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[1] This paper presents analytical solutions for one-dimensional radial transient flow
through a horizontal, unsaturated fractured rock formation. In these solutions, unsaturated
flow through fractured media is described by a linearized Richards’ equation, while
fracture-matrix interaction is handled using the dual-continuum concept. Although
linearizing Richards’ equation requires a specially correlated relationship between relative
permeability and capillary pressure functions for both fractures and matrix, these specially
formed relative permeability and capillary pressure functions are still physically
meaningful. These analytical solutions can thus be used to describe the transient behavior
of unsaturated flow in fractured media under the described model conditions. They can
also be useful in verifying numerical simulation results, which as demonstrated in this
paper, are otherwise difficult to validate.
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1. Introduction

[2] In the past few decades, flow through unsaturated
fractured rock, a special case of multiphase flow, has received
a lot of attention because of subsurface environmental con-
siderations. Quantitative analysis of flow in unsaturated
fractured rock is often based on Richards’ equation. Because
of its nonlinear nature, Richards’ equation solutions for
general flow through fractured media may be obtained only
with a numerical approach. On the other hand, analytical
solutions, if available, provide more direct insight into the
physics of unsaturated flow phenomena than do numerical or
laboratory studies, and they are often needed to examine and
verify numerical model schemes or results.
[3] For unsaturated flow through homogeneous single-

porosity soils, many analytical solutions, both exact and
approximate, have been developed, based on different levels
of Richards’ equation linearization [e.g., Pullan, 1990;
Warrick and Parkin, 1995; Basha, 1999; Philips, 1969;
Zimmerman and Bodvarsson, 1995]. Despite the advances
made so far, however, precise analytical solutions to
Richards’ equation remain intractable under general flow
conditions, because of its known nonlinearity. In addition, it
becomes more difficult to obtain an analytical solution for
flow through unsaturated fractured porous media because of
the additional complexity introduced by fracture-matrix
interaction.
[4] Recently, we presented a set of new analytical sol-

utions for unsaturated flow within a single matrix block
with fracture-matrix interaction [Wu and Pan, 2003]. These
analytical solutions required a specially correlated relation-
ship between relative permeability and capillary pressure
functions. The present work extends our analytical solution
approach to the entire fracture-matrix flow system, using a
general dual-continuum approach. In this work, we show

that it is possible to obtain analytical solutions if the
specially correlated relative permeability and capillary pres-
sure functions hold true for both fracture and matrix
systems. In addition, we demonstrate that the new analytical
solutions are very useful for checking numerical model
results for unsaturated flow through fractured porous media.

2. Mathematical Formulation

[5] The problems to be solved are cases of unsaturated
radial flow in a horizontal and uniform fracture-matrix
formation corresponding to a fully penetrating injection
well, with either constant well pressure or constant injection
rate. The formation consists of identical cubic matrix blocks
separated by a uniform three-dimensional fracture network,
as in the Warren and Root model [Warren and Root, 1963].
In this work, the Warren and Root double-porosity model is
extended into a general dual-continuum concept to include
flow within matrix [e.g., Pruess and Narasimhan, 1985]. In
the extended dual-continuum model, an ‘‘effective’’ porous
continuum is adapted to approximate these two types of
media (fractures and rock matrix), and unsaturated flow in
fractured rocks is separately described using a doublet of
Richards’ equations for the two continua. In particular, flow
inside matrix blocks is handled fully transiently using a
local spherical coordinate, which is different from the quasi-
steady state method of the Warren and Root model. Fur-
thermore, we assume that the two sets of capillary pressure
and relative permeability functions for fracture and matrix,
respectively, are in the form:

krx Sx
� �

¼ Ckx Sx*
� �ax ð1Þ

and

Pcx Sx
� �

� Pgx � Pwx ¼ Cpx Sx*
� ��bx ð2ÞThis paper is not subject to U.S. copyright.
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where subscript x is an index for fracture (x = F) or matrix
(x = M); Pgx is constant air (or gas) pressure in fractures or
the matrix; Pwx is liquid water pressure in fractures or the
matrix, respectively; Ckx and Cpx (Pa) are coefficients, ax
and bx are exponential constants of relative permeability and
capillary pressure functions, respectively, for fracture or
matrix systems; and Sx* is the effective or normalized
fracture or matrix water saturation,

