed in 
Eq. [1], is discretized in space using a control-volume, integrated 
fi nite-difference concept (Narasimhan and Witherspoon, 1976; 
Pruess, 1991). The control-volume approach provides a general 
spatial discretization scheme that can represent a one-, two-, or 
three-dimensional domain using a set of discrete meshes. Each 
mesh has a certain control volume for a proper averaging or 
interpolation of fl ow and transport properties or thermodynamic 
variables. Time discretization is performed using a backward, 
fi rst-order, fully implicit fi nite-difference scheme. The discrete 
nonlinear equations for components in the multiphase system at 
gridblock or node i can be written in a general form:

( ), 1 , 1 ,

, 1 , 1

c c

flow

(  = 1, 2, 3, ..., , + 1) and (  = 1, 2, 3, ..., )
i

k n k n k n i
i i i

k n k n
ij i

j

VA G t A
t

Q

k N N i N

+ +

+ +

∈η

+ Δ −
Δ

= +∑  [9]

where the superscript k also serves as an equation index for all 
mass components with k = 1, 2, 3, …, Nc and k = Nc + 1 denotes 
the heat equation; superscript n denotes the previous time level, 
with n + 1 the current time level to be solved; subscript i refers to 
the index of gridblock or node i, with N being the total number 
of nodes in the grid; Δt is time step size; Vi is the volume of node 
i; ηi contains the set of direct neighboring nodes (j) of node i; 
and k

iA  and k
iG  are the accumulation and decay generation 
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terms, respectively, at node i. The “fl ow” term between nodes i 
and j, flowk

ij , and the sink–source term at node i for component 
k or thermal energy, k

iQ , are defi ned below.
Equation [9] has the same form regardless of the dimen-

sionality of the system; that is, it applies to one-, two-, or 
three-dimensional fl ow, transport, and heat-transfer analyses. 
The accumulation and decay generation terms for mass com-
ponents or thermal energy are evaluated using Eq. [2], [3], and 
[4], respectively, at each node i. The “fl ow” terms in Eq. [9] are 
generic and include mass fl uxes by advective and dispersive pro-
cesses, as described by Eq. [5], as well as heat transfer, described 
by Eq. [8]. In general, the mass fl ow term is evaluated as (Wu 
and Pruess, 2000)

A, D,

c

flow

(  = 1, 2, 3,..., )

k k k
ij ij ijF F

k N

= +
 [10]

where A,
k
ijF  and D,

k
ijF  are the net mass fl uxes by advec-

tion and hydrodynamic dispersion along the connection, 
respectively, with

( )A, ,1/2
k k
ij ij ijij

F A X Fβ β+β
= ∑  [11]

where Aij is the common interface area between connected blocks 
or nodes i and j; and the mass fl ow term, Fβ,ij, of fl uid phase β is 
described by a discrete version of Darcy’s law. That is, the mass 
fl ux of fl uid phase β along the connection is given by

r
,

1/2
ij ij j i

ij

k
F β β
β β β

β +

⎛ ⎞ρ ⎟⎜ ⎡ ⎤⎟⎜= γ ψ −ψ⎟⎜ ⎢ ⎥⎟ ⎣ ⎦⎟⎜ μ⎝ ⎠
 [12]

where γij is transmissivity and is defi ned differently for fi nite-
difference or fi nite-element discretization, and ψβ is the fl ow 
potential term at node j or i (Pa). If the integral fi nite-difference 
scheme (Pruess, 1991) is used, the transmissivity is calculated as

1/2ij ij
ij

i j

A k
D D

+γ =
+

 [13]

TABLE 1. Constitutive relationships and functional dependence.

Defi nition Function Description

Capillary pressure ( )β β β=c cP P S
In a multiphase system, the capillary pressure (Pc) relates pressures between the phases and is 

defi ned as a function of fl uid saturation (Sβ).

Equilibrium adsorption
s d
k k kX K Xβ β= ρ s

kX is the mass of component k sorbed per mass of solids; and the distribution coeffi cient, d
kK , is 

treated as a constant or as a function of the concentration or mass fraction in a fl uid phase under 
the local chemical equilibrium condition. ρβ = density of phase β.

Equilibrium partitioning
:

k k kKα α β βω = ω k
αω and k

βω  are the mole fraction of component k in phase α and β, respectively; and :
kKα β  is the 

equilibrium partitioning coeffi cient of component k between phases α and β.
First-order decay constant (2)

T1/2

ln
kλ =

T1/2 is the half-life of the radioactive component.

