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Abstract

A physically based numerical approach is presented for modeling fracture–matrix interaction, which is a key issue for fractured

reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum

concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel

sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability

is used to represent the counterpart at the fracture–matrix interface, is the most common scheme by which to estimate flow mobility

for fracture–matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant

numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based

modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the

matrix, using continuity of capillary pressure at the fracture–matrix interface. The proposed approach has been implemented into

two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is

demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

Published by Elsevier Ltd.
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1. Introduction

Since the 1960s, significant progress has been made in

numerical modeling of flow and transport processes in

fractured rock. Research efforts, driven by the increasing

need to develop petroleum and geothermal reservoirs,
other natural underground resources, and to resolve

subsurface contamination problems, have developed

many numerical modeling approaches and techniques

[2,9,14,20].

Mathematical modeling approaches in general rely

on continuum approaches and involve developing con-
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ceptual models, incorporating the geometrical informa-

tion of a given fracture–matrix system, setting up mass

and energy conservation equations for fracture–matrix

domains, and then solving discrete nonlinear algebraic

equations. Most computational effort is consumed in

solving the governing equations that couple multiphase
fluid flow with other physical processes either analyti-

cally or numerically. The key issue for simulating flow

in fractured rock, however, is how to handle fracture–

matrix interaction under different conditions (involving

multiple phase flow). This is because the fracture–matrix

interaction distinguishes the flow through fractured por-

ous media from the flow through heterogeneous single-

porosity porous media. Note that many literature studies
deal only with pure fracture media without fracture–

matrix interaction by ignoring the effects of low-perme-

ability matrix rocks. In those cases, the fractures should
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be treated as the classical single-continuum medium,

which is not dealt with in this work.

To model fracture–matrix interaction, modelers have

developed and applied many different conceptual mod-

els and modeling approaches as summarized in [3].

Commonly used mathematical methods include: (1) an
explicit discrete-fracture and matrix model (e.g.

[17,18]), (2) the dual-continuum method, including dou-

ble- and multiporosity, dual-permeability, or the more

general ‘‘multiple interacting continua’’ (MINC)

method (e.g. [2,9,14,20,28]), and (3) the effective-contin-

uum method (ECM) (e.g. [23]).

The explicit discrete-fracture approach is, in princi-

ple, a rigorous model. However, the actual application
of this method is currently limited because of the com-

putational intensity involved as well as the lack of de-

tailed knowledge of fracture and matrix geometric

properties and their associated spatial distributions at

a given site. On the other hand, the dual-continuum

method is conceptually simpler and computationally

much less demanding than the discrete-fracture ap-

proach, and is able to handle fracture–matrix interac-
tion more easily than the discrete-fracture model. For

these reasons, the dual-continuum approach has been

used as the main approach for modeling fluid flow, heat

transfer, and chemical transport through fractured res-

ervoirs (e.g. [26]).

Dual-continuum approaches, as discussed in this

work, include the classical double-porosity model

[2,20], the dual-permeability concept, and the more rig-
orous dual-continuum generalization of the MINC [14]

for modeling flow in fractured porous media. In the

double-porosity model, a flow domain is composed of

matrix blocks with low permeability, embedded in a net-

work of interconnected fractures. Global flow and trans-

port in the formation occur only through the fracture

system, conceptualized as an effective continuum. This

model treats matrix blocks as spatially distributed sinks
or sources to the fracture system without accounting for

global matrix–matrix flow. In comparison, the MINC

concept [14] is able to describe gradients of pressures,

temperatures, or concentrations near matrix surface

and inside the matrix –– by further subdividing individ-

ual matrix blocks with one- or multidimensional strings

of nested meshes. Therefore, the MINC model in gen-

eral provides a better numerical approximation for
transient fracture–matrix interactions than the double-

porosity model.

Because of its computational efficiency and its ability

to match many types of laboratory- or field-observed

data simultaneously (e.g. [8,26]), the dual-continuum

model, such as double-porosity and dual-permeability,

has perhaps been the most widely used method in petro-

leum and geothermal engineering and groundwater
hydrogeology, and it has also been implemented in

many commercially available reservoir simulators.
In numerical modeling of fracture–matrix flow, one

of the critical issues is how to estimate flow mobility

at the fracture–matrix interface. In conventional simula-

tion practice, especially in petroleum reservoir simula-

tion, the fully upstream weighting scheme (or simply

upstream weighting or upwinding) is routinely used (e.g.
[1]). As a result, the fracture relative permeability is

commonly selected in estimating such mobility when lo-

cal flow is towards the matrix. However, this scheme is

physically incorrect, because of the inherent anisotropy

of the fracture–matrix medium at this scale. The fracture

relative permeability functions are properties for flow

along fractures, determined independently from matrix

flow, for example, by laboratory studies (e.g. [12]). In
general, fracture–matrix flow (or interaction) occurs per-

pendicular to fracture planes, which is controlled mainly

by matrix flow properties. Therefore, using fracture rel-

ative permeability in this case is physically incorrect and

may lead to unphysical solutions or significant numeri-

cal errors.

