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Abstract

This paper presents a triple-continuum conceptual model for simulating flow and transport

processes in fractured rock. Field data collected from the unsaturated zone of Yucca Mountain, a

repository site of high-level nuclear waste, show a large number of small-scale fractures. The effect of

these small fractures has not been considered in previous modeling investigations within the context of

a continuum approach. A new triple-continuum model (consisting of matrix, small-fracture, and large-

fracture continua) has been developed to investigate the effect of these small fractures. This paper

derives the model formulation and discusses the basic triple-continuum behavior of flow and transport

processes under different conditions, using both analytical solutions and numerical approaches. The

simulation results from the site-scale model of the unsaturated zone of Yucca Mountain indicate that

these small fractures may have an important effect on radionuclide transport within the mountain.
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1. Introduction

The study of flow and transport processes in fractured rock has recently received

increased attention because of its importance to underground natural-resource recovery,

waste storage, and environmental remediation. Since the 1960s, significant progress has

been made towards the understanding and modeling of flow and transport processes in

fractured rock (Barenblatt et al., 1960; Warren and Root, 1963; Kazemi, 1969; Kazemi et
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al., 1992; Pruess and Narasimhan, 1985). Despite these advances, modeling the coupled

processes of multiphase fluid flow, heat transfer, and chemical migration in a fractured

porous medium remains a conceptual and mathematical challenge. The challenge arises

primarily from (1) the inherent heterogeneity and uncertainties associated with the

characterization of a fracture–matrix system for any field-scale problem, and (2) the

difficulties in conceptualizing, understanding, and describing flow and transport processes

in such a system.

Mathematical modeling using a continuum approach involves developing conceptual

models, incorporating the geometrical information of a given fracture–matrix system, and

setting up the general mass and energy conservation equations for overlapping fracture–

matrix domains. The majority of the computational effort is used to solve the governing

equations that couple fluid and heat flow with chemical migration either analytically or

numerically. The key issue for simulating flow and transport in fractured rock is how to

handle fracture–matrix interactions under different conditions involvingmultiple processes.

The commonly used mathematical methods for dealing with such interactions include: (1)

an explicit discrete-fracture and matrix model (e.g., Snow, 1965; Sudicky and McLaren,

1992), (2) the dual-continuum method [including double- and multi-porosity, dual-perme-

ability, or the more general ‘‘multiple interacting continua’’ (MINC) method (e.g., Bare-

nblatt et al., 1960; Warren and Root, 1963; Kazemi, 1969; Pruess and Narasimhan, 1985;

Wu and Pruess, 1988)], and (3) the effective-continuum method (ECM) (e.g., Wu, 2000).

The explicit discrete-fracture approach is, in principle, a more rigorous model than a

continuum one, and the application of this method may be computationally intensive.

Furthermore, it requires a detailed knowledge of fracture and matrix geometric properties

and their associated spatial distributions (which are rarely known at a given site). This

approach becomes more difficult and demanding when modeling multiphase flow and

thermal processes in a complicated fracture–matrix system, which requires detailed spatial

discretization of both fracture and matrix systems. For these reasons, this approach has up

to now found only limited field application in modeling multiphase, nonisothermal flow

and transport processes in fractured rocks.

The dual-continuum method, on the other hand, is conceptually appealing and compu-

tationally less demanding than the discrete-fracture approach. It is able to handle fracture–

matrix interactions more easily than the discrete-fracture model; thus it has commonly been

used for modeling fluid flow, heat transfer, and chemical transport through fractured

reservoirs. One type of dual-continuum method, the classical double-porosity model, was

developed in the early 1960s (Barenblatt et al., 1960;Warren and Root, 1963). In this model,

a flow domain is composed of matrix blocks with low permeability, embedded in a network

of interconnected fractures, with global flow and transport in the formation occurring only

through the fracture system conceptualized as an effective continuum. The model treats

matrix blocks as spatially distributed sinks or sources to the fracture system and fracture–

matrix interflow as a quasi-steady state (Warren and Root, 1963).

In an attempt to incorporate additional matrix–matrix interactions, the dual-permeabil-

ity model has been developed and implemented into a numerical scheme of nonisothermal

multiphase fluid and heat flow in fractured rock (Pruess, 1991). This type of dual-

continuum model considers global flow occurring not only between fractures but also

between matrix gridblocks. In this approach, the fractures and the matrix are each



Y.-S. Wu et al. / Journal of Contaminant Hydrology 73 (2004) 145–179 147
represented by separate gridblocks that are connected to each other. The same quasi-steady

state flow assumption as that in the double-porosity concept (Warren and Root, 1963) is

used to handle fracture–matrix interflow.

As a generalization of the dual-continuum model, the more rigorous MINC concept

(Pruess and Narasimhan, 1985) describes gradients of pressures, temperatures, and

concentrations between fractures and matrix by further subdividing individual matrix

blocks. This approach provides a better approximation for transient fracture–matrix

interactions than the quasi-steady state flow assumption used in the double-porosity or

dual-permeability model. Fluid and heat flow and transport between fracture and matrix

blocks can be modeled by means of one- or multi-dimensional strings of nested

gridblocks. However, it should be mentioned that the applicability of such dual-continuum

approaches is in general dependent upon (1) relatively uniform distribution of fracture

networks and (2) knowledge of fracture and matrix properties.

As an alternative method, the ECM represents fractures and rock matrix as a single

effective continuum. The ECM has long been used for modeling fracture–matrix flow

because of its simple data requirements and computational efficiency. This approach may

be applicable to modeling multiphase, nonisothermal flow and solute transport in fractured

porous media under near-thermodynamic-equilibrium conditions (Wu, 2000). When rapid

flow and transport processes occur in subsurface fractured reservoirs, however, thermo-

dynamic equilibrium conditions cannot (in general) hold.

Investigations concerning the feasibility of using the unsaturated zone (UZ) of Yucca

Mountain as a repository for high-level nuclear waste have generated considerable

research interest in understanding and modeling flow and transport processes in

unsaturated fractured rock. Since the 1980s, a number of numerical models have been

developed specifically for evaluating UZ hydrologic conditions at Yucca Mountain.

Studies before the 1990s primarily used one- and two-dimensional models to understand

basic flow and transport processes in fractured rock (Rulon et al., 1986; Pollock, 1986;

Tsang and Pruess, 1987). In the early 1990s, Wittwer et al. (1995) began development of

a three-dimensional (3-D) model using an ECM approach and incorporating many

geological and hydrological complexities. Ahlers et al. (1995) continued this work by

increasing the numerical and spatial resolution of the 3-D ECM UZ model. Their studies

considered processes such as gas pressures and moisture flow, temperature and heat flow

analyses, and rock-property evaluation through inverse modeling. Since then, more

comprehensive mountain-scale numerical models (e.g., Wu et al., 1998, 1999, 2002)

have been developed to study flow processes in the UZ of Yucca Mountain, using the

more rigorous dual-permeability concept. A comparative study of the different

approaches for handling fracture–matrix interactions was conducted as part of the effort

to investigate rapid movement of solute in fractured tuffs at Yucca Mountain (McLaren

et al., 2000).

