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Abstract

The present study assesses the uncertainty of flow and radionuclide transport in the unsaturated zone at Yucca Mountain using a
Monte Carlo method. Matrix permeability, porosity, and sorption coefficient are considered random. Different from previous studies
that assume distributions of the parameters, the distributions are determined in this study by applying comprehensive transformations
and rigorous statistics to on-site measurements of the parameters. The distribution of permeability is further adjusted based on model
calibration results. Correlation between matrix permeability and porosity is incorporated using the Latin Hypercube Sampling method.
After conducting 200 Monte Carlo simulations of three-dimensional unsaturated flow and radionuclide transport for conservative and
reactive tracers, the mean, variances, and 5th, 50th, and 95th percentiles for quantities of interest (e.g., matrix liquid saturation and water
potential) are evaluated. The mean and 50th percentile are used as the mean predictions, and their associated predictive uncertainties are
measured by the variances and the 5th and 95th percentiles (also known as uncertainty bounds). The mean predictions of matrix liquid
saturation and water potential are in reasonable agreement with corresponding measurements. The uncertainty bounds include a large
portion of the measurements, suggesting that the data variability can be partially explained by parameter uncertainty. The study illus-
trates propagation of predictive uncertainty of percolation flux, increasing downward from repository horizon to water table. Statistics
from the breakthrough curves indicate that transport of the reactive tracer is delayed significantly by the sorption process, and prediction
on the reactive tracer is of greater uncertainty than on the conservative tracer because randomness in the sorption coefficient increases the
prediction uncertainty. Uncertainty in radionuclide transport is related to uncertainty in the percolation flux, suggesting that reducing
the former entails reduction in the latter.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Monte Carlo simulation; Uncertainty analysis; Tracer and radionuclide transport; Parameter distribution function; Unsaturated zone; Yucca
Mountain; Matrix permeability; Porosity; Sorption coefficient
1. Introduction

Yucca Mountain has been proposed by the US Depart-
ment of Energy as the nation’s long-term, permanent geo-
logic repository for spent nuclear fuel or high-level
radioactive waste. The potential repository would be
located in Yucca Mountain’s unsaturated zone (UZ),
0309-1708/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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which acts as a critical natural barrier delaying arrival of
radionuclides to the water table. Since radionuclide trans-
port in groundwater can pose serious threats to human
health and the environment, it is indispensable to under-
stand better flow and radionuclide transport in the UZ of
Yucca Mountain. The UZ system consists of multiple
hydrogeologic units whose hydraulic and geochemical
properties exhibit both systematic and random spatial var-
iation at multiple scales. Characterizing the heterogeneity
and predicting radionuclide transport under such uncertain
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conditions is difficult, and this difficulty complicates deci-
sion making and risk analysis. Using stochastic methods,
the present study assesses uncertainty in radionuclide
transport caused by uncertainty in hydraulic and geochem-
ical parameters used to model unsaturated flow and radio-
nuclide transport in the Yucca Mountain UZ.

Since the 1980s, extensive field studies have been per-
formed to collect various types of data for site characteriza-
tion, and substantial numerical simulations have been
conducted to understand flow and transport in the UZ.
Recently, the hydrogeologic units of the UZ were charac-
terized based on 4892 rock samples collected from the cor-
ing of 31 boreholes [7]. A database of hydraulic properties
within the UZ zone was further developed based on 5320
core samples collected from 33 boreholes [8]. Hydraulic
properties (e.g., permeability, porosity, and van Genuchten
water retention parameters) of fracture and matrix in the
UZ were compiled [17]. Sorption coefficients for a conser-
vative tracer, technetium (99Tc), and a reactive tracer, nep-
tunium (237Np) were measured for three types of rocks
(devitrified, vitric, and zeolitc tuffs) in the UZ [27]. Since
the 1990s, site-scale, three-dimensional (3-D) numerical
models with high-spatial resolution have been developed
to incorporate various physical processes [1,2,28,30–36].
Model calibrations have been conducted based on these
site-scale models [1,3,25,28,30,31,45] and the importance
of calibrating the site-scale, 3-D models to yield acceptable
model predictions for the Yucca Mountain UZ has been
shown [30,31,33–36].

The uncertainty of radionuclide transport caused by
parameter randomness has been studied. Monte Carlo
method was used by [22] to assess uncertainty in radionu-
clide travel time due to variations in recharge rate, matrix
saturated hydraulic conductivity, porosity, and van
Genuchten water retention parameters a and n. Since on-
site parameter measurements of these variables at Yucca
Mountain were limited before 1993, distributions of the
parameters were simply assumed to be normal or lognor-
mal. In addition, the Monte Carlo simulation in [22] was
performed using a simple numerical model only for the
Calico Hill nonwelded zeolitic layer of the UZ. A compre-
hensive uncertainty analysis is conducted in [45] by running
Monte Carlo simulations using two-dimensional (2-D) ran-
dom fields, generated from measured and calibrated matrix
and fracture permeability and matrix van Genuchten a. 2-
D Monte Carlo simulations were conducted in [12] by
using random fields of heterogeneous fracture permeability
and homogeneous matrix permeability. The random fields
of fracture permeability were not generated based on site
measurements at Yucca Mountain but on information
obtained from the fractured tuff at the Apache Leap
Research Site in central Arizona. As a summary, the previ-
ous uncertainty assessments were carried out only for part
of the UZ using 2-D numerical models, whereas unsatu-
rated flow and radionuclide transport actually occur in
the heterogeneous 3-D UZ. In addition, previous studies
simply assumed the distributions of model parameters
and did not address the correlation between model
parameters.

In the present study, we assess the uncertainty of unsat-
urated flow and radionuclide transport using a 3-D, site-
scaled numerical model with random model parameters,
based on site measurements and model calibration esti-
mates. In addition, parameter correlation is also incorpo-
rated in the uncertainty assessment. The uncertainty
analysis is conducted using a Monte Carlo method, which
is conceptually straightforward and flexible to be applied to
any known parameter distribution. Since this method is not
limited to cases where parameter variance is small, it can be
used as a reference to evaluate accuracy of various pertur-
bation-based stochastic moment methods [6,9,42]. While
the Monte Carlo method requires substantial computa-
tional resources, this limitation has become less critical
over the last decade due to advances in computer hardware
and software. Nevertheless, the Monte Carlo method still
has several disadvantages. First, this method lacks theoret-
ical convergence criteria for statistical moments higher
than the mean. The common practice in resolving the con-
vergence problem with Monte Carlo simulations is to
examine stabilization of statistical moments at representa-
tive simulation locations and times. Second, the Monte
Carlo method requires knowing the distributions of all ran-
dom model parameters. In the present study, rigorous sta-
tistical methods are employed to identify model parameter
distributions based on the results of site measurements and
model calibrations instead of assuming the distributions, as
in previous uncertainty analyses.