The objective of this study is to develop a physically

based upstream weighting scheme for determining rela-
tive permeability functions or mobility terms that can

be generally applicable to calculating multiphase flow

between fractures and the rock matrix using a dual-con-

tinuum concept. Specifically, the proposed mobility-

weighting approach has been implemented into two

multiphase reservoir simulators to demonstrate its appli-

cation. In addition, we attempt to verify the proposed

weighting scheme by using two analytical solutions
and published laboratory results. The new method is

shown to be accurate, numerically efficient, and easy

to implement in existing dual- or multiple-continuum

models in reservoir simulators.

It should be mentioned that the new mobility-weight-

ing scheme for fracture–matrix flow is proposed for

resolving the problem with the exiting simulation tech-

niques in modeling multiphase flow in fractured reser-
voirs, not for completely replacing them. Therefore,

mathematical models and numerical formulation in Sec-

tions 2 and 3, even though they are not new, are pre-

sented for demonstration of how to implement the

new scheme to existing numerical formulations as well

as for completeness of the discussion.
2. Mathematical formulation

In the dual-continuum approach, multiphase flow

processes in fractured rock are described separately,

using a doublet of governing equations for the two con-

tinua: fracture and matrix. This conceptualization re-

sults in a set of partial differential equations for flow

in either continuum, which are in the same form as that
for a single porous medium. In this work, the multiphase

flow system, assumed in an isothermal, fractured porous
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formation, consists of three phases: gas (air), water, and

NAPL (non-aqueous phase liquid or oil), in which two-

phase flow or the Richards� equation [16] is considered
as a special case. Although each of the three phases con-

tains a number of components, they are treated here as a

single ‘‘pseudo-component’’ with averaged properties of
the fluids. In addition, the three fluid components (gas,

water, and NAPL) are assumed to be present only in

their associated phases. Each phase flows in response

to its pressure gradients, gravitational, and capillary

forces, according to the multiphase extension of Darcy�s
law.

In an isothermal system containing three mass com-

ponents, three mass balance equations are needed to de-
scribe flow and transport in the fracture and matrix

blocks. For flow of phase b (b = g for gas, b = w for

water, and b = o or n for NAPL),

o

ot
ð/SbqbÞ ¼ �r � ðqbvbÞ þ qb; ð2:1Þ

where the Darcy velocity of phase b is defined by

vb ¼ � kkrb
lb

ðrP b � qbgrDÞ: ð2:2Þ

In Eqs. (2.1) and (2.2), qb is the density of phase b under
reservoir conditions; / is the effective porosity of the

medium; lb is the viscosity of phase b; Sb is the satura-

tion of phase b; Pb is the pressure of phase b; qb is the
sink/source term of phase (component) b per unit vol-
ume of formation; g is gravitational acceleration; k is

the absolute/intrinsic permeability of the formation;

krb is relative permeability to phase b; and D is depth

from a datum.

The governing equation of mass balance for three-

phase fluids, Eq. (2.1), needs to be supplemented with

constitutive equations, which express all the secondary
variables and parameters as functions of a set of primary

variables of interest. In particular, the relationships in-

clude relative permeability and capillary pressure func-

tions as well as other PVT data. In addition, the initial

and boundary conditions of the system are also needed

to complete the description of multiphase flow through

fractured or porous media.
3. Numerical formulation

3.1. Discrete equations

The multiphase flow equations, as discussed in Sec-

tion 2, have been implemented into a general-purpose

two-phase code TOUGH2 [13] and a three-phase reser-
voir simulator MSFLOW [24]. As implemented numer-

ically, Eq. (2.1) is discretized in space using an integral

finite-difference or control-volume scheme for a porous
and/or fractured medium. The time discretization is car-

ried out with a backward, first-order, finite-difference

scheme. The discrete nonlinear equations for water,

NAPL, and gas flow at node i are written as follows:

fð/SbqbÞ
nþ1
i � ð/SbqbÞ

n
i g

V i

Dt

¼
X
j2gi

F nþ1
b;ij þ Qnþ1

bi ðfor b ¼ g; w and oÞ; ð3:1Þ

where superscript n denotes the previous time level;

n + 1 is the current time level; Vi is the volume of ele-

ment i (porous or fractured block); Dt is time step size;
gi contains the set of neighboring elements (j) (porous
or fractured) to which element i is directly connected;