Although many conceptual models for fracture–matrix interaction have been evaluated

for Yucca Mountain site characterization studies (Doughty, 1999), the most widely used

model has been the dual-permeability concept. It was chosen for use in site characteriza-

tion in part because it has proved to be capable of matching many types of field-observed

data (e.g., Wu et al., 1998, 1999). Another consideration is that net infiltration rates at the

site are estimated to be very low (on the order of millimeters/year) or close to saturated
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matrix hydraulic conductivity. In this case, global flow through the matrix can no longer be

ignored. However, results from recent field studies and tests, in particular fracture mapping

data (Liu et al., 2000) collected along the walls of the underground tunnels, reveal that

there exists a significantly large variety in fracture sizes, from centimeters to tens of

meters. Considerable numbers of small-scale fractures have not been considered in the

previous modeling studies. Although the majority of these small fractures may not

contribute much to global flow and transport through the UZ system, they may provide

additional connection areas for interflow between well-connected, large-scale fractures and

surrounding matrix blocks, which ultimately affects fracture–matrix interactions. In

addition, they may offer a buffer zone for interaction between well-connected large

fracture and the matrix, because of their high storage capacity compared to that of large

fractures. On the other hand, the currently used dual-permeability model is unable to

incorporate the effects of these small fractures.

The objectives of this study are (1) to propose a triple-continuum concept to study the

effect of small-scale fractures on flow and transport processes in fractured rock; (2) to

develop a methodology for determining model parameters of the proposed model; and (3)

to demonstrate application of the proposed model to site characterization of the Yucca

Mountain UZ. In particular, we investigate the triple-continuum behavior of flow and

transport processes in fractured rocks using both numerical modeling results and an

analytical solution (Liu et al., 2003). We discuss issues related to the determination of

small-fracture properties using observations from single-phase flow and transport tests. As

application examples, we demonstrate how to apply the proposed triple-continuum model

to field problems at Yucca Mountain in (1) estimating model-related fracture–matrix

parameters using field observed data and an inverse-modeling approach; and (2)

simulating 3-D site-scale flow and transport.
2. Triple-continuum concept and mathematical formulation

Following the pioneering work by Barenblatt et al. (1960) and Warren and Root (1963),

several triple-porosity models have been proposed in the literature (e.g., Closemann, 1975;

Wu and Ge, 1983; Abdassah and Ershaghis, 1986; Bai et al., 1993) for describing flow

through fractured rocks. Liu et al. (2003) has recently presented a new triple-porosity

model for flow in a fracture–matrix system that includes cavities within the rock matrix

(as an additional porous portion of the matrix) of the Yucca Mountain UZ formation. In

general, these developed models have been focused on handling the heterogeneity of the

rock matrix (i.e., subdividing the rock matrix into two or more subdomains with different

porous medium properties).

During the last decade, a considerable amount of fracture data has been mapped at the

YuccaMountain site. Most fracture data sets obtained in these data collection efforts exclude

small-scale fractures (with tracer lengths <0.5 m) (Liu et al., 2000). Actual observation of

fractures along the underground tunnel walls reveals that many ‘‘small’’ fractures exist in the

unsaturated tuffs of the site. Recently, more fracture mapping data have been collected from

a small-scale detailed line survey (DLS) (US Geological Survey, unpublished report). Fig. 1

presents a plot of measured fracture-trace lengths versus frequency distribution, using



Fig. 1. Frequency distribution for trace lengths of mapped fractures from the Tptpmn unit.
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statistics of 12,425 fractures, mapped from the Topopah Spring middle nonlithophysal unit

(Tptpmn), a host layer for the potential repository. Fig. 2a shows a distribution realization

for 2-D fracture networks of a vertical 20�20 m domain, with the randomly generated

fracture network on the figure based on statistical distributions of fracture-trace lengths

(>0.35 m), fracture density, and orientations (or dipping angles from the horizontal

direction). Fig. 2b displays the actual flow paths along the fractures from the top to the

bottom boundaries of the 2-D domain, created from a flow simulation by imposing different

pressure heads on the two boundaries.

Field-observed fracture data, as well as their statistical analyses (Figs. 1 and 2), indicate

a large number of small- to intermediate-scale fractures of trace length f1.0 m in the

Tptpmn unit (note that mapped fractures excluded an even greater number of smaller

fractures of less than 0.2 m.) A recent numerical study of unsaturated flow in a fracture

network (Liu et al., 2003a) including fractures shorter than 0.5 m shows that many small-

scale fractures that are well connected only locally to fractures along global-flow paths do

not directly contribute to global flow. These small-scale fractures significantly increase

contact areas between fractures and matrix systems, which may potentially impact overall

flow and transport processes.

To capture effects of small-scale fractures, we conceptualize the fracture–matrix system

as consisting of a single porous-medium rock matrix and two types of fractures: (1)

‘‘large’’ globally connected fractures and (2) ‘‘small’’ fractures that are locally connected

to the large fractures and the rock matrix. Fig. 3 illustrates the triple-continuum concept

compared to ECM, double-porosity, and dual-permeability concepts. The triple-continuum

method (Fig. 3d) extends the dual-permeability concept by adding one more connection

(via small fractures) between the large fractures and the matrix blocks. Note that fractures

not directly connected with large fractures (i.e., fractures that are isolated within the



Fig. 2. (a) Generated vertical fracture network based on statistical distributions of fracture-trace lengths, density,

and orientations of fracture data, observed at the Tptpmn unit. (b) Vertical fracture network: global flow paths

along large fractures.
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Fig. 3. Schematic of different conceptualizations for handling fracture–matrix interactions: (a) effective-

continuum model (ECM); (b) double-porosity model; (c) dual-permeability model; and (d) triple-continuum

model. (M=matrix; F=large fractures; f=small fractures).
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matrix) are not considered part of the small fracture continuum in this model. Instead,

these fractures are considered as part of the matrix continuum.

Fig. 4 illustrates the triple-continuum conceptualization for a fracture–matrix system in

which the small-fracture/matrix connections occur in only one dimension (shown

horizontally). A second set of small-fracture/matrix connections can also be added to

occur in two dimensions (i.e., horizontally and vertically, Fig. 5). In a similar manner, a

third set of fractures can be added to extend the system of small-fracture/matrix

interactions to occur in three dimensions. Note that the triple-continuum model is not

limited to the orthogonal idealization of the fracture systems illustrated in Figs. 4 and 5.

Irregular and stochastic distributions of small and large fractures can be handled using a

similar approach to the MINC methodology (Pruess, 1983), as long as the actual

distribution patterns are known.

In principle, the proposed triple-continuum model, like the dual-continuum approach,

uses an ‘‘effective’’ porous medium to approximate the two types of fractures and the rock

matrix, and considers the three continua to be spatially overlapped. Like other continuum

approaches, the triple-continuum model relies on the assumption that approximate

thermodynamic equilibrium exists (locally) within each of the three continua at all times

at a given location. Based on the local equilibrium assumption, we can define thermody-

namic variables, such as pressures, concentrations, and temperatures, for each continuum.