Fluid density
( , , )kP T Xβ β βρ = ρ

Density of a fl uid phase is treated as a function of pressure (P) and temperature (T), as well as mass 
compositions, kXβ  (k = 1, 2, 3, …, Nc).

Fluid saturation 1Sβ
β

=∑ Constraint on summation of total fl uid saturation.

Fluid viscosity ( ), , kP T Xβ β βμ = μ
The functional dependence or empirical expressions of viscosity of a fl uid is treated as a function of 

pressure (P), temperature (T), and composition, kXβ . 

Henry’s law
H w

k k k
gP K= ω  k

gP is partial pressure of component k in the gas phase; H
kK  is Henry’s constant for component k; 

and w
kω  is the mole fraction of component k in the water phase.

Mass fraction
1k

k
Xβ =∑ Constraint on mass fractions kXβ within phase β.

Partitioning coeffi cient ( ): : , ,k k kK K P T Xα β α β β β= :
kKα β depends on chemical properties of the component and is a function of temperature (T), 
pressure (Pβ), and composition, kXβ .

Porosity ( ) ( )o o o
r1 TC P P C T T⎡ ⎤φ=φ + − − −⎢ ⎥⎣ ⎦

φo is the effective porosity at a reference pressure, Po, and a reference temperature, To; Cr and CT 
are the compressibility and thermal expansion coeffi cient of the medium, respectively.

Radioactive decay
0

ktk kC C e−λ
β β= kCβ  is the concentration of component k in phase β and is equal to 0

kCβ at t = 0; λk is the radioactive 
decay constant.

Relative permeability ( )r rk k Sβ β β=
The relative permeability of a fl uid phase in a multiphase system are normally assumed to be 

functions of fl uid saturation, Sβ.

Specifi c enthalpies of gas k
gk k

g g k
g

P
h U

C
= +

k
gU the specifi c internal energy of component k in the gas phase; k

gP is partial pressure of 
component k in the gas phase; k

gC  concentration of component k in the gas phase (kg/m3).

Specifi c enthalpy of liquid P
h U β
β β

β
= +

ρ

Internal energy, Uβ, of liquid phase β is a function of pressure (Pβ) and temperature (T).

Thermal conductivity ( )T TK K Sβ=
The thermal conductivity of the porous medium is treated as a function of fl uid saturation (Sβ).
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where Di is the distance from the center of block i to the inter-
face between blocks i and j. The fl ow potential term in Eq. [12] 
is defi ned as

, 1/2i i ij iP gZβ β β +ψ = −ρ  [14]

where Zi is the depth to the center of block i from a reference 
datum.

For mass component transport, the fl ow term or the net 
mass fl ux by advection and hydrodynamic dispersion of a com-
ponent along the connection of nodes i and j is determined by

( )D,
kk k

ij ij ijF A D Xβ ββ
β

=− • •∇ ρ∑n  [15]

where nij is the unit vector along the connection of the two 
blocks i and j.

The total heat fl ux along the connection of nodes i and j, 
including advective, diffusive, conductive, and radiation terms, 
may be evaluated, when using a fi nite-difference scheme, by

( )

( )

( )

( )

c 1
,1/2

D,1/2

1/2

4 4
o o, 1/2

flowN
ij ijij

kk
ijij

k

j i
ij T ij

i j

ij ij j i

h F

Fh

T T
A K

D D

A T T

+
β β+

β

β +
β

+

+

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤+ ⎢ ⎥
⎣ ⎦

⎡ ⎤−⎢ ⎥+ ⎢ ⎥+⎢ ⎥⎣ ⎦

+ σ ε −

∑

∑∑
 [16]

In evaluating the “fl ow” terms in Eq. [11–14] and Eq. [16], sub-
script ij + 1/2 is used to denote a proper averaging or weighting 
of fl uid fl ow, component transport, or heat-transfer properties 
at the interface or along the connection between two blocks or 
nodes i and j. The proper weighting of mass fraction in Eq. [11] 
for calculating advective mass fl ux is the objective of this work, 
which is discussed in detail below. The convention for the signs 
of fl ow terms is that fl ow from node j into node i is defi ned 
as “+” (positive) in calculating the fl ow terms. Wu and Pruess 
(2000) presented a general approach to calculating these fl ow 
terms associated with advective and dispersive mass transport 
and heat transfer in a multiphase system, using an irregular and 
unstructured multidimensional grid.