Fb,ij is the mass flow term for phase b between elements
i and j; and Qbi is the mass sink/source term at element i,

of phase b.
The ‘‘flow’’ term (Fb,ij) in Eq. (3.1) for single-phase,

Richards�, or multiphase flow is described by a discrete
version of Darcy�s law. This is the mass flux of fluid
phase b along the connection is given by

F b;ij ¼ kb;ijþ1=2cijbwbj � wbic; ð3:2Þ

where kb,ij+1/2 is the mobility term to phase b, defined
as

kb;ijþ1=2 ¼
qbkrb
lb

� �
ijþ1=2

ð3:3Þ

and subscript ij + 1/2 denotes a proper averaging or

weighting of properties at the interface between two ele-

ments i and j, discussed in the sections below, and krb is

the relative permeability to phase b. In Eq. (3.2), cij is
transmissivity and is defined differently for finite-differ-

ence or finite-element discretization. If the integral fi-
nite-difference scheme [13,25] is used, the transmissivity

is calculated as

cij ¼
Aijkijþ1=2
di þ dj

; ð3:4Þ

where Aij is the common interface area between con-

nected blocks or nodes i and j; di is the distance from
the center of block i to the interface between blocks i

and j; and kij+1/2 is an averaged (such as harmonic

weighted) absolute permeability along the connection

between elements i and j.

The flow potential term in Eq. (3.2) is defined as

wbi ¼ P bi � qb;ijþ1=2gDi; ð3:5Þ

where Di is the depth to the center of block i from a ref-

erence datum.

Discrete equation (3.1) has the same form regardless

of the dimensionality of the model domain, i.e., it ap-

plies to one-, two-, or three-dimensional analyses of flow

through fractured or porous media. In our numerical

model, Eq. (3.1) is written in a residual form and is
solved using Newton/Raphson iteration.
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3.2. Handling fractured media

The technique used in this work for handling multi-

phase flow through fractured rock follows the dual-con-

tinuum methodology [14,20]. This method treats

fracture and matrix flow and interactions using a multi-
continuum numerical approach, including the double-

or multiporosity method, the dual-permeability method,

and the more general MINC method [14,15]. It can be

shown that the same continuum concept is also applica-

ble to multiphase flow though a discrete-fracture

network.

The multiphase flow formulation, Eqs. (2.1) and

(3.1), is applicable to both single-continuum and multi-
continuum media. Using the dual-continuum concept,

Eqs. (2.1) and (3.1) can be used to describe multiphase

flow both in fractures and inside matrix blocks, as well

as fracture–matrix interaction. However, special atten-

tion needs to be paid to treating fracture–matrix flow.

The flow between fractures and the matrix is still evalu-

ated using Eq. (3.2); however, the transmissivity for the

fracture–matrix flow is given by

cij ¼
AFMkM
lFM

; ð3:6Þ

where AFM is the total interfacial area between fractures
and the matrix of elements i and j (one of them is a frac-

ture and the other a matrix block); kM is the matrix

absolute permeability along the fracture–matrix connec-

tion; and lFM is a characteristic distance for flow cross-

ing fracture–matrix interfaces, which can be determined

for idealized one-, two- and three-dimensional rectangu-

lar matrix blocks when using the double-porosity model

[20].

3.3. Mobility-weighting scheme

The appropriate spatial weighting scheme for averag-
ing flow properties, such as the mobility of Eq. (3.3), in a

heterogeneous formation has been much debated in res-

ervoir simulation and groundwater-modeling literature

[7,11]. Single-point or fully upstream weighting has been

the exclusive approach for averaging mobility or relative

permeability in calculating flow term, using a discrete

Darcy�s law for multiphase flow in heterogeneous petro-
leum reservoirs [1]. The reasons behind the early appli-
cation of the conventional upstream weighting scheme

for relative permeability were based on several physical

arguments, such as the need for upstream weighting to

initialize imbibition into completely dry rock. In addi-

tion, the upstream weighting approach was found to

be necessary to avoid incorrect solutions in immiscible

displacement (hyperbolic) problems [1].

Recently, several theoretical studies [5,6] have shown
that the upstream weighting scheme, if used with the

control-volume discretization of the Richards� equation,
will satisfy monotonicity conditions regardless of time

step or mesh size. It will guarantee that converged

numerical solutions are physically correct, while other

weighting schemes, such as central weighting, may con-

verge to an incorrect, unphysical solution [5]. However,

determining flow along fracture–matrix connections
(i.e., flow across fracture–matrix interfaces in the direc-

tion perpendicular to fracture planes) is different from

fracture–fracture flow and the conventional upstream

weighting scheme may no longer be applicable. This is

because fracture relative permeability functions are frac-

ture flow properties describing flow along fractures,

determined independently from matrix flow. Con-

versely, fracture–matrix flow or interaction normally oc-
curs along the directions perpendicular to fractures and

is largely controlled by matrix properties or by flow

resistance within the matrix block. The physical incon-

sistency in selecting fracture relative permeability for

calculating fracture–matrix flow may lead to unphysical

solutions or significant numerical errors.