Fig. 4. Basic conceptualization for triple-continuum approximation of one-dimensional large-fracture, small-

fracture, and rock matrix systems.
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In the triple-continuum approach, processes of flow and transport in fractured rocks are

described separately, using a triplet of governing equations for the two fracture and matrix

continua. This conceptualization results in a set of partial differential equations for flow

and transport in each continuum, which are in the same form as that for a single porous

medium. Let us consider a two-phase (liquid and gas) nonisothermal system. The
Fig. 5. Basic conceptualization for triple-continuum approximation of two-dimensional large-fracture, small-

fracture, and rock matrix systems.
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corresponding transport equation of each component j in the two-phase system within

each of three continua can be written as follows:
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where subscript h is an index for fluid phase (h=L for liquid and g for gas), and j is an

index for components. (Other symbols and notations are defined in the table of

nomenclature [included at the end of the text]). Note that chemical reaction terms in

Eq. (1) can be more general than only retardation and first-order decay in the governing

equations above. In general, Eqs. (1) and (2) can be used to describe flow and transport

processes within each of the three continua. When applied, however, these equations are

further simplified for small fracture and matrix continua, and their coupling is treated using

physically based approaches, as discussed in Sections 3 (numerically) and 4 (analytically).
3. Numerical implementation

The numerical implementation of the triple-continuum model discussed above is based

on the framework of the TOUGH2 code (Pruess, 1991; Wu and Pruess, 2000). The

component mass- and energy-conservation equations (Eqs. (1) and (2), respectively) are

discretized in space using an integral finite-difference method. The time discretization is

carried out with a backward, first-order, finite-difference scheme. The discrete nonlinear

equations for water, air, tracer/solute/radionuclide, and heat at a gridblock n can be written

as follows:

Rj;kþ1
n ¼ Mj;kþ1

n ð1þ kkDtÞ �Mj;k
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X
m

ðAnmF
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� ðj ¼ 1; 2; 3 and 4Þ ð3Þ

where the superscript j is an equation or component index, and j=1, 2, 3, and 4 denote

water, air, tracer/solute/radionuclide and heat, respectively. The decay constants, kj, are
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zero unless j=3 for a decaying tracer/solute/radionuclide component. The summation in

Eq. (3) accounts for mass or energy inflow/outflow contributed within the continuum and/

or other continua.

Wu and Pruess (2000) provide detailed formulas for evaluating accumulation (Mn) and

flow (Fn,m) terms for Eq. (3), including how to calculate dispersive (conductive for heat)

and advective mass and heat fluxes, respectively. In addition, we extend the MINC

approach directly (Pruess, 1983) for handling flow and interactions between large fractures

and the matrix. However, this work introduces small fractures as an additional continuum.

To evaluate flow terms between small fractures and large fractures or between small

fractures and the matrix, we require additional geometric parameters such as the interface

areas and characteristic lengths for these connections. In the demonstration examples of

this study, small fractures are represented by one cell locally interacting with large fracture

and matrix systems (Fig. 3).

Table 1 summarizes the parameters of the equations needed to determine the

characteristic distances used in calculating flow between the three continua for the cases

of regular one-, two- and three-dimensional large fracture networks, each with uniform

distributions of small fractures. The quasi-steady-state flow assumption of Warren and

Root (1963) is used to derive the characteristic distances, listed in Table 1, when the matrix

is represented by only one gridblock. The flow distance between small fractures (f) and

large fractures (F) is taken to be half the characteristic length of the small fractures within a

matrix block (Figs. 4 and 5). Furthermore, the interface areas between the small fractures

and the matrix (M) are calculated using the geometric data of the small fractures. Interface

areas between large fractures and the matrix and between large fractures and small

fractures are treated using the geometry of the large fractures. This treatment has implicitly

defined the permeabilities of the two fractures in a continuum sense, such that bulk

connection areas are needed to calculate Darcy flow between the two fracture continua. In

summary, we extend the Warren and Root (1963) approach to evaluate interactions along

F–M and f–M connections.

The model formulation (Section 2) is applicable to both single-continuum and multi-

continuum conditions. When handling flow and transport through triple-continuum

fractured rock, one of the main challenges is to generate a mesh that represents both
Table 1

Characteristic distancesa for evaluating flow terms between two fracture and matrix systems

Large

fracture

networks

Dimensions

of matrix

blocks

Characteristic

dimension (m)

of large fractures

Characteristic

F–M

distances (m)

Characteristic

dimension (m)

of small fractures

Characteristic

F– f distances

(m)

Characteristic

f–M distances

(m)

1-D A lF=A lFM=lF /6 lf =a lFf =lx/2 lfM=lf /6

2-D A lF=(2AB)/(A+B) lFM=lF /8 lf =2ab/(a+b) lFf =(lx+ly)/2 lfM=lf /8

B

3-D A lF=3ABC/(A+B+C) lFM=lF /10 lf =3abc/(a+b+c) lFf =(lx+ly+lz)/2 lfM=lf /10

B

C

a Note in Table 1, A, B, and C are dimensions of matrix blocks along x, y, and z directions, respectively.

Dimensions a, b, and c are fracture-spacings of small fractures along x, y, and z directions, respectively. Subscript

F represents large-fracture; f, small-fracture, and M, matrix systems, respectively.
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types of fractures as well as the matrix continuum. This triple-continuum, fracture–matrix

mesh can be generated based on the MINC concept (Pruess, 1983), i.e., starting from a

primary or single-porous medium mesh that uses bulk volume of formation and layering

only. Then, we use geometric information of the corresponding two-type fractures within

one formation subdomain or one finite-difference gridblock of the primary mesh, and

fractures are lumped into the large fracture continuum and small fracture continuum,

respectively. The rest is regarded as the matrix continuum. The connection distances and

interface areas are calculated accordingly, using the relations listed in Table 1 and the

geometric data of the fractures. Once a proper mesh for a triple-continuum system is

generated, fracture and matrix blocks are specified to represent fracture or matrix continua,

separately.
4. Triple-continuum behavior of flow and transport processes under single-phase

flow conditions

In this section, we discuss flow and transport behavior through the triple-continuum

model under single-phase conditions (airflow in unsaturated fracture–matrix system or

water flow in saturated fractured rocks). Both analytical and numerical approaches are

used in this section. Note that this discussion builds on Warren and Root (1963) and Wu

and Ge (1983). Although the following analyses are for single-phase water flow

conditions, the methodology can be shown to be applicable to single-phase gas flow

when using the conventional linearization to the gas-flow governing equation and

dimensionless variables. Therefore, they may be applicable to the UZ of Yucca Mountain,

because the ambient water flow at the site, relative to gas flow or transport tests, is very

slow and can be ignored.

4.1. Analytical solution

To use an analytical approach, we further simplify Eqs. (1) and (2) to a case involving

slightly compressible fluid isothermal flow. We also assume that global flow through the

matrix system is insignificant. Furthermore, the quasi-steady-state flow assumption is used

for flow between a large-fracture continuum and the matrix (F–M), and between a small-

fracture continuum and the matrix (f–M). Given these assumptions, the flow in a triple-

continuum system can be described as a triple-porosity model.

For flow through large fractures:

�j � ðqvÞ � /MCM

BPM

Bt
� /fCf

BPf

Bt
¼ /FCFqi

BPF

Bt
ð4Þ

For interacting with small fractures:

/fCf

BPf

Bt
¼ aFf kf

l
ðPF � Pf Þ þ

afMkM
l

ðPM � Pf Þ ð5Þ
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For interacting with the matrix:

/MCM

BPM

Bt
¼ aFMkM

l
ðPF � PMÞ þ

afMkM
l

ðPf � PMÞ ð6Þ

where the shape factor for F–M or f–M is defined by Warren and Root (1963)

aFM ¼ afM ¼ a ð7Þ

For F–f interaction, the shape factor for small fractures is defined as

aFf ¼
AFf

lFf
ð8Þ

where AFf is the total large-fracture and small-fracture connection area per unit volume of

rock (m2/m3) and lFf is defined in Table 1 for 1-D, 2-D, and 3-D small fractures,

respectively.