Spatial and Temporal Weighting and Flux Limiter Schemes

As shown in Eq. [11] and [12], in general, two types of 
spatial weighting schemes are needed in modeling multiphase 
tracer transport. The fi rst one, ( )

1/2)
k
ij

Xβ +
, is used in Eq. [11] for 

estimating the averaged mass fraction for calculating advective 
fl ux. The other, ( )r 1/2

/
ij

kβ β β +
ρ μ , is used in Eq. [12] for mobility 

weighting of the multiphase fl ow term. In the literature, fl ux-
limiter schemes have been used not only for the fi rst type of 
weighting but also for the second type (Blunt and Rubin, 1992; 
Oldenburg and Pruess, 2000). However, it has been observed in 
practical simulations (Datta-Gupta et al., 1991) that the numer-
ical smearing caused by saturation fronts is in general much less 
severe than that with dissolved concentration fronts. Therefore, 
in this work, we focus our attention on the use of the fl ux limit-
ers for mass fraction averaging or modeling concentration plume 
only, whereas the traditional, full upstream weighting is used in 

mobility or relative permeability averaging for estimating fl uid 
displacement or saturation fronts.

In addition to spatial weighting schemes, temporal weighting 
also needs to be addressed in numerical formulation. Commonly 
used temporal weighting schemes include fully implicit and 
Crank–Nicolson methods. The fully explicit weighting is rarely 
used because of its strict limitation in time-step size. Among 
these schemes, the fully implicit method has proven itself to be 
most effective in handling numerical problems associated with 
solving highly nonlinear multiphase fl ow equations. In partic-
ular, the theoretical analysis of advective–dispersive transport 
through a one-dimensional fi nite-volume grid by Unger et al. 
(1996) indicates that the fully implicit scheme has no limitations 
in Courant number under various temporal weighting schemes, 
including fl ux limiters. They demonstrate how fully implicit 
temporal weighting leads to unconditionally stable solutions for 
linear advection–dispersion equations. Although fully implicit 
weighting is only a fi rst-order approximation, with numerical 
errors of the same size as the time step, it is our experience (in 
conducting hundreds of large, fi eld-scale simulations of coupled 
multiphase fl ow and chemical transport) that fully implicit tem-
poral schemes always result in stable solutions and that temporal 
discretization errors, caused by a fully implicit scheme, are of 
secondary importance in simulation when compared with many 
other unknowns. The key is to have a robust numerical scheme 
that leads to reliable and stable solutions under different spa-
tial discretizations and various physical conditions. Because it 
is impractical to defi ne a Peclet or Courant number for detailed 
theoretical analyses in most fi eld applications when using multi-
dimensional, irregular, unstructured grids, fully implicit tempo-
ral weighting should be a fi rst choice.

Selecting proper spatial-weighting schemes becomes critical 
when dealing with coupled processes of multiphase fl ow, chemi-
cal transport, and heat transfer in a fractured medium. This is 
because fracture and matrix characteristics often greatly differ; 
for example, there can be a many-orders-of-magnitude contrast 
in fl ow and transport properties, such as permeability and dis-
persivity. It is further complicated in that there are no generally 
applicable weighting schemes or rules applicable to all problems 
or processes (Wu and Pruess, 2000). The following weighting 
schemes were used for fl ux calculation in this work:

1. Upstream weighting for relative permeability and/or mobility
2. Harmonic or upstream weighting for absolute permeabilities 

in global fracture or matrix fl ow
3. Matrix absolute permeability, thermal conductivity, and 

molecular diffusion coeffi cients for fracture–matrix interac-
tion

4. Phase saturation–based weighting functions for determining 
diffusion coeffi cients

5. Upstream weighted enthalpies for advective heat fl ow
6. Central weighted scheme for thermal conductivities of global 

heat conduction

Consider the schematic of Fig. 1, representing a multidi-
mensional irregular, unstructured grid of porous and/or frac-
tured media. To calculate advective fl ux between nodes i and j, 
we also need the information from a secondary upstream node 
(denoted as i2up), which is an upstream node to the upstream 
one, ups(i,j), between nodes i and j (Unger et al., 1996; Forsyth 
et al., 1998). As shown in Fig. 1, the node i2up is determined 
by the maximum potential method in terms of maximum fl uid 
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infl ux into the node ups(i,j), which is implemented at Newtonian 
iteration level for every connection. Various weighting schemes 
for spatially averaged mass fraction or concentration for advec-
tive fl ux calculation between nodes i and j are summarized as 
upstream and central.