Sx* ¼ Sx � Sxr

1� Sxr
ð3Þ

with Sxr being the residual water saturation in fracture or
matrix systems.
If the following condition:

ax ¼ bx þ 1 ð4Þ

is satisfied for both fractures and matrix, Richards’ equation
can be readily linearized for flow through both fractures or
the matrix [Wu and Pan, 2003]. In this work, however, the
linearization of the continuity in capillary pressure on the
matrix surface requires the exponential constants of capillary
bx = 1, leading to ax = 2, for both fracture and matrix media.
The linearized governing equation for unsaturated radial flow
(ignoring the gravity effect and the compressibility of water
and rock) through the fractures can be derived by combining
a mass balance on a control volume with the dual-continuum
concept (see Appendix A), as follows:

@2SF

@r2
þ 1

r

@SF
@r

� 6fM

BfF

DM

DF

@SM
@x

����
x¼B=2

¼ 1

DF

@SF
@t

ð5Þ

where fM and fF are porosity for matrix or fractures (if not
described, the symbols for variables and parameters in
equation (5) or in the following equations are defined in the
appendixes.) The third term on the left-hand side of equation
(5) represents flow exchange terms on the local matrix
interface between fracture and matrix systems, describing the
continuity in mass flux.
[6] For flow inside the matrix, we use a 1-D spherical

flow approximation, because the 1-D spherical flow within
matrix blocks is the most commonly used in the literature
for estimating matrix flow. In addition, the different shape
and flow geometry of matrix blocks are found to have an
insignificant effect on the fracture-matrix interaction of
water and oil in fractured petroleum reservoirs [Wu and
Pruess, 1988]. One-dimensional spherical unsaturated flow
inside a cubic matrix block is then governed by [Wu and
Pan, 2003]

@2SM

@x2
þ 2

x

@SM
@x

¼ 1

DM

@SM
@t

: ð6Þ

The initial conditions within fractures and matrix systems
are uniform:

Sx
��
t¼0

¼ Sxr ð7Þ

Note here that for simplicity, initial saturations in fractures
and the matrix are set to their residual values.

[7] The first inner boundary condition is that the wellbore
be specified with constant saturation:

SF r ¼ rw; tð Þ ¼ S0 ð8Þ

and the second is that the injection rate q be:

� 2prwhkFCkFCpF

mw

@SF*

@r

����
r¼rw

¼ q ð9Þ

Far from the well, the saturation in the fractures remains at
its initial value:

SF r ¼ 1; tð Þ ¼ SFr ð10Þ

At the matrix surface, continuity in pressure or capillary
pressure is enforced:

PcF r; tð Þ ¼ PcM x ¼ B=2; t; rð Þ ð11Þ

while at the matrix block center, a zero-gradient condition is
maintained for symmetry:

@SM x ¼ 0; t; rð Þ
@x

¼ 0 ð12Þ

The linearized equation system above is similar to the
gradient flow model for single-phase flow through fractured
reservoirs [Streltsova, 1983].

3. Analytical Solutions

[8] In the following dimensionless variables, the dimen-
sionless distances and time are defined as

rD ¼ r

rw
; xD ¼ 2x

B
; and tD ¼ DFt

B=2ð Þ2
ð13Þ

The normalized (or scaled) water saturation is defined as the
same as the effective saturation of equation (3).
[9] In terms of these dimensionless variables, the solution

for the normalized matrix saturation in Laplace space is
given by (Appendix B):

�SMD ¼ A4

�SFDffiffiffiffiffiffi
xD

p
I1=2 sxDð Þ
I1=2 sð Þ ¼ A4

�SFD
xD

sinh sxDð Þ
sinh sð Þ ð14Þ

where s =
ffiffiffiffiffiffiffiffi
A3p

p
and I1/2 is the modified Bessel function of

the first kind.
[10] �SFD is the solution of the normalized fracture satu-

ration in Laplace space, defined differently for the two well
boundary conditions (Appendix B). The solution �SFD with
constant water saturation at the wellbore, in equation (8), is
given by

�SFD ¼ S0D

p

K0
ffiffiffiffiffi
x2

p
rD

� �
K0

ffiffiffiffiffi
x2

p� � ð15Þ

where x2 = A1A4[s coth s � 1] + A2p and A4 = CpM/CpF.
For the case of constant flow rate as defined in equation (9),
the solution �SFD is