The uncertainty assessment is focused on predictive
uncertainty in unsaturated flow and radionuclide transport
caused by random matrix permeability, porosity, and sorp-
tion coefficient. Distributions of the three parameters are
obtained based on site measurements of [7,17,27]. Uncer-
tainty in the parameters, resulting from their spatial vari-
ability, can be quantified using measurements based on
the ergodicity assumption. While the dual-continuum mod-
eling approach used in the present study requires two sets
of hydraulic properties for matrix and fracture media (see
discussion in Section 2), matrix van Genuchten a and n

are treated as deterministic variables, since their distribu-
tions cannot be rigorously identified for our 3-D uncer-
tainty analysis based on limited site measurements. For
example, only two or three measurement of the matrix
van Genuchten a and n is available in each hydrogeologic
unit. Other matrix parameters (e.g., residual saturation)
are also handled deterministically in the present study,
because they are less variable than the random matrix per-
meability, porosity, and sorption coefficient. Uncertainty
of fracture properties is not assessed based on sensitivity
analysis of [43], which shows that flow and transport sim-
ulations are not sensitive to fracture properties, because
fracture flow dominates over the entire model domain.
Another significant source of uncertainty in UZ modeling
is the conceptualization of surface infiltration. Flow
and transport processes under nine different infiltration
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Fig. 1. Plan view of the 3-D UZ model grid shows the model domain,
faults, proposed repository layout, and locations of several boreholes.
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conditions were simulated [33,35,36]. The conceptual
model uncertainty in surface infiltration is beyond the
scope of the present study, although the uncertainty can
be assessed by integrating the numerical simulation of
[35,36] with the Maximum Likelihood Bayesian Model
Averaging method recently developed [21,38].

Following a brief introduction in Section 2 of the com-
puter model used for Monte Carlo simulations, we discuss
methodologies and results of generating random fields of
matrix permeability, porosity, and adsorption coefficient
in Section 3. In Section 4, simulated flow variables (e.g.,
matrix liquid saturation and water potential) are compared
with site measurements, and uncertainty in unsaturated
flow and radionuclide transport is assessed. Conclusions
are presented in Section 5.

2. Computer model

The computer model used in the present study is
described briefly here, and more details can be found in
[35]. The UZ of interest at Yucca Mountain is between
500 and 700 m thick and overlies a relatively flat water
table. Yucca Mountain is a structurally complex geologic
system of Tertiary volcanic rocks and heterogeneous envi-
ronment of layered, anisotropic fractured tuff. Primarily
based on the degree of formation welding, the geologic for-
mations at Yucca Mountain have been organized into five
major hydrogeologic units: Tiva Canyon welded (TCw)
unit, Paintbrush nonwelded (PTn) unit, Topopah Spring
welded (TSw) unit, Calico Hills nonwelded (CHn) unit,
and Crater Flat undifferentiated (CFu) unit. The proposed
repository would be located in the TSw unit. These five
major units are divided further into about 30 subunits,
which are associated with the computer layers in the
numerical model. The 3-D model of the mountain-scale,
unsaturated flow domain is discretized into a computa-
tional grid, which incorporates the layering heterogeneity
at the site by representing each hydrogeologic subunit with
several computational grid layers (at least one). The grid
has an average of 45 vertical computational layers in the
vertical direction and 980 columns (or gridblocks per layer)
of both fracture and matrix continua, resulting in 86,400
gridblocks and 343,520 connections in a dual-permeability
grid. It uses a refined mesh in the vicinity of the repository
and includes every repository drift by taking account of
orientations, lengths, elevations, and spacings of the drifts.
Fig. 1 is the plan view of the grid and shows the plotted
model domain, faults, proposed repository layout, and
locations of several boreholes.

The dual-continuum approach is used in the modeling.
Two sets of properties (i.e., relative permeability and capil-
lary pressure curves), along with other intrinsic properties
(e.g., permeability, porosity, density, fracture geometric
parameters, and transport properties) are needed for the
two media of fractured and matrix systems. Because the
van Genuchten model of relative permeability and capillary
pressure functions is used to describe variably saturated
flow in both fracture and matrix continua, the basic rock
and flow parameters used for each model layer include
(a) fracture properties (frequency, spacing, porosity, per-
meability, van Genuchten a and n parameters, residual sat-
uration, and fracture–matrix interface area); (b) matrix
properties (porosity, permeability, van Genuchten a and
n parameters, and residual saturation); (c) transport prop-
erties (grain density, diffusion, adsorption, and tortuosity
coefficients); and (d) fault properties (porosity, matrix
and fracture permeability, and active fracture–matrix inter-
face area). As discussed in Section 1, only matrix perme-
ability, porosity, and adsorption coefficient are treated as
random variables in the present study. For each of the
computational layers, equally likely random parameter
samples drawn from parameter distributions identified in
Section 3 are assigned to all gridblocks within the layer.

The unsaturated flow module, EOS9 (solving Richards’
equation), of TOUGH2 [24] is used to simulate mois-
ture movement in the UZ, which is approximated at a
quasi-steady-state or steady-state condition. Another
TOUGH2-family code, T2R3D [32], is used for modeling
radionuclide transport through fractured tuffs. For the flow
model, the ground surface and water table are taken as top
and bottom boundaries, which are treated as Dirichlet-type
conditions with specified pressure or saturation values. All
lateral boundaries are treated as no-flow (closed) bound-
aries. A present-day, net infiltration estimate used in [35]
(Fig. 2) is applied as a source term in the fracture grid-
blocks within the second grid layer from the top, since



Fig. 2. Plan view of present-day net infiltration distributed over the 3-D
unsaturated zone flow model grid.

M. Ye et al. / Advances in Water Resources 30 (2007) 118–134 121
the first layer is treated as a Dirichlet boundary to represent
average atmospheric conditions on the land surface. Net
infiltration from precipitation is the major control on over-
all hydrologic and thermal-hydrologic conditions within
the UZ.

3. Generation of correlated random fields

After introducing methodologies for identifying param-
eter distributions and generating correlated random fields
based on parameter site measurements, the identified
parameter distributions and generated parameter fields
are discussed in this section. Measurements of matrix
permeability (transferred from the saturated hydraulic
conductivity measured from core samples) and porosity
compiled by [17] are used in the present study. Distribu-
tion identification and random generation are first applied
to the measured hydraulic conductivity, and then the
generated conductivity is transferred to permeability for
TOUGH2 numerical simulations. Measurements of
sorption coefficients for the reactive tracer, neptunium
(237Np), in three types of representative rocks, (devitrified,
vitric, and zeolitc tuffs) are compiled from [27]. Descrip-
tive statistics of these measurements are referred to
[17,23].