To overcome these limitations, this paper presents a

modified upstream weighting scheme to select appropri-
ate mobility for fracture–matrix interaction. This new

scheme is based on the principle that the capillary pres-

sure is continuous at the fracture–matrix interface, and

the assumption that there is instantaneous local equilib-

rium in pressure for each phase on the matrix surface be-

tween fracture and matrix systems. This should hold

true for most subsurface fractured reservoirs, because

fracture aperture is normally very small and fracture lat-
eral boundaries are defined by matrix surfaces. Any dy-

namic changes in fractures, such as capillary pressures,

could be instantaneously equilibrated locally with that

at contacted matrix surfaces. As a result, the matrix rel-

ative permeability at the matrix surface can be readily

determined as a function of fracture capillary pressure,

or the matrix saturation corresponding to that fracture

capillary pressure. Therefore, the new scheme, when
the upstream direction for fracture–matrix flow is at

the fractures, uses the matrix relative permeability func-

tion (instead of the fracture relative permeability

function, as in the conventional upstream weighting

scheme) to calculate the mobility. Physically, this is

equivalent to evaluating flow through the fracture–ma-

trix interface into the matrix with the effective matrix

permeability at that interface, obviously a more reason-
able approach.

The proposed weighting scheme is still dependent on

the upstream fracture condition, and therefore does not

lose the advantages of upstream schemes. In addition, in

case fracture–matrix flow is from matrix to fractures,

such as in a situation of drainage or flow between glo-

bally connected fractures or along global or local ma-

trix–matrix connections, the conventional upstream
weighting scheme should still be used. We call this hy-

brid mobility-averaging scheme physically based up-
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stream weighting to determine mobility terms for frac-

ture–matrix flow.

Mathematically, the proposed mobility-weighting

scheme requires the appropriate selection of relative per-

meability for fracture–matrix flow, used for calculating

the mobility term in Eq. (3.3), as

krb;FM ¼ krb;MðS
b;MÞ for WbF P WbM ð3:7Þ

and

krb;FM ¼ krb;MðSb;MÞ for WbM > WbF; ð3:8Þ

where krb,FM is the physically upstream relative permea-

bility for estimating fracture–matrix flow of phase b;
krb,M is relative permeability of phase b in matrix, a
function of matrix saturation (Sb,M); and S

b;M is matrix

saturation of phase b on matrix surface, determined

from inverting the matrix capillary pressure function
by setting matrix capillary pressure equal to fracture

capillary pressure.

Within the context of the dual-continuum concept, the

proposed approach can be applied to different matrix dis-

cretizations, such as double-porosity, dual-permeability,

orMINCgrids.Wehave implemented the proposedphys-

ical upstream weighting scheme into two multidimen-

sional reservoir simulators and conducted a series of
numerical experiments with all the commonly used

dual-continuummodels. In all test cases, this new weight-

ing scheme is found to work efficiently, similarly to using

the traditional single-point upstream weighting, without

numerical difficulties. This new scheme should be applica-

ble for discrete-fracture network models as well.

Note that implementation of the new weight-

ing scheme, though straightforward, requires modifying
existing reservoir simulators. Alternatively, following

the same physical reasoning as above, we can implement

the scheme by creating a matrix mesh without modifying

reservoir simulators. This requires generation of a thin

skin-layer cell, with a tiny volume fraction, along the ma-

trix surface for every matrix block. Then a simulation

using a grid with skin-layer matrix discretization with tra-

ditional upstream weighting may achieve similar results
to that of the physical upstream weighting of the new

scheme, as long as the skin cell is sufficiently small. This

is because it takes little time to equilibrate fractures with

the matrix-surface skin cell, and fracture–matrix flow is

equivalent to the flowbetween thematrix-surface skin cell

and the inside or majority portion of the matrix block.