In the upstream weighting scheme,

( ) ( )
1/2 ups( , )

k k
ij i j

X Xβ β+
=  [17]

where subscript ups(i,j) stands for the upstream node for fl uid 
fl ow between nodes i and j.

For the central weighting scheme,

( )
( ) ( )

1/2 2

k k
i jk

ij

X X
X

β β

β +

+
=  [18]

The several fl ux-limiter or TVD schemes tested include the 
van Leer limiter scheme, the MUSCL method, and the Leonard 
method. The van Leer fl ux limiter scheme is expressed as

( )

( ) ( )
( ) ( )

1/2

dwn( , ) ups( , )

ups( , ) 2

k
ij

k k
i j i jk

iji j

X

X X
X r

β +

β β

β

=

⎡ ⎤−⎢ ⎥
⎢ ⎥+σ ⎢ ⎥
⎢ ⎥⎣ ⎦

 [19]

where ( )dwn( , )
k

i j
Xβ is the mass fraction of downstream node of i 

and j, defi ned as

dwn( , ) ups( , )i j i j i j= + −  [20]

The van Leer weighting factor σ(rij) is defi ned as

( ) ( )

( )
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r
r

r
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 [21]

with the smoothness sensor,

( ) ( )

( ) ( ) ( )
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 [22]

where Dups(i,j) and Di2up are the distances from the center of 
block ups(i,j) or its upstream block i2up to their common inter-
face along the connection between the blocks.

The MUSCL method is described by

( )
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1 1

4 3 3
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where
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Δ +Δ + ε
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and
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i j

i j i

D D
D D

+
ζ=

+
 [27]

In Eq. [24], ε is a small number, which prevents a zero divide.
The Leonard fl ux limiter is also described by Eq. [19] with 

the Leonard weighting factor σ(rij) defi ned as

( ) max 0, min(2, 2 ,(2 )/3)ij ij ijr r r⎡ ⎤σ = +⎢ ⎥⎣ ⎦  [28]

with rij also defi ned by Eq. [22].

The numerical implementation of these TVD schemes 
is made in the T2R3D code (Wu et al., 1996) for sim-
ulation of tracer transport through an isothermal or 
nonisothermal system.

Numerical Solution Scheme

Over the past few decades, a number of numerical solu-
tion techniques have been developed in the literature to solve 
the nonlinear, discrete equations of fl ow and transport in porous 
media. When handling multiphase fl ow, multicomponent trans-
port, and heat transfer in a multiphase fl ow system, investigators 
predominantly use a fully implicit scheme. This is because of the 
extremely high nonlinearity inherent in those discrete equations 
and the many numerical schemes with different levels of explic-
itness that may fail to converge in practice. In this section, we 
discuss a general procedure to solve the discrete nonlinear Eq. 
[9] fully implicitly, using a Newton iteration method.

We can write the discrete nonlinear Eq. [9] in a residual 
form as

{ }, 1 , 1 , 1 ,

, 1 , 1

c

flow 0

 = 1, 2, 3, ...,  +1;  = 1, 2, 3, ..., )
i

k n k n k n k n i
i i i i

k n k n
ij i

j

VR A G A
t

Q

k N i N

+ + +

+ +

∈η

= + −
Δ

− − =∑  [29]

Equation [29] defi nes a set of (Nc + 1) × N coupled nonlinear 
equations that need to be solved for every balance equation of 
mass components and heat, respectively. In general, (Nc + 1) pri-

FIG. 1. Schematic for determining the second upstream block (i2up) 
for fl ow between block i and block j, using the geometric method and 
the maximum potential method.
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mary variables per node are needed to use the Newton iteration 
for the associated (Nc + 1) equations per node. The primary vari-
ables are usually selected among fl uid pressures, fl uid saturations, 
mass (mole) fractions of components in fl uids, and tempera-
tures. In many applications, however, primary variables cannot 
be fi xed and must be allowed to vary dynamically to account for 
phase appearance and disappearance (Forsyth et al., 1998). The 
rest of the dependent variables are treated as secondary variables, 
including relative permeability, capillary pressures, viscosity and 
densities, partitioning coeffi cients, specifi c enthalpies, thermal 
conductivities, and dispersion tensor (listed in Table 1), as well 
as nonselected pressures, saturations, and mass (mole) fractions.