3.1. Identification of parameter distributions

Since parameter measurements are seldom adequate to
describe the corresponding parameter distribution without
appropriate transforms [5], three distribution types of
transformations (lognormal, log ratio, and hyperbolic arc-
sine) from the Johnson system [5,15] and four classical
re-expressions (1/X, X1/2, X1/3, X2) [18] are selected to
transform the parameter measurements. The seven
transformations include all transformations reported in
literature dealing with distributions of hydraulic parameters
of unsaturated media. The lognormal (LN), log ratio (SB),
and hyperbolic arcsine (SU) transforms are given as
follows [5]:

LN : Y ¼ lnðX Þ ð1Þ

SB : Y ¼ ln
X � A
B� X

� �
ð2Þ

SU : Y ¼ sinh�1ðUÞ ¼ lnðU þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U 2

p
Þ ð3Þ

where X is the untransformed variable value with limits of
variation from A to B (A < X < B) and U = (X � A)/
(B � A). Another distribution is the Gaussian distribution
denoted by NO, meaning no transform. The best one
among the eight distributions (NO, LN, SB, SU, 1/X, X1/2,
X1/3, and X2) is selected using the Lilliefors goodness-
of-fit test for normality, a variant of the Kolmogorov–
Smirnov (K–S) test. Different from the K–S test, the Lillief-
ors test does not require a hypothesized distribution with
mean and variance (or more rigorously, cumulative distri-
bution function) specified a priori. Instead, mean and var-
iance in the Lilliefors test are estimated from measurements
[4]. The Lilliefors test is implemented in the following three
steps:

(1) Standardize transformed measurements yi with their
sample mean, Y , and standard deviation, s; i.e.,
zi ¼ ðyi � Y Þ=s ði ¼ 1; 2; . . . ;NÞ, where N is the sam-
ple size (at least 4 for the Lilliefors test [4]).

(2) Calculate the empirical cumulative distribution func-
tion (CDF), G(Z), of the standardized variable Z and
standard normal CDF, F*(Z); estimate the maximum
absolute difference, T = maxjF*(zi) � G(zi)j (i = 1,
2, . . . ,N), between G(Z) and F*(Z).

(3) Select the Lilliefors test statistic T* corresponding
to a level of significance a from the Lilliefors Test
Statistical Table [4]. If T exceeds T*, reject the
hypothesis of normality at the significance level
of a.

While application of the Lilliefors test for normal, log-
normal, and beta distributions was proposed also by [20],
the Lilliefors test for normality appears sufficient in this
study.

3.2. Latin Hypercube Sampling and rank correlation

The Latin Hypercube Sampling (LHS) method [10,19] is
used to generate correlated random fields of permeability
and porosity in the present study. The correlation between
permeability and sorption coefficient cannot be estimated,
since they were measured by different researchers at sepa-
rate locations, and the data pairs of the two parameters
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are not available. Permeability and porosity were measured
by [7] together, and data pairs of the two parameters exist.
LHS is selected for random field generation since it ensures
that generated random samples span the full coverage of a
random variable obtained from parameter measurements,
even when the sample size is relatively small. This property
of LHS reduces the computational cost of Monte Carlo
simulations, since in comparison with the random sampling
method, LHS requires a smaller number of parameter real-
izations to yield representative parameter distribution func-
tions [10,44]. Another advantage of LHS is that it can
easily incorporate parameter correlations into the gener-
ated random fields. The Spearman rank correlation coeffi-
cient, RCCXY, proposed by [13] is used in the present study
to measure the correlation between two random variables
X and Y. The Spearman rank correlation coefficient is
defined as follows [10]:

RCCXY ¼
PN

i¼1 RðxiÞ�RðX Þ
� �

RðyiÞ�RðY Þ
� �

PN
i¼1 RðxiÞ�RðX Þ
� �2

n o1=2 PN
i¼1 RðyiÞ�RðY Þ
� �2

n o1=2

¼ 1�6
XN

i¼1

RðxiÞ�RðyiÞ½ �2

NðN 2�1Þ
ð4Þ

where R(xi) and R(yi) are the ranking indexes of xi and yi in
ascending order, respectively; N is the sample size; and the
mean rank is RðX Þ ¼ RðY Þ ¼ ðN þ 1Þ=2. The technique of
rank correlation is distribution-free and can incorporate
the correlation information better than the commonly used
Pearson correlation coefficient [10]. In the present study,
the correlation between the selected best distributions of
permeability and porosity (not the original ones) are esti-
mated. The LHS code of [14] is used to generate random
fields; this code requires the first and 99th percentiles of a
normal distribution as inputs, which are estimated as fol-
lows [26]:

V 0:01 ¼ l� 2:326r and V 0:99 ¼ lþ 2:326r ð5Þ
where l and r are the mean and standard deviations of a
normal distribution. After the random fields corresponding
to the selected best transforms are generated, the generated
random fields need to be transformed back to their original
scale, using one of the following equations:

LN : X ¼ expðY Þ ð6Þ
SB : X ¼ ½B expðY Þ þ A�=½1þ expðY Þ� ð7Þ
SU : X ¼ Aþ ðB� AÞ½expðY Þ � expð�Y Þ�=2 ð8Þ
X ¼ 1=Y ; X ¼ Y 2; X ¼ Y 3; X ¼ Y 1=2 ð9Þ

where Y is the transformed value generated by LHS, and X

is the parameter value in its original scale.

3.3. Results of distribution identification

For the saturated hydraulic conductivity, Table 1 lists
the values of A and B needed for the SB and SU trans-
forms; selected best distributions based on the Lilliefors
test; mean and variance of the transformed data; maximum
absolute distribution difference, T; and Lilliefors criteria,
T*, for significance levels of 0.01, 0.05, and 0.1. The first
column in Table 1 lists the names of hydrogeologic units
used in the numerical modeling. The Lilliefors test is not
applied to select the best distribution for the six units of
CCR&CUC, TPY, PV2a, BTv and BF2, since there are
fewer than four measurements in each of the units (matrix
permeability in the six units is thus fixed consequently in
Monte Carlo simulations). For the units of PV2v, CHV,
and CHZ, as suggested by [5], a few outliers are excluded
from the estimations of mean and variance to yield a better
distribution fit, whereas the outliers are still included in the
calculation of the maximum absolute distribution differ-
ence (T). For the units of CNW, BT4, BT3, BT2, and
BF3, the best distribution yields a negative 1st percentile,
V0.01, calculated by Eq. (4) and thus is not selected. Instead,
the second best fit is selected. Eighty percent of the selected
best distributions are determined at the significance level of
0.05 in the Lilliefors normality test. Whereas the normality
assumption is rejected in the two units of TMN and CHZ
at all significance levels, the distribution with the smallest
value of T is selected, which appears acceptable because
of the small difference between the empirical and theoreti-
cal CDFs, G(Z) and F*(Z), shown in Fig. 3. The logarithm
transform (LN) is the best distribution for the saturated
hydraulic conductivity for 14 of the total 25 tested hydrog-
eologic units.