The problem under consideration is one-dimensional radial flow into (or out of) a fully

penetrating well in a radially infinite, horizontal reservoir that contains uniform fracture

and matrix properties. The system is subject to uniform initial pressure and a constant

injection/pumping rate at the well. When wellbore storage and skin effects can be ignored,

an asymptotic solution for a dimensionless pressure can be derived in terms of

dimensionless variables (Liu et al., 2003):

PDðrD ¼ 1; tDÞ ¼
1

2
½lntD þ 0:80909þ Eið�A1tDÞ � Eið�B1tDÞ þ Eið�A2tDÞ

� Eið�B2tDÞ	 ð9Þ

where the function Ei is called the exponential integral. Variables A1, A2, B1, B2, and other

dimensionless variables used are defined in Table 2.

According to Warren and Root (1963), flow through a double-porosity medium can be

sufficiently characterized by two parameters, storage parameter x and interporosity

parameter k. The solution in Eq. (9) indicates that the flow in the triple-continuum

reservoir is characterized by five dimensionless parameters: 2 x’s and 3 k’s (Table 2). Note
that only two of the three x’s are independent. This may increase the difficulty in

determining a unique set of fracture–matrix properties, using a parameter estimation

approach based on inverse modeling. In an effort to resolve this non-uniqueness issue, the

next two sections present a methodology for using well-pressure and tracer tests. These

tests, when associated with field and laboratory studies, may provide a possible solution

for determining all the model parameters.

4.2. Examination of analytical solutions

In this section, we examine the analytical solution (Eq. (9)) and evaluate its accuracy

and applicability to describing transient flow in triple-continuum media, using the

numerical simulation results obtained with the TOUGH2 code (Pruess, 1991; Wu et al.,

1996).



Table 2

Dimensionless parameters and variables used in the analytical solutions of flow through a triple-continuum

reservoir

Parameter Definition

Dimensionless time tD=kFt/(lrw
2(/mCm+/fCf +/FCF))

Dimensionless radius rD=r/rw

Dimensionless pressure PD ¼ Pi � PFðr; tÞ
ql

2pkFh
F–M interporosity parameter kFM=aFMrw

2kM/kF
F– f interporosity parameter kFf =aFf rw

2kf /kF
f–M interporosity parameter kfM=afMrw

2kM/kf
F storativity xF=/FCF/(/mCm+/fCf +/FCF)

f storativity xf=/fCf/(/mCm+/fCf +/FCF)

M storativity xM=/MCM/(/mCm+/fCf +/FCF)

Variables based on parameters listed above

A1 ¼ A0 þ kFMþkFf
2xF

þ A0 þ kFMþkFf
2xF

� �2

� B0

xF

� �1=2

A2 ¼ A0 þ kFMþkFf
2xF

� A0 þ kFMþkFf
2xF

� �2

� B0

xF

� �1=2
B1=A0+(A0

2�B0)
1/2

B2=A0+(A0
2�B0)

1/2

A0 ¼ 1
2

kFM
xM

þ kFf
xf

þ 1
xM

þ 1
xf

� �
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The verification problem concerns typical transient flow towards a well that fully

penetrates a radially infinite, horizontal, and uniformly fractured reservoir. In the

numerical model, a radially finite reservoir (re=10,000 m) with 20 m thickness, as

illustrated by Fig. 6, is used and discretized into a one-dimensional (primary) grid.
Fig. 6. Schematic illustration of a fully penetrating injection well in a radial, uniform, and horizontal formation

used for well flow analyses and tracer tests.
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The distance re (10,000 m) is subdivided into 2100 intervals following a logarithmic

scale. A triple-continuum mesh is then generated from the primary grid, in which the

one-dimensional, horizontal large-fracture plate network is assumed to be a uniform

disk-shaped matrix block. Fracture and matrix parameters are given in Table 3. Note

that the values of these parameters are selected within the typical range of a triple-

continuum model (i.e., kF kf kM and /M/f/F). The properties of large fractures and

matrix correspond to those of the Prow Pass Tuff at Yucca Mountain (Wu et al.,

2000).

For this problem, many numerical tests and analyses have been performed to confirm

the accuracy of these numerical simulation results, and here the numerical solutions are

considered to be ‘‘exact’’ solutions (as explained below) for comparison. Fig. 7 presents a

comparison of numerical-modeling results (circles) with the approximate analytical

solution (Eq. (9), solid-line) using the input parameter values (Table 3). Excellent

agreement exists between the two solutions, except for very small differences at very

early times (tD<10). (Here a dimensionless time of tD=50 corresponds to 1 s). The

analytical solution, which is long-time asymptotic and similar to the Warren-Root solution,

may not be valid for tD<100. In addition, the analytical solution may also introduce some

errors at early times because it relies on the quasi-steady-state assumption for inter-
Table 3

Parameters used in the single-phase flow problem through the triple-continuum, fractured reservoir

Parameter Value Unit

Matrix porosity /M=0.263

Large-fracture porosity /F=0.001

Small-fracture porosity /f=0.01

Large-fracture spacing A=5 m

Small-fracture spacing a=1.6 m

F characteristic length lx=3.472 m

F–M/F– f areas per unit volume rock AFf=0.61 m2/m3

Reference water density qi=1000 kg/m3

Water phase viscosity l=1�10�3 Pa�s
Matrix permeability kM=1.572�10�16 m2

Large-fracture permeability kF=1.383�10�13 m2

Small-fracture permeability Kf=1.383�10�14 m2

Water production rate q=100 m3/day

Total compressibility of three media CF=CM=Cf=1.0�10�9 1/Pa

Well radius rw=0.1 m

Formation thickness h=20 m

F–M shape factor aFM=0.480 m�2

F–f shape factor aFf=0.351 m�2

f–M shape factor aFf=4.688 m�2

F–M interporosity parameter kFM=0.546�10�6

f–M interporosity parameter kfM=0.533�10�5

F–f interporosity parameter kFf=0.480�10�4

F storativity xF=0.0036

f storativity xf=0.0365

M storativity xM=0.9599



Fig. 7. Typical behavior curve of flow through a triple-continuum fracture medium, showing three-parallel semi-

log straight lines from effects of three continua.
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continuum flow (Kazemi, 1969), which is not satisfied during the early rapid transient

flow. Furthermore, the analytical solution ignores the effect of global matrix–matrix flow,

which is included in the numerical solution. Therefore, the numerical solution is

considered to be more accurate for early time behavior (Fig. 7).

Many additional modeling comparisons have been performed using different parameter

sets. In all cases, the analytical solution of Eq. (9) was found to be very accurate for

describing slightly compressible fluid flow through a triple-continuum system. Note that

the numerical model used in this study includes global connections for the matrix

continuum. Fig. 7 shows that ignoring matrix–matrix connections is a good approximation

under single-phase flow conditions with normal fractured medium properties. In addition,

we have examined the effect of matrix–matrix connections by comparing the Warren-Root

analytical solution with double-porosity and dual-permeability numerical model results.

All the comparisons indicate that matrix–matrix connections can be ignored for single-

phase flow.

4.3. Discussion and application of the analytical solutions

The curve in Fig. 7 exhibits three distinct, straight, parallel lines in semi-log space. This

is typical behavior for flow through the triple-continuum model and is similar to flow

through a triple-porosity model (Wu and Ge, 1983). The first straight line, occurring at a

very early time, represents pressure responses to flow in high-permeability large fractures

near the well. The second line (at intermediate times) reflects the effects on flow of fluid
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storage in secondary permeable, small fractures. In contrast, the third straight-line portion

(which corresponds to later-time flow behavior) is controlled by the high-storage, low-

permeability matrix. However, depending on the fracture and matrix properties, as well as

wellbore conditions (e.g., storage and skin effects), the first straight line may not develop

or may occur too soon to be measured in a well test, if the large-fracture porosity is very

small.