In terms of the primary variables, the residual Eq. [29] at a 
node i is regarded as a function of the primary variables at not 
only node i but also at all its direct neighboring nodes j. The 
Newton iteration scheme gives rise to

( )( ) ( )
, 1

, , 1
, 1 ,

k n
i m p k n

m p i m p
mm

R x
x R x

x

+
+

+

∂
δ =−

∂∑  [30]

where xm is the primary variable m, with m = 1, 2, 3, …, Nc + 1, 
respectively, at node i and all its direct neighbors; p is the itera-
tion level; and i = 1, 2, 3, …, N. The primary variables in Eq. 
[30] need to be updated after each iteration:

, 1 , , 1m p m p m px x x+ += +δ  [31]

The Newton iteration process continues until the residuals 
, 1k n
nR
+  or changes in the primary variables , 1m px +δ over an 

iteration are reduced below preset convergence tolerances.
A numerical method is used to construct the Jacobian matrix 

for Eq. [30], as outlined in Forsyth et al. (1995). At each Newton 
iteration, Eq. [30] represents a system of (Nc + 1) × N linearized 
algebraic equations with sparse matrices, which are solved by a 
linear equation solver. When using the fl ux limiter schemes, as 
discussed in the last subsection, advective mass fl ux terms in the 
discrete Eq. [21] may depend on primary and secondary vari-
ables beyond the direct neighboring nodes, such as at the node 
i2up. In such a situation, the Newton iteration discussed here 
becomes inexact because the Jacobian matrix does not include 
the contributions with respect to the primary variables beyond 
neighboring nodes. Nevertheless, converged solutions should be 
correct because the residuals are exact. This omission in these 
Jacobian calculations may make solution convergence more 
problematic. Many numerical tests, however, have been made 
for multiphase tracer transport, and no signifi cant numerical 
problems have been observed.

Fractured Media

The mathematical formulations and fl ux-limiter schemes 
discussed above are applicable to both single-continuum and 
multicontinuum media, as long as the physical processes involved 
can be described in a continuum sense within either continuum. 
When handling fl ow and transport through a fractured rock 
using the numerical formation of this section, fractured media 
(including explicit fracture, dual, or multiple continuum mod-
els) can be considered special cases of unstructured grids (See 
Fig. 1). Then, a large portion of the work consists of generating 
a mesh that represents both the fracture and the matrix system 
under consideration. Several fracture and matrix subgridding 

schemes exist for designing different meshes for different frac-
ture–matrix conceptual models (e.g., Pruess, 1983).

Once a proper unstructured grid of a fracture–matrix sys-
tem is generated, fracture and matrix blocks are identifi ed to 
represent fracture and matrix domains, separately. Formally they 
are treated identically for the solution in the model. However, 
physically consistent fracture and matrix properties, parameter 
weighting schemes, and modeling conditions must be appropri-
ately specifi ed for both fracture and matrix systems.

Application

One example is presented here to demonstrate the applica-
tion of the TVD schemes discussed above in handling transport 
through fractured media. The sample problem is based on a 
two-dimensional site-scale model developed for investigations of 
the unsaturated zone at Yucca Mountain in Nevada. This exam-
ple shows transport of one conservative (nonadsorbing) tracer 
through unsaturated fractured rock using a two-dimensional 
unstructured grid and a dual-permeability conceptualization for 
handling fracture and matrix interaction.

The two-dimensional west–east cross-sectional model grid, 
shown in Fig. 2, has a total of 30,000 fracture-matrix gridblocks 
and 74,000 connections between them in a dual-permeability 
mesh. The potential repository is located in the middle of the 
model domain, discretized with a locally refi ned grid (Fig. 2), at 
an elevation above 1100 m.