�SFD ¼ qD

p

K0
ffiffiffiffiffi
x2

p
rD

� �
ffiffiffiffiffi
x2

p
K1

ffiffiffiffiffi
x2

p� � ð16Þ
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In the solutions above, K0 and K1 are the modified Bessel
functions of the second kind of zero and first order,
respectively.
[11] Equations (14), (15), and (16) constitute the solutions

in Laplace space for normalized fracture and matrix satu-
rations under two types of inner well boundary conditions,
which depend on four parameters (A1, A2, A3, and A4),
relating to matrix size and ratios of porosity, absolute
permeability, and relative permeability and capillary pres-
sure coefficients for fracture and matrix systems, in addition
to the dimensionless spatial and time variables. Analysis of
these dimensionless variables and their interrelations indi-
cates that the dimensionless solutions are characterized
mainly by the ratios of permeability, storage, and capillary
pressure coefficients of fractures and matrix, respectively.
This shows that the analytical solutions are a little more
complicated that the Warren and Root solution for single-
phase flow, which is characteristic of only two parameters,
l and w.

4. Application

[12] To apply these solutions, we use the Stehfest [1970]
algorithm to invert these solutions from Laplace space to
real space. First, the analytical solutions of equations (15)
and (16) were used to calculate type curves for transient
flow through a fully penetrating well into a uniform,
horizontal fractured formation, which is 10 m thick and
radially infinite. The fractured formation consists of uniform,
identical 1	 1	1m cubes of matrix blocks, surrounded by a
uniform, 3-D fracture network, identical to the Warren and
Root conceptual model. The basic fracture-matrix and fluid
parameters used for the example are listed in Table 1. A
numerical inversion algorithm [Stehfest, 1970] was used in
calculating the analytical solutions. During the numerical
Laplace inversion, Stehfest’s methodwas found to workwell,
and the inverted solutions were verified by comparison with
numerical simulations and asymptotic solutions through
many numerical experiments.
[13] The results are depicted as normalized liquid

saturation in fractures versus the dimensionless radial
distance from the well at different dimensionless times
in Figures 1 (a constant saturation at the wellbore) and 2
(a constant injection rate at well), respectively. These two
dimensionless type curves can be used for examining
numerical model results for the same fracture-matrix flow
system.
[14] The analytical solutions were then used to assess the

performance of the double-porosity (i.e., the Warren and

Root model) and MINC approaches in simulating fracture-
matrix interaction in unsaturated fracture rock. Note that
numerical implementation of the double-porosity model is
equivalent to representing the matrix by one single grid
block, whereas the MINC concept subdivides a matrix
block into many single or multidimensional or nested cells
[Pruess and Narasimhan, 1985]. Numerical simulations are
performed using a numerical reservoir simulator [Wu et al.,
1996]. Note that the governing equation solved in numerical
modeling is still the original Richards’ equation, instead of
the linearized forms of equations (5) and (6). The same
relative permeability and capillary functions as those of
equations (1) and (2) in the analytical solutions are input to
the numerical model.
[15] In the second application, the radial single-well

flow system is basically the same as that in the first
example. Rock and fluid properties are given in Table 1.
In the numerical model, however, the uniform, horizontal,
radially infinite formation is represented by a finite radial
system with an outer boundary radius of 1000 m, large
enough such that the wetting front does not reach the
boundary at the end of simulation. Two numerical grids,
a double-porosity mesh and a MINC, are generated for

Table 1. Parameters for the Type Curves of Fracture Liquid Saturation

Parameter Matrix Fracture Units

Matrix dimension B = 1 m
Porosity fM = 0.30 fF = 0.001
Permeability kM = 1.0 	 10�15 kF = 1.0 	 10�12 m2

Residual/initial saturation SMr = 0.2 SFr = 0.01 (Figures 1 and 2) or 0.2 (Figure 3)
Coefficient of relative permeability CkM = 1.0 CkF = 0.1 (Figures 1 and 2) or 1.0 (Figure 3)
Coefficient of capillary pressure CpM = 1.0 	 104 CpF = 1.0 	 103 Pa
Saturation at well S0 = 1.0 S0 = 1.0
Injection rate at well q = 1.57 	 10�4 q = 1.57 	 10�4 m3/s
Fluid viscosity mw = 1.0 	 10�3 mw = 1.0 	 10�3 Pa s
Fluid density r = 1000 r = 1000 kg/m3