The analytical solution (Eq. (9)) and the basic pattern of flow in triple-continuum

media (Fig. 7) suggest that it is possible to estimate small-fracture properties using

traditional well-test techniques, if at least two semi-log straight lines develop in a

pressure drawdown or buildup curve. Taking advantage of a property of the exponential

integral, Ei function:

EiðxÞclnðxÞ þ 0:5775 ðx < 0:0025Þ ð10Þ

we can determine the four parameters, A1, A2, B1, and B2 (Table 2), subject to the

condition:

A1 > B1 > A2 > B2 ð11Þ

Fig. 8 defines several parameters: vertical distances (displacements) between the three

semi-log straight lines (dPFM, dPFf, dPfM) and two pressure drops (PFf* and PfM* ) at

transitional points between the semi-log straight lines. Applying Eqs. (10) and (11) to Eq.
Fig. 8. Schematic of pressure testing curves of flow through a triple-continuum fractured media, defining vertical

distances and transitional point pressures for well-test analyses.
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(9) and using analysis methods analogous to those previously used for a double-porosity

model (Earlougher, 1977), we derive the following expressions for estimating small-

fracture porosity:

xFcexpð�dPFM=mÞ ð12Þ

/FCF

/fCf þ /FCF

cexpð�dPFf=mÞ ð13Þ

/fCf

/fCf þ /MCM

cexpð�dPfM=mÞ ð14Þ

where m is the slope of the semi-log straight line (Fig. 7), defined as:

m ¼ ql
4pkFh

ð15Þ

Similarly, we have the following relations for calculating small-fracture permeability:

ln
A2

B0


 �
þ 0:2319cPFf*=m ð16Þ

and

�lnB2 þ 0:2319cPfM* =m ð17Þ

Using the parameters listed in Table 3, we have confirmed that Eqs. (12)–(17) give

good estimates for small-fracture properties. Eq. (15) can be used to estimate the

permeability of large fractures, as long as a late-time semi-log straight line develops from

a pressure drawdown or buildup curve from a well test.

Compared with small fractures, matrix and large-fracture properties are relatively easy

to determine in the field, using core samples of matrix rock and pneumatic or air-k data,

respectively. Eqs. (12)–(17) provide a methodology for estimating small-fracture param-

eters from well-pumping (or injection) testing data under known matrix and large-fracture

properties. Note that if only the second and third straight line develops, we can use Eqs.

(14) and (17) to estimate small-fracture properties.

4.4. Tracer transport behavior under single-phase flow conditions

In this section, we study the transport behavior of a conservative tracer under

single-phase conditions using a numerical simulator, the T2R3D code (Wu et al.,

1996). The fracture–matrix system under consideration is identical to the one-

dimensional radial-flow problem (Fig. 6) of Section 4.2. However, here we use both

the triple-continuum and dual-permeability methods described above for comparison

purposes. The transport problem is defined as a single-well tracer test with a pulse-
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tracer injection lasting 5 days. Throughout the numerical tracer test, the flow remains

at a steady-state condition with a volumetric well injection rate maintained at 100 m3/

day. The fracture and matrix properties and fluid parameters used are also given in

Table 3, with the exception that fracture properties in the dual-permeability model

correspond to those for large fractures. In addition, we specifically select two scenarios

to study the effect of fracture porosity in the two models. In the first scenario, fracture

porosity for the dual-permeability model (/f,2k=0.0011) is set to be equal to the

summation of the large-fracture and small-fractures porosities (/F=0.000264 and

/f=0.000836) of the triple-continuum model. In the second scenario, fracture porosity

(/f,2k=0.001) in the dual-permeability model is set equal to the large-fracture porosity

(/F=0.001) in the triple-continuum model. In both cases, we ignore mechanical

dispersion effects. The molecular diffusion coefficient for the tracer is 1.6�10�10

m2/s, and tortuosity for the three continua is 0.7.

Fig. 9a shows tracer breakthrough curves, ‘‘observed’’ at a location of 20 m away

from the well, for the first scenario. In this case, the triple-continuum model predicts a

much earlier breakthrough time than the dual-permeability model. This is because the

solute transport is dominated by advection for the test problem on the time scale

concerned. The flow along large fractures in the triple-continuum model is much faster

than that through the fractures in the dual-permeability model [/f,2k(=0.0011)

>/F(=0.000264)]. In addition, interflow between different continua in both models tends

to be very small under steady-state single-phase flow conditions. Consequently, small

fractures affect overall transport behavior through diffusion only, which is a much slower

process than advection.

For the second scenario (/f,2k=/F=0.001), the breakthrough curves from the two

models are almost identical (Fig. 9b). This is because the system is still dominated

by advection, and the global fracture flow rates are very similar in the two models.

In our simulations, we also reduced the well water injection rate by two orders of

magnitude and increased the molecular diffusion coefficient (these results are not

shown in figures). In those cases, the triple-continuum model gives a slightly later

breakthrough time than the dual-permeability model. This difference results from the

enhanced diffusion into the matrix (with the triple-continuum model) through the

small fractures.

The tracer breakthrough curves (Fig. 9a,b) show the sensitivity to the fracture

porosities in the triple-continuum model. This suggests that tracer tests may provide

additional information regarding small-fracture porosity. For example, the tracer

breakthrough curve can be used to distinguish contributions of large and small

fractures to the measured total fracture porosity. In practice, however, the determination

of the complete model parameters may be possible only when combining well pressure
Fig. 9. (a) Breakthrough curves of relative tracer concentration at 20 m from the well for the scenario of dual-

permeability model fracture porosity equal to combined porosity of large and small fractures in a triple-

continuum model. (b) Breakthrough curves of relative tracer concentration at 20 m from the well for the

scenario of a dual-permeability model fracture porosity equal to large-fracture porosity with a triple-continuum

model.
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and tracer tests with field (e.g., fracture mapping) and laboratory (e.g., matrix

properties) studies.
5. Model application: effects of small fractures on flow and transport in the UZ at

Yucca Mountain

In this section, we will apply the proposed triple-continuum model to studying flow

and transport processes in the UZ of Yucca Mountain. Special attention is given to the

potential effects of small fractures on UZ flow and transport. Here, we present two

application examples: (1) parameter estimation using field observation data and

inverse-modeling studies and (2) three-dimensional mountain-scale flow and transport

simulations.

5.1. Hydrogeologic setting

The UZ of Yucca Mountain, 500–700 m thick, overlies a relatively flat water table

in the vicinity of the potential repository area. The proposed repository would be

located in the highly fractured Topopah Spring welded unit, more than 200 m above

the water table. Yucca Mountain is a structurally complex system of Tertiary volcanic

rock, consisting of alternating layers of welded and nonwelded ash-flow and air-fall

tuffs. The primary geologic formations at Yucca Mountain (beginning from the land

surface) consist of the Tiva Canyon, Yucca Mountain, Pah Canyon, and Topopah

Spring tuffs of the Paintbrush Group. Underlying these are the Calico Hills Formation,

and the Prow Pass, Bullfrog, and Tram tuffs of the Crater Flat Group (Buesch et al.,

1995).

These geologic formations have been reorganized into several hydrogeologic units,

based primarily on their degree of welding (Montazer and Wilson, 1984). These are the

Tiva Canyon welded (TCw) hydrogeologic unit, the Paintbrush nonwelded (PTn) unit, the

Topopah Spring welded (TSw) unit, the Calico Hills nonwelded (CHn) unit, and the Crater

Flat undifferentiated (CFu) unit. Fig. 10 shows a plan view of the site-scale UZ model

grid, including the model domain, borehole locations, and the faults incorporated into the

Yucca Mountain model.