The two-dimensional model uses the ground surface as the 
top model boundary and the water table as the bottom bound-
ary. Both top and bottom boundaries of the model are treated as 
Dirichlet-type boundaries; that is, constant (spatially distributed) 
pressures, liquid saturations, and zero initial tracer concentra-
tions are specifi ed along these boundary surfaces. In addition, on 
the top boundary, a spatially varying, steady-state, present-day 
infi ltration map (as shown in Fig. 3), determined by the scien-
tists of the USGS, is used in this study to describe the net water 
recharge, with an average infi ltration rate of about 5 mm yr−1 

FIG. 2. Two-dimensional west–east cross-sectional model domain 
and grid showing lateral and vertical discretization, hydrogeological 
layers, repository layout, and several faults incorporated. The cross-
section is located between two Nevada coordinates of (169, 372 m, 
233, 052 m) and (171, 844 m, 233, 858 m).
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over the model domain. In addition, an isothermal condition is 
assumed in this study. The properties used for rock matrix and 
fractures in the dual-permeability model, including two-phase 
fl ow parameters of fractures and matrix as well as faults, were 
estimated from fi eld tests and model calibration efforts (Wu et 
al., 2002).

We consider a conservative liquid tracer migrating from the 
repository downward by advective and dispersive processes, sub-
ject to the ambient steady-state unsaturated fl ow condition. A 
constant effective molecular diffusion coeffi cient of 3.2 × 10−11 
(m2 s−1) is used for matrix diffusion of the conservative compo-
nent. Dispersivities used are for matrix: M,Lα  = 5 m and αT,M 
= 0.5 m; for fractures: αL,F = 10 m and αT,F = 1 m. Transport 
starts with a fi nite amount of the tracer initially released into the 
fracture elements of the repository blocks. After the simulation 
starts, no more tracer will be introduced into the system, but the 
steady-state water recharge from the top boundary continues. 
Eventually, all the tracer will be fl ushed out from the two-dimen-
sional system through the bottom, the water table boundary, by 
advective and diffusive processes.

Figures 4 and 5 show normalized tracer concentration con-
tours in the fracture continuum within the two-dimensional 
model at 10 yr of tracer release, simulated 
using various weighting schemes of spatially 
averaged mass fraction for advective fl ux cal-
culation. Comparisons of simulated concen-
trations between Fig. 4 (central weighting) 
and Fig. 5 (TVD–MUCSL) show a large dif-
ference at the time of 10 yr. Because all three 
TVD schemes implemented in this study 
give similar results for this problem, only the 
results with MUSCL are shown for the TVD 
cases in Fig. 5. Figure 6 presents fractional 
cumulative mass breakthrough curves at the 
water table, also showing some signifi cant dif-
ferences between the results using the TVD 
schemes and the central weighting.

Overall, the simulation results indicate 
that at early time periods, such as in the fi rst 
10 yr (Fig. 4), the central weighting scheme 
underestimates advective transport, while at 
later time periods (t > 100 yr) it overestimates 
advective transport, because of the selection of 
too high or too low averaged concentration val-
ues. In comparison, the TVD schemes provide 
more accurate, consistent numerical solutions at 
all the times. In addition, the TVD schemes are 
tested and found to have much better numerical 
performance than the central weighting scheme 
with respect to taking larger time steps or stability.

Summary and Conclusions

We have investigated several TVD schemes 
by implementing them into the TOUGH2 fam-
ily of codes, using multidimensional irregular 
unstructured grids. Our test results show that 
such TVD schemes can reduce numerical dis-
persion effectively, if used properly. In addition, 

FIG. 3. Net infi ltration rate along the west–east cross-sectional model 
as surface water recharge boundary condition.

FIG. 5. Concentration (C) distributions within the two-dimensional model at 10 yr, simulated 
using the total variation diminishing (TVD) scheme (MUSCL).

FIG. 4. Concentration (C) distributions within the two-dimensional model at 10 yr, simu-
lated using the central weighting scheme.
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numerical performance with TVD schemes is signifi cantly bet-
ter than commonly used central weighting and is comparable 
to fully upstream weighting. It is encouraging that under mul-
tiphase conditions using relatively coarse spatial discretization, 
these TVD schemes provide more accurate simulation results 
for modeling large-scale fi eld tracer transport processes through 
heterogeneous, fractured rock than the traditional modeling 
approaches.