This matrix–matrix flow is then treated correctly using

the upstreamed matrix properties with the conventional
weighting scheme. We show in the following sections

that adding a thin skin-layer approach provides better

results as compared to the traditional upstream weight-

ing scheme in modeling fracture–matrix interaction. It

should be mentioned, however, that adding a skin matrix

layer in a double-porosity grid increases the number of

gridblocks by 50%.How small the added skin cells should
be needs to be determined by numerical experiments. In

addition, the small volume of skin-layer cells reduces

attainable time steps. These factors should be taken into

account when applying these modeling approaches.
4. Validation and application examples

In an effort to examine and verify the proposed

mobility-weighting scheme in this section, we present

three validation and application examples. The pro-

posed physical upstream weighting scheme has been
implemented in the two reservoir simulators TOUGH2

[13,27] and MSFLOW [24], which are used in the follow-

ing application examples. The first two examples com-

pare numerical simulation results with analytical

solutions for Richards� equation [21,22]. The third case
is to match published laboratory experiment results of

water imbibition and displacement conducted on frac-

tured cores [8].

4.1. Comparison with the analytical solution for imbib-

ition into a single matrix block

An analytical solution recently derived for water

imbibition into an unsaturated cubic matrix block, using

the Richards� equation [22], is applied here to examine
numerical simulation results with the new mobility-
weighting scheme. We select a one-dimensional spherical

flow analytical solution in this study, which requires the

following special forms of relative permeability krw and

capillary pressure Pc [4],

krwðSwÞ ¼ CkðSwÞa ð4:1Þ
and

P cðSwÞ � P g � Pw ¼ CpðSwÞ�b
; ð4:2Þ

where Pg is a constant air (or gas) pressure, Ck and Cp
(Pa) are coefficients, a and b are exponential constants,
respectively, of relative permeability and capillary

pressure functions, and Sw is the normalized water

saturation,

Sw ¼ Sw � Swr
1� Swr

ð4:3Þ

with Swr being the residual water saturation. In addi-

tion, the relative permeability and capillary pressures

are correlated by the following condition:

a ¼ b þ 1: ð4:4Þ
To examine the new weighting scheme for imbibition

into a matrix block, numerical simulations are per-

formed using the TOUGH2 code, which incorporates

the same relative permeability and capillary pressure

functions, Eqs. (4.1) and (4.2), as required by the analyt-

ical solutions.
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The example problem deals with transient water

imbibition into a 1 m · 1 m · 1 m, low initial water sat-
uration matrix cube, which is surrounded by a uniform

fracture network of three orthogonal sets with constant

liquid saturation. The imbibition starts at t = 0, owing

to non-equilibrium in capillarity between the fracture
and matrix systems, imposed as the boundary condition

to the matrix surface. For comparison, the imbibition

process is modeled by both the analytical and numerical

solutions. In the analytical solution, the continuity con-

dition in capillary pressure is imposed on the matrix sur-

face, i.e., the matrix block surface is subject to a

constant saturation condition. The numerical model

uses one double-porosity grid and one MINC grid.
The MINC grid subdivides the matrix cube into two ele-

ments, and the first matrix element is a tiny volume,

skin-layer cell with a volumetric fraction set at 0.0001

of the original matrix volume.

The fracture–matrix parameters, including the coeffi-

cients of fracture–matrix relative permeability and capil-

lary pressure functions, used for the example are listed in

Table 1. Note that in the numerical model, fracture rel-
ative permeability and capillary pressure functions are

also needed, for which van Genuchten relations [19]

are selected. One the other hand, the analytical solution

needs those for the matrix only, defined in Eqs. (4.1) and

(4.2). The initial fracture water saturation is 0.012,

which corresponds to Sw = 0.99 on the matrix surface.

It should be mentioned that in this work, we are con-

cerned mainly with multiphase exchange at fracture–ma-
trix interfaces, not with detailed spatial distributions of

saturation within fractures or the matrix. Specifically,

we compare the results in terms of mass flux (or imbib-

ition rate) and cumulative mass exchange (or imbibition)

between the fracture and matrix systems, as shown in

Figs. 1 and 2.
Table 1

Parameters for the comparison problem of imbibing into a single-

matrix block

Parameter Value Unit

Effective matrix porosity /M = 0.30
Absolute matrix permeability kM = 1.0 · 10�15 m2

Initial water density qw = 1000 kg/m3

Water viscosity lw = 1.0 · 10�3 Pa s

Residual matrix saturation Swr,M = 0.2

Initial matrix saturation SMi = 0.2

Saturation on matrix surface Sb = 0.2 and 0.8

Coefficient of matrix relative permeability Ck = 1.0

Exponent of matrix relative permeability a = 2.0
Coefficient of matrix capillary pressure Cp,M = 1.0 · 104 Pa

Exponent of matrix capillary pressure b = 1.0
Initial fracture saturation SFi = 0.012