Wellbore radius rw = 0.1 rw = 0.1 m

Figure 1. Type curves of normalized liquid saturation in
fractures versus dimensionless radial distance at different
dimensionless times, with SF = 1 at well.
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the radial symmetric formation. The double-porosity grid
represents the matrix system by one mesh locally [Warren
and Root, 1963], equivalent to one-block approximation of
the matrix continuum in the MINC approach [Wu and
Pruess, 1988], while the MINC grid subgrids each matrix
block with seven nested cells, for better numerical accuracy
in estimating fracture-matrix flow [Pruess and Narasimhan,
1985].
[16] Figure 3 shows the saturation distribution along

the fractures in the radial direction at time of 0.1 and
10 days, respectively, simulated by the analytical, double-
porosity, and MINC modeling results. Note that the
physical process simulated in this example is extremely
nonlinear and dynamic. The initial liquid saturations are
at residual values for both fracture and matrix systems. At
the beginning, the boundary saturation for fractures at the
wellbore jumps to one (thus flow rate at the well
becomes infinitely large). Once imbibed into the fractures,
the liquid will be competed by two forces in two
directions, one for continuous flow along fractures away
from the well, and the other sucked into dry matrix
blocks.
[17] The numerical model results, shown in Figure 3,

indicate that the MINC model does a much better job in
matching the analytical solutions than the double-porosity
model. This implies that in this case, the MINC concept
better captures these physical processes by considering
capillary gradients at the matrix surface and inside matrix
blocks. However, Figure 3 shows that even the MINC
simulations with seven cells cannot match the analytical
results very well, because the matrix surface is subject to
dynamic boundary conditions (i.e., varying fracture satura-
tion or capillary forces, which occurs at the upstream
boundary for initializing imbibition into the matrix). Using
a dual-continuum numerical approach [Wu and Pan, 2003],
extremely refined spatial discretization (30 MINC cells) is

required to model imbibing processes accurately under
dynamic upstream boundary conditions.
[18] Although the analytical solutions presented above

are obtained under very strict assumptions (i.e., specially
correlated relations between relative permeability and cap-
illary functions for both fractures and the matrix, as well as
negligible gravity effects), the relative permeability and
capillary functions of equations (1) and (2) are not only
physically meaningful, but also among the most widely
used relations [Honarpour et al., 1986]. Since the treatment
of fracture-matrix interaction in this analytical model is
based rigorously on the dual-continuum concept, the ana-
lytical solutions obtained can be useful in evaluating nu-
merical model results from dual-continuum models, as
shown above.

5. Concluding Remarks

[19] This paper shows that with specially formed cap-
illary pressure and relative permeability functions, it is
possible to obtain analytical solutions for transient unsat-
urated flow in fracture-matrix systems using the com-
monly used dual-continuum concept. With the analytical
solutions provided in Laplace space, analytical solutions
in real space can be readily obtained using numerical
inversion techniques. The analytical solution approach of
this work can be readily extended to other boundary
conditions or different flow geometries, such as linear
and multidimensional unsaturated flow through fractured
porous formations.
[20] The analytical solutions, though limited by the

assumptions for their applications, can be used to obtain
some insight into the physics of transient flow processes
related to fracture-matrix interactions. As demonstrated in
this work, these analytical solutions are very useful in
verifying numerical models and their results for describing
flow through unsaturated fractured rock, especially the flow

Figure 2. Type curves of normalized liquid saturation in
fractures versus dimensionless radial distance at different
dimensionless times, with constant injection dimensionless
rate qD = 0.25 at well.

Figure 3. Comparison of fracture liquid saturations
simulated using the analytical solution and numerical
results with the double-porosity and MINC modeling
approaches, with SF = 1 at well.

4 of 6

W02029 WU AND PAN: TECHNICAL NOTE W02029



through a fracture-matrix interface, which is otherwise very
difficult to evaluate.