5.2. Parameter estimation

To model flow and transport in the UZ using the triple-continuum model, we need to

estimate the hydraulic properties for both types of fractures and rock matrix. In Section 4.3,

we developed an approach to estimate small-scale fracture properties, based on observa-

tions of single-phase flow (airflow in unsaturated or water flow in saturated fracture–matrix

systems). However, the small-scale fracture property data determined using this approach

are not currently available for different hydrogeological units. In this section, we present a

methodology to estimate small-scale fracture properties based on inverse modeling

(Banddurraga and Bodvarsson, 1999). Because of data limitations, a number of assump-

tions are made to demonstrate application of the proposed model.



Fig. 10. Plan view of the 3-D UZ model grid, showing the model domain, faults incorporated, and borehole

locations at Yucca Mountain.
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Analysis of fractures mapped from the Tptpmn unit (Figs. 1 and 2) and two other

adjacent units resulted in the following relations for the Tptpmn unit:

df

dF
¼ 3:13 ð18aÞ

SPf

SPF
¼ 0:32 ð18bÞ

Lf

SPf
¼ 2:17 ð18cÞ

where d, SP, and L refer to scanline fracture density (fractures/m), average fracture spacing

(m), and average trace length of fractures (m), respectively. As before, the subscripts F and

f refer to large-scale and small-scale fractures, respectively. Here we assume that large-

scale fractures are longer than 0.51 m, as reported in Liu et al. (2000). The value of this

‘‘critical trace length’’ was determined empirically at Yucca Mountain (Liu et al., 2000).

(To better distinguish between large-scale and small-scale fractures, more rigorous
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methods need to be developed in future studies.) We further assumed that the porosities of

the large-scale and small-scale fractures are proportional to their scanline densities (df and

dF). The total fracture porosity, as determined using available gas tracer data (Liu et al.,

2000), is considered to include both large and small fractures for the triple-continuum

model.

Because most of the geological units do not have mapped small-fracture data, we

assume that Eqs. (18a)–(18c) and the method discussed above can be used to estimate the

fracture porosities for both large-scale and small-scale fractures for the other units. Note

that the primary objective of this study is to evaluate the relative impact of small fractures

on the flow and transport processes in the Yucca Mountain UZ. Since values for total

fracture porosity, large-scale fracture spacing, and large-scale fracture density are now

available for all the geologic units (Liu et al., 2000), the corresponding small-scale fracture

properties can be easily determined. These property values are also needed for generating

triple-continuum numerical grids.

Unsaturated flow in fractures is commonly characterized by fingering flow at different

scales. This flow mechanism must be considered in order to accurately model flow and

transport in fractured rock. Recently, Liu et al. (1998) proposed an active fracture model

that incorporates fingering flow into the continuum approach. The active fracture model

was used in this study to describe flow and transport in fractures. Liu et al. (1998) divided

the fracture continuum into two parts, active and inactive, to account for the fingering flow

at the fracture-network scale. Flow and transport occurs only within the active fracture

continuum, while the inactive part is simply bypassed. The portion of active fracture

continuum relative to the whole fracture continuum ( fa) is dynamic and assumed to be a

power function of effective saturation (Se) within the fracture continuum (Liu et al., 1998):

fa ¼ Sc
e ð19Þ

where c is a constant (active fracture parameter). The active fracture model can be used for

both the large-scale fracture continuum and the small-scale fracture continuum. For

simplicity, we further assume that the two kinds of fracture continua have the same c
value.

As a result of fingering flow at different scales, the effective interface area between

fractures and the matrix is considerably smaller than the geometric interface area (Liu et al.,

1998). The ratio of the effective interface area to the geometric interface area is called the

interface area reduction factor (R). Interface-area reduction also exists for interfaces

between large-scale and small-scale fractures and between small-scale fractures and the

matrix. The R expression for the interface between large-scale fracture and the matrix is

given by Liu et al. (1998). It includes the effects stemming from the differences between

active fracture spacing and geometric fracture spacing as determined from fracture maps.

The pure reduction factor for interface area between large-scale fractures and the matrix,

without considering the effects of differences between fracture spacings, is (Liu et al., 1998)

R ¼ Se ð20Þ

where Se is the effective saturation in large-scale fractures. Because the interface area

between large-scale and small-scale fractures is proportional to the interface area between
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large-scale fractures and the matrix (Fig. 5), the R expression defined in Eq. (20) can be

used for the interface between the two kinds of fractures. (In this case, the effective

saturation for the large-scale fractures should be used for calculating R.) Following the same

logic used to derive Eq. (20) (Liu et al., 1998), this equation can also be used for the

interface between small-scale fractures and the matrix, as long as the effective saturation

applies to the small-scale fractures.

The determination of hydraulic properties for small-scale fractures (using inverse

modeling) involves matching 1-D simulation results to observed data collected from

various boreholes (Fig. 10). In this study, matrix saturation and water-potential data

collected from boreholes SD-12 and UZ-14 were used in the inversion. The properties

determined from the inverse modeling are permeability and van Genuchten (1980) a (a

measure of air entry value) for the small fractures in all the units. The other properties,

such as relative permeability, are assumed to be the same as those for the large-scale

fractures. During the inversion, properties for the matrix and large-scale fractures are set in

accordance with the calibrated values given in Ahlers and Liu (2000). Fig. 11 shows the

comparison between simulated and observed matrix saturation distributions for a vertical

column corresponding to borehole SD-12. As expected, the estimated permeability and a
values for the small fractures generally fall between the values for the large-scale fractures

and the matrix. For example, Table 4 shows the estimated small-scale-fracture properties

for the Tsw34 unit as an example, compared with those for the matrix and the large-scale

fractures. Estimated parameters are used in all the triple-continuum simulations described

in the following sections.
Fig. 11. Comparison between the matrix water-potential profile for the submodel corresponding to borehole SD-

12 (solid line, obtained from inverse modeling) and the measured data (black circles).



Table 4

Small fracture properties for Tsw34

Matrix Small fracture Large fracture

Permeability (m2) 4.07e�18 5.02e�16 1.70e�11

Van Genuchten a (Pa�1) 3.86e�6 3.16e�4 5.16e�4
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5.3. 3-D flow and transport simulations

The three-dimensional modeling studies described in this section are based on the

current 3-D site-scale UZ flow model (Wu et al., 2000). The aerial domain of the UZ

model encompasses approximately 40 km2 of the Yucca Mountain area (Fig. 10). The 3-D

UZ model grid, as shown in Fig. 10, has 1324 mesh columns consisting of both fracture

and matrix continua and 37 vertical computational grid layers, resulting in a total of

145,640 gridblocks and 492,098 connections for the triple-continuum grid.

Fracture–matrix interactions in the 3-D modeling are handled using the triple-

continuum methodology and are compared with results from the dual-permeability model.

When applied to this study, the two fracture–matrix conceptual models are further

modified by the active-fracture model of Liu et al. (1998), as discussed in Section 5.2.

For model boundary conditions, the top model boundary is specified as the ground surface

of the mountain; the bottom boundary lies at the water table level. Both top and bottom

boundaries are Dirichlet-type, while all of the lateral boundaries (Fig. 10) are no-flow

(laterally closed). In addition, net surface infiltration is applied to fracture blocks directly

below the top boundary as source terms using the present-day, steady-state mean

infiltration map, which is spatially varying and was previously estimated by the US

Geological Survey (USGS) scientists (Hevesi and Flint, 2000) for the site.