Table 2 lists the statistical parameters of distribution
approximation for matrix porosity in the same manner
as Table 1, and no dominating transformation is found.
More measurements of porosity are available than those
of saturated hydraulic conductivity in each hydrogeologic
unit, and the procedure of distribution identification can-
not be applied only for the unit of BTv, owning to the lack
of measurements in BTv. The footnote below the table
gives the details for the distribution selection. While 28 dis-
tributions are accepted at various significance levels, no
best distribution can be accepted for the four units of
CUL&CW, TMN, TM2&TM1, and CHZ. This may be
attributed to the large sample sizes (ranging from 277 to
694) in these units, since the Lilliefors criteria, T*, are
inversely proportional to the square root of the sample
size. The transform with the smallest T, however, is
accepted in the study, because of the small difference
between the empirical and theoretical CDFs, G(Z) and
F*(Z), shown in Fig. 3.

Table 3 displays the Spearman rank correlations
between the transformed matrix porosity and saturated
hydraulic conductivity. Note that the data pairs between
the two parameters are significantly less than the measure-
ments of individual parameters. In addition, the Spearman
rank correlation cannot be estimated for hydrogeologic
units of CCR&CUC, TPY, PV2a, BTv, and BF2 because
of the small number of data pairs. The rank correlations
are used by the LHS code to generated correlated random



Table 1
Statistical parameters of matrix saturated hydraulic conductivity for distribution approximation

Hydrogeologic units Limits of variation Transform Estimated distribution Critical value (T*)

A B Mean Variance T a = 0.10 a = 0.05 a = 0.01

CCR&CUCa

CUL&CW 2.48E�13 1.25E�08 LN �25.40 8.37 0.140 0.189 0.206 0.245
CMW 3.33E�12 9.42E�08 SB �6.06 67.5 0.323 0.315 0.337 0.405
CNWc 5.11E�12 8.80E�07 LN �18.2 22.2 0.235 0.239 0.258 0.294
BT4c 1.79E�10 2.55E�05 LN �14.2 10.6 0.207 0.230 0.249 0.284
TPYa

BT3c 1.89E�09 7.31E�06 X1/3 1.04E�02 2.40E�06 0.236 0.230 0.249 0.284
TPP 8.99E�08 1.75E�06 SB 0.754 16.9 0.209 0.230 0.249 0.284
BT2c 1.23E�09 2.07E�05 LN �13 6.61 0.192 0.171 0.187 0.225
TC 1.69E�11 1.69E�07 SB �5.23 42.8 0.172 0.294 0.319 0.364
TR 1.69E�11 9.38E�06 LN �20.3 4.47 0.133 0.117 0.129 0.150
TUL 4.19E�13 1.43E�06 LN �22.8 7.29 0.163 0.132 0.146 0.169
TMN 4.75E�13 1.24E�09 LN �25.8 2.32 0.134 0.094 0.103 0.120
TLL 1.38E�12 7.66E�08 LN �22.3 6.42 0.096 0.112 0.123 0.143
TM2&TM1 5.32E�13 9.40E�06 SB �12.4 33.4 0.140 0.168 0.183 0.219
PV3 8.62E�14 2.26E�09 LN �25.8 7.25 0.154 0.189 0.206 0.245
PV2aa

PV2vb 5.02E�11 1.21E�05 X1/3 1.26E�02 1.26E�05 0.211 0.195 0.213 0.250
BT1a 1.82E�13 8.71E�08 SB �7.16 59.2 0.189 0.239 0.258 0.294
BT1v 1.03E�10 2.21E�05 LN �14.1 6.48 0.131 0.136 0.150 0.174
CHVb 1.67E�12 7.21E�05 X1/3 0.0168 1.34E�04 0.144 0.117 0.129 0.150
CHZb 3.87E�13 9.55E�08 LN �24.1 1.83 0.118 0.081 0.089 0.104
BTa 2.07E�13 2.11E�10 SB �3.80 26.3 0.182 0.249 0.271 0.311
BTva

PP4 8.43E�13 3.09E�07 SB �7.11 52.3 0.239 0.261 0.285 0.331
PP3 4.19E�12 3.66E�07 X1/3 3.72E�03 1.62E�06 0.114 0.113 0.124 0.144
PP2 3.74E�12 1.16E�08 LN �22.2 5.05 0.101 0.136 0.150 0.174
PP1 1.69E�12 1.95E�06 LN �22.6 10.4 0.149 0.152 0.167 0.195
BF3c 6.89E�11 5.59E�08 LN �20.0 7.32 0.191 0.276 0.300 0.348
BF2a

a The sample size is less than 4 and cannot fit the distribution using Lilliefors Test in the layers.
b The outlying values were discarded, but were included for goodness of fit calculation in the layer.
c The distribution is not the best fit in order to guarantee the reasonable ranges of random fields.
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fields of matrix porosity and saturated hydraulic conduc-
tivity, which subsequently transferred to permeability.

Table 4 presents the statistical parameters of distribu-
tion approximation for the sorption coefficient of the reac-
tive tracer neptunium (237Np) in the same manner as Tables
1 and 2. The best distributions of the sorption coefficients
for the three rock types of devitrified, vitric, and zeolitic
tuff are selected based on the Lilliefors test at a significance
level of 0.05. For two of the three rock types, the logarithm
transform is found to be the best distribution for the sorp-
tion coefficient.

Fig. 3 plots the empirical CDF, G(Z), of the selected
best distribution and the theoretical CDF, F*(Z), of (a–b)
matrix hydraulic conductivity, (c–f) matrix porosity, and
(g–i) sorption coefficient of neptunium (237Np). Such plots
for saturated hydraulic conductivity and porosity in all
hydrogeologic units are referred to [23]. Fig. 3 shows that
G(Z) agrees well with F*(Z), indicating the selected distri-
butions are appropriate. In particular, Fig. 3a and b plot
the CDFs of the saturated hydraulic conductivity for the
two hydrogeologic units of TMN and CHZ, where the nor-
mality assumption is rejected for all eight distributions at
all three significance levels. Fig. 3c–f do the same for the
matrix porosity in the four composite units of CUL&CW,
TMN, TM2&TM1, and CHZ. Fig. 3a–f show that G(Z)
slightly deviates from F*(Z), especially for matrix porosity
(Fig. 3c–f), suggesting that the selected best distribution is
acceptable.