Residual fracture saturation SFr = 0.01

Fracture van Genuchten constant m mvG = 0.611

Fracture van Genuchten a avG = 1.0 · 10�3 Pa�1

Time (d)
10-4 10-2 100 102 104 106 108
0

Fig. 2. Comparison of calculated cumulative mass imbibition from

analytical and numerical solutions into a cubic matrix block.
Fig. 1 presents the results of transient imbibition rates

on the matrix surface, calculated from the analytical

solution and numerical simulations using traditional up-

stream weighting, the proposed new physical upstream

weighting, and skin cell with traditional upstream

weighting schemes. Comparison of the three numerical

model results with the analytical solution in Fig. 1

clearly indicates that numerical results with the new
weighting scheme agree the best with the analytical solu-

tion during the entire transient imbibing period. The

simulation results with the skin-layer cell in this case

do not match the analytical result very well. In contrast,

the simulation using the traditional upstream weighting
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scheme presents the worst comparison, with more than

three orders of magnitude lower than the results of the

analytical solution during the entire transient imbibition

period. This is because the upstream fracture relative

permeability, selected by the traditional approach, sig-

nificantly underestimated the mobility term for frac-
ture–matrix flow. In terms of cumulative imbibition,

similarly, Fig. 2 also shows that the proposed weighting

approach matches the analytical results very well, while

adding a skin layer in matrix discretization provides an

intermediate result and the traditional weighting scheme

gives the worst prediction.

Figs. 1 and 2 show surprisingly good matches be-

tween the results of the proposed new scheme and the
analytical solution. This is in part due to the use of

log–log (Fig. 1) or semi-log (Fig. 2) scales in plots, as

well as large errors introduced by the modeling results

from the other two approaches. Actually, the new

weighting scheme with double-porosity discretization

of the fracture–matrix system also introduces some

numerical errors of 50% at the very early transient times

of 10�7 days (Fig. 1). Even larger errors appear at later
times when the cumulative mass approaches 237 kg

(=/M · VM · (0.99 � SMi) · qW = 0.3 · 1 · 0.79 · 1000),
which is at equilibrium with the proposed boundary

condition, as shown in Figs. 1 and 2. We could match

the flux much better if we used more refined discretiza-

tion for the matrix block in addition to the new weight-

ing scheme [22].

4.2. Comparison with the analytical solution for transient

radial flow through unsaturated fractured formation

This section further validates the new weighting

scheme using a more realistic analytical solution

(Appendix A), which describes the transient unsatu-

rated fracture–matrix interaction for radial flow

through a uniform, radially infinite fractured forma-
tion, consisting of many matrix blocks and fracture

sets. This analytical solution is also based on the spe-

cially correlated relative permeability krw and capillary

pressure Pc in the forms of Eqs. (4.1) and (4.2), respec-
Table 2

Parameters for the comparison problem with radial unsaturated flow in frac

Parameter Matrix

Matrix dimension B = 1

Porosity /M = 0.30
Permeability kM = 1.0 · 10�15

Residual/initial saturation SMr = 0.2

Coefficient of permeability CkM = 1.0

Coefficient of capillary pressure CpM = 1.0 · 104

Saturation at well S0 = 0.279

Fluid viscosity lw = 1.0 · 10�3

Fluid density qw = 1000
Wellbore radius rw = 0.1
tively, for fracture and matrix systems. In addition, it

requires b = 1 and a = 2 [21].
This verification problem addresses transient flow

through a fully penetrating well into a uniform, horizon-

tal fractured formation, which is 10 m thick. The frac-

tured formation consists of uniform, identical 1 m · 1
m · 1 m cubes of matrix blocks, surrounded by a uni-

form, three-dimensional fracture network. The geologi-

cal model considered is identical to the Warren and

Root [20] conceptual model. Initially, both fracture

and matrix are at dry conditions with both initial satu-

rations equal to their residual values, respectively. A

constant saturation of Sw = 0.279 is imposed at the well-

bore as the inner boundary condition in the beginning,
and then water is sucked into the formation from the

well immediately.

In the numerical model, a finite reservoir (re = 100 m)

of 10 m thickness is used, and the disk-type formation is

discretized into a one-dimensional radially symmetric

(primary) grid. The radial domain from rw = 0.1 m to

distance re = 100 m is subdivided into 500 intervals, with

Dr = 0.005 m for the first 200 elements, and the rest of
the domain is subdivided into 300 gridblocks following

a logarithmic scale. Two numerical grids are generated,

a regular double-porosity mesh and a MINC mesh with

an added, thin-skin-layer cell to matrix blocks (with a

volumetric fraction of 0.0001). The double-porosity grid

represents the matrix system by one mesh locally and is

used for simulations with the traditional and new up-

stream weighting schemes, while the MINC mesh sub-
grids each matrix block with two nested cells, used for

the added skin-cell case.