Appendix A: Derivation of Governing Equations

[21] Let us consider the situation of unsaturated flow in a
horizontal and uniform fracture-matrix formation using the
Warren and Root conceptual model for fracture network and
matrix blocks. Furthermore, gravity effects are ignored and
incompressible liquid flows through a single well into a
radial infinite system. The governing equations of unsatu-
rated radial flow through such a fracture-matrix system can
be derived by combining a mass balance on the control
volume with the dual-continuum concept [Lai et al., 1983].
In the radial system, a control (bulk) volume at a radial
distance of r from the well is defined as

Vn ¼ p r þ drð Þ2� r2
� �

h 
 2prhdr ðA1Þ

where h is the thickness of formation.
[22] The interface area Ac between rock matrix blocks and

surrounding fractures within the control volume, when the
volume fraction of fractures can be ignored, Vn is written as

Ac ¼ 6B2 Vn=B3

� �
ðA2Þ

where B is the dimension of matrix cubes.
[23] Mass balance for the incompressible fluid for the

fracture system within the control volume requires that:

qrAr � qrAr þ
@

@r
qrArð Þdr

� �
þ qxAc½ �jx¼B=2¼

@ VnfFSFð Þ
@t

ðA3Þ

where x is the distance from a nested cross-sectional surface
within the matrix block (having an equal distance to the
matrix surface) to the center of the cube (i.e., a one-
dimensional spherical coordinate with its center within the
matrix block), and qr and qx are Darcy’s velocity along r and
x directions, respectively, calculated as

qr ¼ � kFkrF

mw

@PwF
@r

¼ kFkrF

mw

@PcF
@r

¼ � kFCkFCpF

mw 1� SFrð Þ
@SF
@r

ðA4Þ

and

qx ¼ � kMkrM

mw

@PwM
@x

¼ kMkrM

mw

@PcM
@x

¼ � kMCkMCpM

mw 1� SMrð Þ
@SM
@x

ðA5Þ

where mw is dynamic water viscosity. Substituting (A4) and
(A5), as well as, radial cross area Ar = 2prh into (A3), yields

kFCkFCpF

mw 1� SFrð Þ
@2SF

@r2
þ 1

r

@SF
@r

	 

� 6

B

kMCkMCpM

mw 1� SMrð Þ
@SM
@x

����
x¼B=2

¼ fF

@SF
@t

ðA6Þ

If we define Dx as soil water or moisture diffusivity [Wu and
Pan, 2003],

Dx ¼
kxkrx

fxmw

@Pwx
@Sw

¼ kxCkxCpx

fxmw 1� Sxr
� � ðA7Þ

with a dimension of m2/s. We thus derive the linearized flow
governing equation (5) for flow through the fractures.

Appendix B: Derivation of Analytical Solutions

[24] In terms of the dimensionless variables (equations (3)
and (13)), the two governing equations become:

@2SFD

@r2D
þ 1

rD

@SFD
@rD

� A1

@SMD

@xD

����
xD¼1

¼ A2

@SFD
@tD

ðB1Þ

and

@2SMD

@x2D
þ 2

xD

@SMD

@xD
¼ A3

@SMD

@tD
ðB2Þ

where

A1 ¼
12DMfMr

2
w

DFfFB
2

1� SMr

1� SFr
;A2 ¼

4r2w
B2

; and A3 ¼
DF

DM

ðB3Þ

The initial condition becomes

SxD
��
tD¼0

¼ 0 ðB4Þ

The boundary condition of constant saturation at the well
becomes

SFD rD ¼ 1; tDð Þ ¼ S0 � SFr

1� SFr
¼ S0D ðB5Þ

The constant rate condition turns into

�@SFD
@rD

����
rD¼1

¼ qmw
2phkFCkFCpF

¼ qD ðB6Þ

Far from the well,

SFD rD ¼ 1; tDð Þ ¼ 0 ðB7Þ

At the matrix surface, the continuity in pressure becomes

SMD xD ¼ 1; tD; rDð Þ ¼ CpM

CpF

SFD rD; tDð Þ ðB8Þ

Note that this linear relationship for the continuity in
pressure on the matrix surface assumes the exponential
constants of capillary bx = 1 for both fracture and matrix
media. At the matrix block center,

@SMD xD ¼ 0; tD; rDð Þ
@xD

¼ 0 ðB9Þ

Applying the Laplace transformation to equations (B1) and
(B2) and incorporating the initial condition (B4) yield

@2�SFD
@r2D

þ 1

rD

@�SFD
@rD

� A1

@�SMD

@xD

����
xD¼1

� pA2
�SFD ¼ 0 ðB10Þ

and

@2�SMD

@x2D
þ 2

xD

@�SMD

@xD
� pA3

�SMD ¼ 0 ðB11Þ
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where �SxD is the Laplace transformed normalized saturation,
and p is the Laplace variable. Then the solutions
of normalized matrix and fracture saturations, subject
to the Laplace transformed boundary conditions from
equations (B5)–(B9), are given by equations (14), (15)
and (16).
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