3.4. Results of random field generation

Two hundred realizations of saturated hydraulic con-
ductivity, porosity, and sorption coefficients of neptunium
(237Np) are generated using the Latin Hypercube Sampling
method for all hydrogeologic units, except for the units
with less than four measurements. Fig. 4 plots relative fre-
quencies of measured and generated (a–b) log matrix satu-
rated hydraulic conductivity, (c–d) matrix porosity for the
two units of TMN and CHZ, and (e–f) sorption coefficient
of neptunium (237Np) for two rock types of devitrified and
vitric tuff. Such plots for saturated hydraulic conductivity
and porosity in all the hydrogeologic units and rock types



Fig. 3. Empirical (dashed) and theoretical (solid) cumulative distribution functions (CDF) for transformed (a,b) matrix saturated hydraulic conductivity,
(c–f) matrix porosity, and (g–i) sorption coefficient of neptunium (237Np) in three selected hydrogeologic units. The selected best distributions are listed in
the figures.
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are referred to [23]. Fig. 4 shows that the distributions of
generated parameters agree well with the corresponding
measurements, even in the units of TMN and CHZ, where
the normality assumption is rejected for all distributions.

Previous modeling [30,31,35,36] has shown that param-
eters measured in the field and laboratory, and/or parame-
ters estimated by one-dimensional models, cannot be used
directly by 3-D models to produce acceptable simulation
results. This is due to model uncertainty and the different
spatial–temporal scales between model input parameters
and their measured and estimated values. Instead, the
parameter set of permeability obtained from both parame-
ter measurements and 3-D model calibrations [3,16] were
employed for the numerical simulations [35,36]. Their sim-
ulations appear reasonable in comparison with field mea-
surements of water saturation and potential.

In the present study, the model inputs of permeability
used by [35,36] are included in the range (between the min-
imum and maximum) of measured permeability in almost
all hydrogeologic units. Nevertheless, in the units of BT3,
TPP, CHV, PP3, and BF2, the model inputs are larger than
the maximum measurements. To yield better simulations,
the model inputs of [35,36] in these units are assumed to
be the means of saturated hydraulic conductivity. The asso-
ciated variances are adopted from those determined by the
Lilliefors test after appropriate transforms, given in Table
1. Since the distributions of matrix saturated hydraulic
conductivity cannot be identified in the hydrogeologic units
of CCR&CUC, TPY, PV2a, BTv, and BF2 because of their
small sample size (fewer than four), matrix hydraulic con-
ductivity in these units is treated as a deterministic variable
having the values of model inputs given in [35]. Fig. 5a and
b plots the mean, maximum, and minimum logarithm of
measured and generated permeability, respectively, for all
hydrogeologic units. Fig. 5b shows that the model inputs
from [35,36] are within the ranges of generated permeabil-
ity but are not identical with their means. Mean permeabil-
ity in Fig. 5a differs from that in Fig. 5b for certain units
due to the use of calibrated permeability as the mean, as
discussed previously. In Fig. 5a and b, the differences in
range of permeability for certain hydrogeologic units is
caused by the exclusion of measurement outliers from esti-
mates of mean and variance, as discussed in Section 3.3.
For example, in the hydrogeologic units of CHV and



Table 2
Statistical parameters of matrix porosity for distribution approximation

Hydrogeologic units Limits of
variation

Transform Estimated distribution Critical values (T*)

A B Mean Variance T a = 0.10 a = 0.05 a = 0.01

CCR&CUCa 0.037 0.432 X2 0.063 6.58E�04 0.078 0.072 0.080 0.093
CUL&CW 0.031 0.214 1/X 12.63 14.20 0.072 0.031 0.034 0.039
CMW 0.099 0.453 1/X 5.300 1.49 0.085 0.087 0.090 0.105
CNW 0.227 0.634 NO 0.387 4.74E�03 0.057 0.079 0.087 0.101
BT4 0.133 0.670 SU 0.520 2.63E�02 0.117 0.106 0.116 0.135
TPY 0.072 0.310 X2 0.058 5.84E�04 0.106 0.129 0.142 0.165
BT3 0.136 0.579 SU 0.585 2.50E�02 0.084 0.094 0.104 0.121
TPP 0.387 0.624 1/X 2.021 2.56E�02 0.060 0.064 0.070 0.082
BT2a 0.103 0.615 SB 1.385 0.79 0.073 0.061 0.067 0.078
TC 0.011 0.274 X1/3 0.365 4.66E�03 0.059 0.093 0.102 0.119
TR 0.061 0.268 NO 0.157 8.75E�04 0.048 0.038 0.042 0.049
TUL 0.075 0.251 NO 0.155 9.28E�04 0.044 0.038 0.042 0.049
TMN 0.054 0.193 LN �2.218 3.29E�02 0.070 0.048 0.053 0.062
TLL 0.087 0.264 1/X 8.012 2.55 0.044 0.036 0.040 0.046
TM2&TM1 0.052 0.342 1/X 10.11 3.23 0.082 0.046 0.051 0.060
PV3 0.010 0.341 SB �2.728 2.04 0.060 0.072 0.079 0.092
PV2ab 0.109 0.416 SB 0.181 6.77 0.191 0.214 0.234 0.268
PV2v 0.047 0.471 SB �0.311 3.79 0.123 0.115 0.127 0.147
BT1a 0.157 0.401 X1/3 0.656 1.58E�03 0.061 0.119 0.131 0.152
BT1vb 0.030 0.501 NO 0.324 7.20E�03 0.088 0.090 0.099 0.115
CHVa 0.037 0.491 1/X 2.944 0.079 0.061 0.071 0.078 0.090
CHZ 0.098 0.434 X2 0.106 8.30E�04 0.068 0.035 0.039 0.045
BTa 0.180 0.419 1/X 3.791 0.40 0.064 0.094 0.104 0.121
BTvc

PP4 0.215 0.441 NO 0.327 2.49E�03 0.049 0.108 0.118 0.138
PP3 0.245 0.396 NO 0.318 9.94E�04 0.054 0.062 0.068 0.080
PP2 0.098 0.334 NO 0.221 3.37E�03 0.066 0.071 0.079 0.091
PP1 0.163 0.427 X2 0.090 6.21E�04 0.050 0.049 0.053 0.062
BF3a 0.058 0.370 1/X 8.573 9.40 0.078 0.079 0.086 0.101
BF2 0.159 0.330 1/X 4.451 0.81 0.095 0.127 0.140 0.163

a The outlying values were discarded but were included for goodness of fit calculation in the layer.
b The distribution is not best fit in order to guarantee the reasonable ranges of random fields.
c The sample size is less than 4 and cannot fit the distribution using Lilliefors Test in the layers.