For this problem, fracture–matrix rock and fluid

properties, including the coefficients of fracture–matrix

relative permeability and capillary pressure functions,

are given in Table 2. Numerical simulations with differ-

ent weighting schemes and grids are performed using the

TOUGH2 code. The analytical solution (Appendix A)
for fracture–matrix flux is evaluated using a numerical

Laplace inversion [21]. Three numerical simulations

were completed for this problem. The first two use the

double-porosity grid with the two mobility-weighting
tured formation

Fracture Unit

m

/F = 0.001
kF = 1.0 · 10�12 m2

SFr = 0.2

CkF = 0.2

CpF = 1.0 · 103 Pa

Pa s

kg/m3

m
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schemes, i.e., the traditional single-point upstream

weighting and the proposed physical upstream weight-

ing, and the third simulation is based on the MINC

mesh with the thin-skin-layer cell on matrix surfaces,

using the traditional upstream weighting.

Fig. 3 presents fracture–matrix flux distributions
along the radial distance at one day, simulated by the

analytical and three numerical modeling results. Note

that the physical process simulated in this example is ex-

tremely nonlinear and dynamic. The initial liquid satu-

rations are at residual values for both fracture and

matrix systems. At the beginning, the boundary satura-

tion for fractures at the wellbore jumps to a constant

(=0.279) (flow rate at the well thus becomes infinitely
large). Once imbibed into the fractures near the well,

the liquid will be drawn by two forces in two different

directions, flowing along fractures away from the well,

and simultaneously imbibing into dry matrix blocks. A

comparison shown in Fig. 3 indicates that both the pro-

posed weighting scheme and the skin-cell model do a

much better job in matching the actual distribution of

fracture–matrix mass flux, as determined by the analyt-
ical solution, than the traditional weighting, double-

porosity model. This implies that (in this case) the

approaches for applying the physical upstream weight-

ing concept or adding a skin layer better capture these

physical processes by selecting physically correct relative

permeability in estimating fracture–matrix interaction.

Fig. 3 clearly shows that in general the traditional up-

stream weighting scheme, by selecting a fracture relative
permeability function to calculate fracture–matrix flow,

cannot match the analytical results. Near the well, both
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Fig. 3. Comparison of fracture–matrix mass fluxes along the radial

distance at 1 day, calculated using the analytical solution and

numerical simulations using the double-porosity model with two

different mobility-weighting schemes, as well as the mesh with a thin-

skin-layer cell for matrix blocks.
the proposed new scheme and adding a skin layer cause

an overestimate in fracture–matrix mass flux; while near

the front of water imbibition in fractures, away from the

well, the result from the new weighting matches slightly

better with the analytical solution.

Fig. 4 shows a comparison between cumulative or net
fracture–matrix mass exchange, calculated by the ana-

lytical solution, and the three numerical model results.

Note that the cumulative flow of Fig. 4 is not the net

amount of the actual mass exchange at a distance of r

for the time. Rather this value represents a cumulative

mass exchange at the location and the time if the frac-

ture–matrix interface area were 1 m2, which is deter-

mined by integrating fracture–matrix fluxes over the
time at the location (Appendix A). Therefore, the cumu-

lative flow of Fig. 4 reflects integrated or accumulated

effects of fracture–matrix interaction for the problem.

Similar to Fig. 3 with fracture–matrix fluxes, Fig. 4 indi-

cates that adapting the new weighting scheme or adding

a skin cell also matches cumulative mass exchanges and

their spatial distributions well, while the traditional

weighting again leads to significant errors in estimating
cumulative results. In this problem, however, the CPU

times for 1000 day simulation spent with the skin-cell

simulation is four times longer than the proposed

weighting scheme. This is because of the small volume

of the skin cells added on the matrix surfaces as well

as 50% increase in the number of meshes.

Many more numerical experiments and comparisons

(using different parameter sets, and boundary and initial
conditions) have been carried out. All the tests and com-

parisons similar to those shown in Figs. 3 and 4 indicate
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that the proposed new weighting scheme or the skin-cell

simulation is able to closely match analytical solutions

for unsaturated radial flow problems, while in general

the traditional weighting method cannot. It should be

mentioned that as shown in Figs. 3 and 4, there are cer-

tain errors or discrepancies even with the ‘‘good’’
matches between numerical and analytical results. These

discrepancies are caused primarily by the coarse spatial

discretization of matrix blocks. For example, the dou-

ble-porosity grid used in the numerical models cannot

resolve better approximation of pressure gradients or

flow rates near fracture–matrix interfaces, which con-

tributes to the numerical errors shown in Figs. 3 and

4. Further discussions of the spatial discretization errors
are beyond the scope of this paper.

4.3. Comparison with laboratory experimental results

Kazemi [8] presented a series of laboratory experi-

mental results of water imbibition into fractured matrix

cores to displace oil. The laboratory tests were con-

ducted on three sets of artificial fractured cores using
cylindrical and rectangular blocks, with one fracture