Appendix: Nomenclature
Aij interface area between connected gridblocks i and j 

(m2)
k
iA  accumulation term at node i (kg or J m−3)
kCβ  concentration of component k in phase β

Di, Dj distance from center of fi rst (i) and second (j) grid-
block, respectively, to their common interface (m)

kdβ  molecular diffusion coeffi cient of component k within 
fl uid β (m2 s−1)

kDβ  hydrodynamic dispersion tensor accounting for both 
molecular diffusion and mechanical dispersion for 
component k in phase β (m2 s−1)

Fk “fl ow” term, describing mass or energy movement
Fβ,ij mass fl ux of phase β, described by a discrete version of 

Darcy’s law (kg s−1)

,
k
A ijF  net mass fl uxes of component k by advection along the 

connection between nodes i and j (kg or J s−1)
F ,
k
D ij  net mass fl uxes of component k by hydrodynamic dis-

persion along the connection between nodes i and j (kg 
or J s−1)

flowk
ij  “fl ow” term of component k or thermal energy between 

nodes i and j (kg or J s−1)
g gravitational acceleration (scalar) (m s−2)
g gravitational acceleration vector (m s−2)
k
iG  decay generation terms at node i (kg or J m−3)

hβ specifi c enthalpies of fl uid phase β (J kg−1)
khβ  specifi c enthalpies of component k in fl uid β (J kg−1)

k absolute or intrinsic permeability (m2)
krβ relative permeability to phase β
KT overall thermal conductivity of rock (W m−1 °C)

d
kK  distribution coeffi cient of component k between the 

aqueous phase and rock solids (m3 kg–1)
Mk accumulation term of component k
nij unit vector along the connection of the two blocks i 

and j
N total number of nodes in the grid
Nc total number of mass components (Nc + 1 for energy)
Pβ pressure, viscosity of fl uid phase β (Pa)
qk external source–sink term or fracture–matrix exchange 

term for mass or energy component k and energy
k
iQ  source–sink terms at node i (kg J−1 s−1)

rij smoothness tensor for calculating fl ux limiters
, 1k n
iR
+  residual term of mass or energy conservation of compo-

nent k (kg s–1) or (J s–1) at node i at time level n + 1.
s parameter, defi ned in Eq. [24].
Sβ saturation of phase β.
T temperature (°C).
Δt time step size (s).
Uβ internal energy of phase β (J/kg).
Us internal energy of rock solids (J/kg).

βv  vector of the Darcy’s velocity or volumetric fl ow (m/s)
Vi volume of node i (m3)
xm generic notation for the mth primary variable (m = 1, 

2, 3, …, Nc, and Nc + 1)
xm,p generic notation for the mth primary variable at 

Newton iteration level p (i = 1, 2, 3, …)
kXβ  mass fraction of component k in the water phase

w
kX  mass fraction of component k in fl uid β

z vertical coordinate (m)
Zi depth to the center of block i from a reference datum 

(m)

Greek Symbols

L
βα  longitudinal dispersivity in fl uid β of porous media 

(m)

T
βα  transverse dispersivity in fl uid β of porous media (m)

δij Kronecker delta function (δij = 1 for i = j, and δij = 0 
for i ≠ j)

ε small, positive number
εo radiation emissivity factor
φ effective porosity of fracture or matrix continua
γij transmissivity (m3)
ηi index set of direct neighboring nodes for node i
λk radioactive decay constant of component k (s−1)
μβ viscosity of fl uid β (Pa·s)
ρw density of water (kg m−3)
ρβ density of phase β (kg m−3)
ρs density of rock grains (kg m−3)
σ(rij) van Leer weighting factor
σo Stefan–Boltzmann constant (= 5.6687 × 10−8 J m−2 

K4)
τ tortuosity of porous media
ψβi fl ow potential term at node i (Pa)
ζ parameter, defi ned by Eq. [27]

−Δ  parameter, defi ned by Eq. [25]

+Δ  parameter, defi ned by Eq. [26]

FIG. 6. Breakthrough curves of fractional cumulative tracer mass ar-
riving at the water table, since release from the repository, simulated 
using the different weighting schemes.
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Subscript
i index of gridblocks of neighbors to n; or total number 

of connected elements to element n; or matrix.
ij between two connected gridblocks i and j, or appropri-

ate averaging between two gridblocks
ij + ½ appropriate averaging between two gridblocks i and j
j index of gridblocks
p Newton iteration level
r relative or rock
ups(i,j) upstream node for fl uid fl ow between nodes i and j
v volume
w water
β index for fl uid phase (β = g for gas, = w for aqueous 

phase)

Superscript

a air component
dwn(i,j) upstream node between nodes i and j
i2up secondary upstream node
k index for the components, k = 1, 2, 3,…, Nc and with 

k = Nc + 1 for the energy “component.”
n previous time step level
k + 1 current time step level
t tracer
w water component
ups(i,j) upstream node between nodes i and j
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