Table 3
Spearman rank correlation between the transformed matrix saturated conductivity and matrix porosity

Hydrogeologic units Spearman rank correlation Sample size Hydrogeologic units Spearman rank correlation Sample size

CCR&CUCa 3 PV3 �0.20 17
CUL&CW �0.50 17 PV2aa 1
CMW 0.60 5 PV2v 0.06 16
CNW 0.61 10 BT1a 0.12 10
BT4 0.26 11 BT1v 0.37 35
TPYa 2 CHV �0.19 47
BT3 0.03 11 CHZ 0.47 99
TPP �0.47 11 BTa 0.22 9
BT2 0.42 21 BTva 1
TC �0.49 6 PP4 0.52 8
TR 0.39 47 PP3 0.45 51
TUL 0.40 37 PP2 0.68 35
TMN 0.48 9 PP1 0.24 28
TLL �0.46 52 BF3 �0.71 7
TM2&TM1 �0.39 22 BF2a 1

a Spearman rank correlation coefficient cannot be estimated due to the lack of data pairs between the two parameters.
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CHZ, deleting the outliers results in a smaller variance in
permeability, which causes the smaller ranges of the gener-
ated data than the measurements. While the mean sorption
coefficients of neptunium (237Np) are smaller than those
used by [35], they are not adjusted because no calibrated
sorption coefficients are available.



Table 4
Statistical parameters of sorption coefficient of neptunium for distribution approximation

Materials Limits of
variation

Transform Estimated distribution Critical values (T*)

A B Mean Variance T a = 0.10 a = 0.05 a = 0.01

Devitrified tuff 0.007 8.236 LN �1.06 1.67 0.0396 0.0527 0.0580 0.0675
Vitric tuff 0.018 4.072 LN �0.73 1.18 0.0588 0.0548 0.0603 0.0702
Zeolitic tuff 0.031 8.743 X1/2 1.43 0.293 0.0382 0.0495 0.0545 0.0635

Fig. 4. Histograms of measured and generated (a,b) log saturated matrix hydraulic conductivity, (c,d) matrix porosity in two hydrogeologic units, and
(e,f) sorption coefficient of neptunium (237Np).
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4. Simulation results and discussions

After conducting 200 Monte Carlo simulations using the
TOUGH2 modules of EOS9 and T2R3D, similar to [39],
convergence of the 200 simulations is investigated empiri-
cally by examining stabilization of the mean and variance
in the simulated variables (i.e., saturation, capillary pres-
sure, percolation flux, and concentration) at representative
locations and times. The examination shows that the 200
simulations are sufficient to yield meaningful sample statis-
tics for assessing prediction and uncertainty. Mean, vari-
ance, and 5th, 50th, and 95th percentiles in quantities of
interest (e.g., saturation, water flux, and concentration)
are estimated from Monte Carlo results. Since the pre-
dicted quantities may not follow normal distributions, the
5th and 95th percentiles (also known as uncertainty
bounds) are superior to 95% of confidence intervals calcu-
lated based on mean and variance to quantify uncertainty
of radionuclide transport in unsaturated flow. Therefore,
for all figures below, in addition to mean and variance used
to present the average estimates and associated predictive
uncertainty, 5th and 95th percentiles also are plotted to
assess uncertainty. The deterministic simulation results of
[35] are treated in this the present analysis as a baseline case
to compare stochastic simulations. Note, as shown in
Fig. 5b, that the means of the random parameters used



Fig. 5. Comparison of (a) measured and (b) simulated log matrix permeability. The model inputs of Wu et al. [35] are plotted in (b).

Fig. 6. Comparison of observed and 3-D model simulated matrix liquid
saturation for borehole SD-12.
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for the stochastic simulations differ from the model inputs
of [35].

4.1. Uncertainty assessment of unsaturated flow

Statistics of matrix liquid saturation, water potential,
and percolation flux are estimated based on the 200 Monte
Carlo simulations. After comparing statistics of the former
two variables with corresponding site measurements, the
spatial flow pattern of percolation flux and associated pre-
dictive uncertainty is assessed.

4.1.1. Comparisons with saturation and water potential

measurements
Fig. 6 compares the observed and 3-D simulated matrix

liquid saturation along borehole SD-12. Fig. 7 does the
same for water potential. In each figure, the mean and
50th-percentile predictions are close but not identical, sug-
gesting that simulated variables may not follow normal dis-
tributions. Nonstationary behavior of matrix liquid
saturation and water potential are observed in Figs. 6
and 7, which can be simulated with nonstationary stochas-
tic moment equations approaches of [11,29,37,40,41]. The
mean and 50th-percentile predictions deviate from the cor-
responding results of the deterministic case. This is not sur-
prising because, as discussed in Section 3.4, the mean
model parameters used for the stochastic analyses are dif-
ferent from the model inputs for the deterministic case.
The 5th and 95th percentiles (also known as uncertainty
bounds) of simulated matrix liquid saturation and water
potential bracket a significant number of measurements,
indicting the data variability can be partially explained by
parametric uncertainty in the matrix permeability and



Fig. 7. Comparison to observed and 3-D model simulated water poten-
tials for borehole SD-12.

128 M. Ye et al. / Advances in Water Resources 30 (2007) 118–134
porosity. In particular, certain measurements that cannot
be caught by deterministic simulation (e.g., matrix liquid
saturation at the bottom of TSw) are included in the uncer-
Fig. 8. (a) Mean, (b) variance, (c) 5th percentile, and (d) 95th perc
tainty bounds. This is particularly true for the comparison
of water potential shown in Fig. 7. Nevertheless, the results
of the deterministic case match the trend for measurements
to be better at the bottom of hydrogeologic units TSw and
CHn than at the mean and 50th percentile in the stochastic
predictions, suggesting that more calibration information
should be included in stochastic simulations. Unbracketed
measurements can be attributed to measurement error,
conceptual model incompleteness, and different scales
between model inputs and field and laboratory parameter
measurements. Simulated and measured matrix liquid sat-
urations also are compared along boreholes UZ-14 and
SD-7 (not shown here), where more measurements are
bracketed by the 5th and 95th percentiles [23].