Properties for large fracture and matrix used for the triple-continuum model are the

same as those for the dual-permeability UZ flow model (Wu et al., 2000), and small-

fracture properties are estimated in Section 5.2. In addition, the present triple-continuum

model incorporates the permeability-barrier model to include the occurrence of perched

water, as observed in the UZ. The rock properties designated in the triple-continuum

model for the perched-water layers/zones are derived from the calibrated permeabilities for

these areas (Wu et al., 2000).

Simulation results for steady-state UZ flow using the triple-continuum model are

compared with (1) measured moisture data and (2) observed perched-water bodies. For

brevity, we show the model comparisons with observed data from boreholes SD-7, SD-9,

SD-12, and UZ-14 (Fig. 12). Fig. 12 shows that the modeled results from the triple-

continuum simulation are in good agreement with both the measured saturation and the

perched water elevations.

Figs. 13 and 14 show the percolation fluxes (fracture flux+matrix flux) at the repository

and water table levels, respectively, as simulated by the triple-continuum model. When

comparing these results with those obtained using a dual-permeability model (Wu et al.,

2000) under the same infiltration scenario and boundary conditions, we find that the total

flow patterns for the two models are similar. This may indicate that small fractures have an

insignificant impact on global steady-state UZ flow because they are not globally



Fig. 12. Comparison of the simulated and observed matrix liquid saturations and perched-water elevations for

boreholes SD-7, SD-9, SD-12, and UZ-14, using the triple-continuum model-simulation results with present-day,

mean infiltration rate (with the thin-dashed lines representing interfaces between hydrogeological units).
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connected. Note that large-fracture and matrix properties used in the triple-continuum

model are the same as those for fractures and matrix in the dual-permeability model. This

may also contribute to the similarity between the two model results. In general, it is

expected that small fractures have less significant impact on global steady state flow

patterns than on transient flow under both saturated and unsaturated flow conditions.

In addition to the flow simulations for the triple-continuum model, we present model

results for the transport of radionuclide tracers under a steady-state 3-D flow field.

Transport simulations are conducted for both conservative and reactive tracers, using a

decoupled version of the T2R3D code (Wu and Pruess, 2000). The 3-D steady-state

flow field, discussed above, is directly used as an input to the T2R3D code for transport

runs.

We consider two types of radionuclides: technetium (a conservative tracer) and

neptunium (a reactive tracer). The initial conditions for the tracer-transport simulations

correspond to the ambient moisture conditions achieved when the flow field reaches the

steady state. The two radionuclides are treated as nonvolatile and are transported through

the liquid phase only. Radioactive decay and mechanical dispersion effects are ignored. A



Fig. 13. Simulated percolation fluxes at the repository level under the present-day, mean infiltration rate using the

triple-continuum model.
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constant molecular diffusion coefficient of 3.2�10�11 (m2/s) is used for diffusion of the

conservative component, and a diffusion coefficient of 1.6�10�10 (m2/s) is used for the

reactive component. For the adsorbing tracer, several partitioning coefficient (Kd) values

are used (Table 5). All transport simulations were run to 1,000,000 years under conditions

of steady-state flow and uniform, initial distribution of source concentration at the

repository fracture blocks.

Tracer-transport behavior in the UZ is analyzed using a cumulative or fractional

breakthrough curve, as shown in Fig. 15 for the present-day mean infiltration scenario.

The fractional mass breakthrough in these figures is defined as the cumulative mass of the

tracer (radionuclide) arriving at the entire bottom model boundary over time, normalized

by the total initial mass of the tracer present at the repository. Fig. 15 compares simulation

results from the dual-permeability and triple-continuum models and shows a significant

difference between the simulated breakthrough curves. For example, a one-order-of-



Fig. 14. Simulated percolation fluxes at the water table under the present-day, mean infiltration rate using the

triple-continuum model.
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magnitude difference appears at the time of 20% mass breakthrough for the nonsorbing

radionuclide, Tc. Even for the sorbing radionuclide, Np, at 20% breakthrough times,

predicted by the triple-continuum model, are twice those shown for the dual-permeability

model.
Table 5

Kd values used for a reactive tracer transport in different hydrogeologic units (Wu et al., 2000)

Hydrogeologic unit Kd (cm
3/g)

Zeolitic matrix in CHn 4.0

Vitric matrix in CHn 1.0

Matrix in TSw 1.0

Fault matrix in CHn 1.0

Fractures and matrix in the rest of units 0.0



Fig. 15. Comparison between cumulative breakthrough curves at the water table, simulated for conservative and

reactive tracer transport from the repository with the dual-permeability and triple-continuum 3-D models,

respectively.
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The previous dual-permeability modeling studies of Wu et al. (2000) show that the

factors that have the most important impact on tracer-transport times are surface

infiltration rates, climate scenarios, and sorption effects. The transport results in Fig.

15 indicate that the conceptual model for fracture–matrix interactions is also a very

important factor and should be selected appropriately. Note that Fig. 15 shows much

longer transport times from the triple-continuum model compared to those from the dual-

permeability model. This behavior of predicted breakthrough times is entirely different

from transport in the single-phase, triple-continuum medium of Section 4.4, in which the

triple-continuum model predicted breakthrough times to be the same or less than those

from the dual-permeability model. This difference results primarily from the nature of

unsaturated flow in the present triple-continuum simulation. The simulation results show

that considerable flow still occurs locally between the large and small fractures and

between small fractures and the matrix, even under steady-state conditions. In contrast,

little interaction between fracture–matrix systems can occur under single-phase, steady-

state flow conditions. Secondly, the percolation fluxes with the 3-D model are much

slower than the 1-D radial flow at the well, mainly because of the low infiltration rates at

the site (several millimeters per years for the present-day climate). Therefore, diffusion

plays a much more important role in the 3-D UZ transport result. In summary, because the

triple-continuum model features a stronger interaction between the fractures and the

matrix by both advection and diffusion, it predicts much longer transport times at the

Yucca Mountain site.

The above discussion is consistent with the findings of Bodvarsson et al. (2001) and

Liu et al. (2003). Both of those studies indicate that matrix diffusion and other mechanisms
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related to solute transfer between the fractures and the matrix are the important factors

controlling overall solute transport behavior within the UZ. In their study, Liu et al. (2003)

would need to increase the fracture–matrix interface area in their dual-permeability model

to match the field observed breakthrough curve. This increase in area is equivalent to

accounting for the effect of small fractures, which show a significant impact on solute

transport (Fig. 15).
6. Discussion

In a fracture–matrix continuum containing both large-scale globally connected

fractures and small-scale locally connected fractures, the main role played by the small

fractures is to control fracture–matrix interflow and transport processes by enlarging

effective fracture–matrix interface areas and offering intermediate storage space. There-

fore, the small-fracture conceptual model takes into account that dynamic interaction

between small fractures and matrix may last hundreds and thousands of years at the

Yucca Mountain UZ. Under this conceptualization, small fractures act much faster in

response to changes in large fractures than the matrix, since small fractures have much

(orders of magnitude) larger permeability than the matrix. In general, the effect of small

fractures on flow and transport through fractured rock cannot be simply represented by a

dual-permeability model with an increase in fracture–matrix interface areas, which

would force an unphysical instantaneous equilibrium between small fractures and the

matrix. The example problems of transient well testing, tracer transport, and site-scale

radionuclide migration in Sections 4 and 5 indicate that the transient effects of small

fractures on flow and transport in these cases are significant and cannot in general be

ignored.