4.1.2. Flow pattern and uncertainty assessment

Percolation flux through the UZ is considered one of the
most critical factors affecting performance in the proposed
repository drifts. The percolation flux, defined in the pres-
ent study as the total vertical liquid mass flux through both
fracture and matrix, is converted to millimeters per year
using a constant water density. Since the lateral boundaries
of the model domain are impermeable, the percolation flux
is driven by the surface infiltration (Fig. 2). Fig. 8 plots (a)
mean, (b) variance, (c) 5th percentile, and (d) 95th percen-
entile of simulated percolation fluxes at the repository horizon.



Fig. 9. (a) Mean, (b) variance, (c) 5th percentile, and (d) 95th percentile of simulated percolation fluxes at the water table.
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tile in the simulated percolation flux at the repository hori-
zon. Fig. 9 does the same at the water table. The mean per-
colation flux at the repository horizon (Fig. 8a) is similar to
the surface infiltration (Fig. 2), indicating a small lateral
movement of infiltrated water during the process of water
traveling from the surface to the repository level. However,
a comparison of Figs. 9a and 2 shows that the high-infiltra-
tion zone (denoted by dark ‘‘green’’ areas) moves eastward,
indicating a significant lateral movement of infiltrated
water.

Variance in percolation flux at the proposed repository
horizon (Fig. 8b) is small. The largest variance occurs in
the high-infiltration zone and at its eastern edge where
the eastward movement occurs. Consistent with the small
variance, the difference between the 5th and 95th percen-
tiles (Fig. 8c and d) of the percolation flux is small, suggest-
ing small predictive uncertainty in percolation flux caused
by uncertainty in permeability. However, as shown in
Fig. 9b, predictive uncertainty in percolation flux at the
water table is large. The largest uncertainty also occurs in
the high-infiltration zone and at its edge. The 5th and
95th percentiles (Fig. 9c and d) of percolation flux at the
water table differ significantly, and this difference explains
the variance distribution in Fig. 9b. For example, the two
zones of large variance in Fig. 9b are attributed to the
two zones (marked in blue) of large percolation flux
appearing at the middle and bottom of the simulation
domain in the 95th-percentile map but not the 5th-percen-
tile map. Although the variance in percolation flux is signif-
icantly larger at the water table than at the repository
horizon, Fig. 5b shows that uncertainty in permeability
near the water table is not significantly larger than near
the repository zone. The large variance of percolation flux
at the water table may be attributed to the accumulation of
predictive uncertainty from the domain surface to its bot-
tom, since infiltration rate is given as a deterministic condi-
tion at the domain surface.

4.2. Uncertainty assessment of radionuclide transport

Radionuclide transport uncertainty is assessed with two
tracers in the present study: conservative (nonadsorbing)
tracer, 99Tc, and reactive (adsorbing) tracer, 237Np. The
sorption coefficients associated with neptunium (237Np)
are generated in Section 3 for the three rock types including
devitrified, vitric, and zeolitc tuffs based on the measure-
ments given in [27]. The transient transport simulation is
conducted for 1,000,000 years. Initially, a constant concen-
tration source is released instantaneously from the fracture
continuum gridblocks representing the repository (Fig. 1).
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4.2.1. Assessment of travel-time uncertainty for

conservative and reactive tracers

One of the important factors in assessing performance
of the proposed high-level nuclear waste repository at
Yucca Mountain is radionuclide travel times from the
repository to the water table. Fig. 10a and b plots the frac-
tional breakthrough curves of cumulative mass arriving at
the water table for the conservative (99Tc) and reactive
(237Np) tracers, respectively. The effect of sorption is
apparent in that the conservative tracer (99Tc) travels about
two orders of magnitude faster than the reactive tracer
(237Np). For example, the mean travel times corresponding
to 50% mass fraction breakthrough are 3500 and 100,000
years for 99Tc and 237Np, respectively. For both tracers,
the mean and 50th-percentile simulated breakthrough
curves are close to the deterministic curve, especially for
the conservative tracer, which does not have the sorption
coefficient.

The 5th- and 95th-percentiles (uncertainty bounds)
breakthrough curves in Fig. 10 show that the travel time
of the reactive tracer (237Np) is more uncertain than the
travel time of the conservative tracer (99Tc), owing to the
uncertain sorption coefficient of 237Np. For example,
Fig. 10. Simulated breakthrough curves of cumulative mass arriving at
the water table for (a) the conservative tracer (99Tc) and (b) the reactive
tracer (237Np).
Fig. 10a shows that at 1,000,000 years almost all 99Tc flows
out of the UZ into groundwater, while Fig. 10b shows that
at 1,000,000 years 78% and 94% of the total mass of 237Np
flows into groundwater at the 5th- and 95th-percentile lev-
els, respectively. Table 5 lists the travel times of 10%, 25%,
50%, 75%, and 90% for mass fraction breakthrough
obtained from the mean, 5th-, and 95th-percentile break-
through curves. The ranges of travel time between the
5th and 95th percentiles are significantly larger for the reac-
tive tracer than for the conservative tracer. For example, it
takes the reactive tracer 2.0 · 104 years (95th percentile) to
2.75 · 105 years (5th percentile) to flow 50% of the mass
into the groundwater, whereas it only takes the conserva-
tive tracer 8.22 · 102 years (95th percentile) to 7.17 · 103

years (5th percentile). This indicates that the travel time
prediction is more uncertain for the reactive tracer than
for the conservative tracer. Fig. 10a shows that for the con-
servative tracer the range in uncertainty bounds first
increases and then decreases with time. Whereas, Fig. 10b
shows that for the reactive tracer the travel time uncer-
tainty is of the same magnitude during the entire simula-
tion period of 1,000,000 years. This also is due to the
effect of the random sorption coefficient, which retards
the travel of the reactive tracer and renders the correspond-
ing travel time prediction more uncertain. This information
can be used directly for risk analysis and monitoring net-
work design. For example, monitoring radionuclide trans-
port needs to last longer for the reactive tracer than for the
conservative tracer.