Favorable conditions for the triple-continuum model include a typical range of fracture

matrix parameters, i.e., kFkfkm and /m/f/F. Otherwise, if small-fracture permeability is

similar to matrix permeability or very few small fractures exist (i.e., the small-fracture

porosity is near zero), the triple-continuum model collapses to a dual-permeability model.

Under such conditions, the traditional dual-continuum model should be used instead. On

the other hand, if small fractures are extensive and well connected to larger fractures,

fracture–matrix equilibrium will be reached relatively quickly, and the fractured system

may behave as a single porosity.

Introducing the additional continuum in the triple-continuum model (from the dual-

continuum model) requires one more fracture–matrix property set for small fractures.

This additional property set makes the triple-continuum model more difficult to use than a

dual-continuum model (e.g., Warren and Root model). Furthermore, the complicated flow

and transport behavior, as shown in the example problems, indicates that there may be

more levels of non-uniqueness in explaining inverse-model results from the triple-

continuum model. In an effort to resolve the non-uniqueness issue in determining model

parameters, we derived several well-testing analysis equations for estimating small-

fracture properties using transient well-testing techniques. In addition, tracer transport

under single-phase flow conditions was found to provide an effective estimation of

fracture porosity. The methods with well-controlled flow and transport tests, combined
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with other field tests (e.g., using air-k tests for large fracture properties and laboratory

sample analysis for matrix properties) may provide a possible method for estimating a

complete set of fracture–matrix properties.
7. Summary and concluding remarks

We have developed a triple-continuum conceptual model for modeling flow and

transport through heterogeneous fractured rock. The model has been implemented

into both analytical and numerical approaches. Several theoretical studies were

performed with the triple-continuum conceptual fracture model, indicating that

transient single-phase flow through a triple-continuum formation can be characterized

by three parallel, straight lines on semi-log plots of pressure versus time at a testing

well.

The proposed triple-continuum model was used for field sensitivity studies of

flow and transport in UZ at Yucca Mountain. First, we applied the new conceptual

model to estimate model-related fracture–matrix parameters, using field observation

data and an inverse-modeling approach. Then, we incorporated the estimated

parameters into the triple-continuum model and performed 3-D site-scale flow and

transport simulations, using the current hydrogeological conceptual model of Yucca

Mountain.

The triple-continuum modeling results for UZ flow and transport at Yucca Mountain

indicate that small fractures may have a significant impact on radionuclide transport in the

Yucca Mountain UZ system. Even though the triple-continuum model predicts very

different local fracture–matrix interaction from the traditional dual-permeability concept,

resultant global, steady-state, unsaturated flow patterns are very similar from one modeling

approach to the other.

Nomenclature

a small-fracture spacing along large fracture or the x-direction (m)

A large-fracture spacing along large fracture or the x-direction (m)

A0, A1, A2 parameters for the analytical solution (Table 2)

AFf total combined area of large fracture and small fracture connections per unit

volume of rock (m2/m3)

Anm interface areas between two elements n and m (m2)

b small-fracture spacing along large-fracture or the y-direction (m)

B large-fracture spacing along large-fracture or the y-direction (m)

B0, B1, B2 parameters for the analytical solution (Table 2)

c small-fracture spacing along large fracture or the z-direction (m)

C large-fracture spacing along large fracture or the z-direction (m)

Cf total compressibility in small-fracture continuum (Pa�1)

CF total compressibility in large-fracture continuum (Pa�1)

CM total compressibility in matrix continuum (Pa�1)

df large-fracture density (fractures/m)

dF small-fracture density (fractures/m)
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dm molecular diffusion coefficient (m2/s) of a component in a fluid phase

Dh
j effective hydrodynamic dispersion tensor accounting for both molecular diffusion

and mechanical dispersion for component j in phase h (m2/s)

f denotes small fracture

F denotes large fracture

fa reduction factor of fracture–matrix interfaces

Fnm
(j),k+1 flow components of mass (j) (kg/s/m2) or energy (W/m2) flow along connection

nm of time level k+1

h thickness of formation (m)

hh specific enthalpy of phase h (J/kg)

hh
j specific enthalpy of component j in phase h (J/kg)

kF absolute permeability of large fracture continuum (m2)

kf absolute permeability of small fracture continuum (m2)

kM absolute permeability of matrix continuum (m2)

Kd
j distribution coefficient of component j between the liquid phase and rock solids

of fractures and matrix (m3/kg)

Kth rock thermal conductivity (W/m jC)
lf, lF characteristic length (m) of small and large fractures in the x-direction and y-

direction, respectively

lFf, lFM, lfM characteristic distance (m) between F–f, F–M, and f–M, respectively

(defined in Table 1)

Lf average trace length of small fractures (m)

lx, ly half-length (m) of small fractures, respectively (defined in Table 3 and illustrated

in Figs. 4 and 5)

m slope of semi-log straight lines of pressure versus time curves

M denotes matrix

Mn
j,k+1 accumulation terms for mass component (j) (kg/m3) or energy (J/m3) of

gridblock n at time level k +1

PD dimensionless pressure in fracture continuum

Pj pressure (Pa) in continuum j ( j=F, f, and M)

PFf* , PfM* measured pressures (Pa) at transitional points between large fracture to small

fracture and between small fracture to matrix, respectively

dPFM, dPFf, dPfM vertical pressure distances (displacements) (Pa) of three semi-log

straight lines, between first and third, first and second, and second and third

straight lines, respectively

qE source/sink or fracture–matrix interaction terms for energy (W/m3)

qj source/sink or fracture–matrix interaction of mass for component j (kg/s m3)

qn
j, k+1 source/sink or fracture–matrix exchange terms for component j at element n (kg/

s m3) of time level k+1

R fracture–matrix area reduction factor

Rn
j, k+1 residual term of mass balance of component (kg/m3) and energy (J/m3) balance at

element n of time level k+1

rw well radius (m)

Se effective liquid saturation

Sh fluid saturation of phase h
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SPf average spacing of small fractures (m)

SPF average spacing of large fractures (m)

t time (s)

Dt time step (s)

T temperature (jC)
tD dimensionless time (defined in Table 2)

Uh internal energy of phase h (J/kg)

Us internal energy of rock solids (J/kg)

Vn volume of element n (m3)

vh Darcy’s velocity of phase h (m/s)

Xh
j mass fraction of component j in phase h

Greek symbols

aFf shape factor (m�2) governing interflow between large fracture and small fracture

aFM shape factor (m�2) governing interflow between large fracture and matrix

afM shape factor (m�2) governing interflow between small fracture and matrix

/f effective porosity of a small fracture continuum

/F effective porosity of a large fracture continuum

/M effective porosity of a matrix continuum

c active fracture parameter

kFf F–M interporosity parameter (defined in Table 2)

kFM F–f interporosity parameter (defined in Table 2)

kfM f–M interporosity parameter (defined in Table 2)

kj radioactive decay constant of the chemical species j (s�1)

l viscosity of fluid (Pa s)

q density of fluid at in situ conditions (kg/m3)

qi density of fluid at reference or initial conditions (kg/m3)

qh density of phase h at in situ conditions (kg/m3)

qs density of rock grains (kg/m3)

xf f storativity ratio (defined in Table 2)

xF F storativity ratio (defined in Table 2)

xM M storativity ratio (defined in Table 2)

Subscripts

e effective

f small fracture

F large fracture

M matrix

s rock solid or surface ratio

th thermal

h index for fluid phase

Superscripts

E energy

n index for mass components
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