4.2.2. Assessment of uncertainty of spatial distribution of

radionuclide plumes

In addition to breakthrough curves, normalized cumu-
lative mass arrival at the water table is calculated to eval-
Table 5
Comparison of mean, 5th, and 95th percentiles of simulated travel time of
the conservative (99Tc) and reactive (237Np) tracers arriving at water table
at 10%, 25%, 50%, 75% and 90% mass fraction breakthrough (1.87E+1
reads as 1.87 · 101)

Breakthrough
curves

Mass
fraction
(%)

Travel time (years)

Conservative
tracer (99Tc)

Reactive
tracer (237Np)

5th percentile 10 1.87E+1 1.99E+4
25 1.08E+3 9.40E+4
50 7.17E+3 2.75E+5
75 2.32E+4 8.38E+5
90 1.17E+5 >1.00E+6

Mean 10 4.47 9.70
25 1.90E+1 1.72E+4
50 3.50E+3 1.02E+5
75 1.62E+4 4.26E+5
90 7.71E+4 >1.00E+6

95th percentile 10 3.86 5.34
25 1.03E+1 1.98E+3
50 8.22E+2 2.00E+4
75 9.00E+3 1.29E+5
90 4.70E+4 5.80E+5



Fig. 11. (a) Mean, (b) variance, (c) 5th percentile, and (d) 95th percentile of normalized cumulative mass arrival contours of the reactive tracer (237Np) at
the water table after 1,000,000 years.
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uate the spatial distribution of the tracers, which can help
estimate the potential locations of high-radionuclide con-
centration. The cumulative mass arrival is the cumulative
mass arriving at each cell of the water table over time, nor-
malized by the total mass of the released radionuclide from
the repository [35]. Fig. 11 plots (a) mean, (b) variance, (c)
5th percentile, and (d) 95th percentile of the normalized
cumulative mass arrival contours of the reactive tracer
(237Np) at 1,000,000 years. The high-concentration zone
(denoted in blue) in the mean mass arrival map
(Fig. 11a) is beneath the footprint of the repository hori-
zon marked by dots in Fig. 1. Spreading of the plume
results from molecular diffusion (mechanical dispersion is
inactivated in the numerical model) and lateral flow in
the model domain. Comparing the variance map of mass
arrival (Fig. 11b) with the map of percolation flux
(Fig. 9b) shows that the two maps have a similar pattern
and the high-variance zones in the two figures are at the
same locations, indicating that variance in radionuclide
transport is partly determined by variance in the flow. In
addition, comparing the 5th and 95th percentiles of cumu-
lative mass arrival (Fig. 11c and d) with the 5th and 95th
percentiles of percolation flux at the water table (Fig. 9c
and d) shows that high-mass arrival zones correspond to
the high-flux zones. This further suggests the correlation
between uncertainties in radionuclide transport and perco-
lation flux, implying that reducing percolation flux
uncertainty leads to reduction in radionuclide transport
uncertainty.

Fig. 12a–d plots the variance in cumulative mass arri-
val for the conservative (99Tc) and reactive (237Np) tracers
at 1000 and 1,000,000 years. As ‘‘snapshots’’ of the two
tracers at the two times, the four figures contain informa-
tion on radionuclide transport uncertainty that cannot be
seen from the breakthrough curves in Fig. 10. At 1000
years, the overall variance in mass arrival for the conser-
vative tracer (Fig. 12a) is larger than that for the reactive
tracer (Fig. 12c) and covers a larger area of breakthrough
(almost the entire area directly below the repository foot-
print), since the conservative tracer moves faster. For the
two tracers, the variance in the northern part of the water
table is larger than in the southern part, suggesting that
fast-flow paths may exist in the northern part. At
1,000,000 years, the variance maps of mass arrival for
the two tracers are almost identical, because about 90–
100% of both tracers has arrived at the water table at this
time. Overall, the spatial distribution of radionuclide var-
iance spreads larger with time, but the magnitude of var-
iance decreases since the tracers flow out of the UZ with
time.



Fig. 12. Variance of normalized cumulative mass arrival of (a) 99Tc at 1000 years, (b) 99Tc at 1,000,000 years, (c) 237Np at 1000 years, (d) 237Np at
1,000,000 years at the water table.
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5. Conclusions

This study presents our effort to assess uncertainty for
unsaturated flow and radionuclide transport at the Yucca
Mountain UZ. Matrix permeability, porosity, and sorption
coefficient are treated as random variables, and their distri-
butions are identified based on site measurements and
model calibration results. Seven transformations (including
three transformations from the Johnson system and four
classical re-expressions) are applied to the measurements,
and the Lilliefors test is used to select the best transforma-
tion at a certain significance level. The mean permeability is
further adjusted based on model calibration results for bet-
ter model predictions. Distributions of matrix porosity and
sorption coefficients are determined solely from site mea-
surements. The statistical correlation (measured by the
Spearman rank correlation coefficient) between the matrix
permeability and porosity is incorporated in the random
field generation. Random fields generated using the Latin
Hypercube Sampling (LHS) method agree well with the
measurements, and 200 realizations are sufficient to yield
representative distribution functions for the three random
parameters.

A 3-D mountain-scale UZ flow and transport model is
employed to conduct 200 Monte Carlo simulations using
the numerical codes EOS9 and T2R3D of the TOUGH2
family. Mean, variance, and 5th-, 50th-, and 95th-percen-
tile quantities of interest are evaluated. The mean and
50th percentile serve as the mean predictions, while their
associated predictive uncertainty is measured by variance
and the 5th and 95th percentiles (also known as uncertainty
bounds). The mean predictions of matrix liquid saturation
and water potential are in reasonable agreement with cor-
responding measurements, and the uncertainty bounds
include a large portion of the measurements, suggesting
that data variability can be partially explained by paramet-
ric uncertainty. Whereas mean percolation flux at the
repository horizon is similar to surface infiltration (a slight
eastward lateral movement is observed), mean percolation
flux at the water table is significantly different, with signif-
icant eastward movement observed in the high-infiltration
zone. While the largest uncertainties occur at the eastern
edges of the high-percolation flux at both the water table
and repository horizon, the uncertainty of percolation flux
predictions is significantly larger at the water table. This
suggests that site characterization at locations between
the repository horizon and the water table will reduce
uncertainty in the percolation flux prediction.

Radionuclide transport simulations are conducted for
the conservative (nonadsorbing) tracer, 99Tc, and the reac-
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tive (adsorbing) tracer, 237Np. In comparison with the con-
servative tracer, the arrival time of the reactive tracer from
the repository horizon to the water table is delayed by
chemical sorption. Because of the random sorption coeffi-
cient for the reactive tracer, travel-time uncertainty in the
reactive tracer is significantly larger than travel-time uncer-
tainty for the conservative tracer. Examining the snapshots
of variance maps for radionuclide concentration at 1000
and 1,000,000 years shows that the spatial distribution of
radionuclide variance spreads larger with time, but the
magnitude of the variance decreases since tracers flow con-
tinuously out of the UZ. The present study also shows that
uncertainty in radionuclide transport is related closely to
uncertainty in percolation flux, suggesting that reducing
the former entails reduction in the latter.
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