along the long axis for each set. The cylindrical and rec-

tangular matrix blocks were actually cut from Berea

sandstone. The laboratory model we consider here con-

sists of a fractured core with two brick-type matrix

blocks. Each matrix block has a brick shape with dimen-

sion of width, height and length (50.8 · 50.8 · 101.6
mm) as shown in Fig. 5. The fracture formed between
Fig. 5. Schematic of fractured cores u
the two matrix cores has an aperture of 0.30 mm. The

experimental data used in this study were from Test

38423 [8] as an example. In the experiment, flow chan-

nels were left open only at the inlet and outlet ends of

the fracture (i.e., for water injection and for oil and

water flow out), and side fracture and matrix surfaces
were sealed. Initially, the fracture and matrix system

was fully saturated uniformly with oil (diesel), and then

water was injected with a constant rate at the inlet (Fig.

5) to displace the oil.

Basic model experimental and modeling parameters

are listed in Table 3. The relative permeability and cap-

illary pressure curves used in this case are shown in Figs.

6 and 7, respectively. Note that relative permeability
curves for both fracture and matrix, shown in Fig. 6,

were estimated using the equations given in [8], and

the matrix capillary pressure curve was taken from the

capillary pressure curve on the Berea core of Fig. 12 in

[8]. However, several important parameters were not

provided in [8], including residual water saturation,

residual oil saturation, and fracture capillary pressure

curves. Actual values used for these missing parameters
were determined in this work by model calibration, with

the final estimates given in Table 3 and Figs. 6 and 7.

Here, this test is analyzed using a double-porosity ap-

proach (equivalent to the explicit-fracture model in this

case) to examine the numerical scheme for handling

fracture–matrix interaction under multiphase flow con-

ditions. The fracture–matrix set of Fig. 5 is treated as

a two-dimensional system along the longitudinal (x)
sed the experimental studies [8].



Table 3

Parameters used in the comparison with laboratory testing results [8]

Parameter Value Unit

Fracture aperture b = 0.0003 m

Fracture porosity /F = 1.0
Matrix porosity /M = 0.21
Absolute fracture permeability kF = 1 · 10�11 m2

Absolute matrix permeability kM = 4.23 · 10�13 m2

Water density qw = 1000 kg/m3

Water viscosity lw = 1 · 10�3 Pa s

Oil (diesel) density qw = 828 kg/m3

Oil (diesel) viscosity lw = 4.6 · 10�3 Pa s

Residual fracture water saturation Swr,F = 0.10

Residual matrix water saturation Swr,M = 0.20

Residual fracture oil saturation Sor,F = 0.0001

Initial fracture water saturation Swi,F = 0.00

Initial matrix water saturation Swi,M = 0.00

Water injection rate q = 2.568 · 10�5 m3/d
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direction (from inlet to outlet). Because of the symme-

try, only half of the two-dimensional model domain

(one matrix block and half the fracture) is discretized

into a double-porosity grid, using a one-dimensional

parallel fracture concept, with one (actually half) frac-

ture element corresponding to one matrix element in

the transverse direction (perpendicular to the fracture

plane). Along the x direction, a uniform linear grid
of 10 elements is generated for both the fracture and

the matrix block, with a uniform grid spacing of

Dx = 10.16 mm.
We have performed several model calibration analy-

ses to estimate the missing model parameters. The final

simulation results using the proposed physical upstream

weighting scheme are compared with the laboratory

experimental data in Fig. 8. Fig. 8 shows excellent agree-
ment between measured and simulated volumetric frac-
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tional oil recovery versus pore volume of water injected.
This result indicates that the proposed new upstream

mobility-weighting scheme is able to capture the main

factors that control fracture–matrix interaction during

the oil–water displacement for this test problem.

In addition, the traditional upstream weighting ap-

proach was used to match the laboratory data (not

shown in Fig. 8). For this particular case, the modeling

results with the traditional method also provided rea-
sonable match to the laboratory results. This is because

of the nature of imbibition dominance of the water–oil

displacement system, which could be modeled using

the traditional approach with the special fracture rela-

tive permeability curves (Fig. 6) with much higher frac-
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ture relative permeability than matrix one at the same

saturation.
5. Summary and concluding remarks

We have presented a physically based upstream

weighting scheme for modeling multiphase fracture–ma-

trix flow and interaction in fractured reservoirs. This

new approach is based on continuity of capillary pres-

sure at the fracture–matrix interface in estimating phys-

ically correct relative permeability for calculating

multiphase flow between fractures and the matrix. The

new conceptual model overcomes a serious flaw that ex-
ists in most current simulation practice when estimating

flow mobility for fracture–matrix flow terms using the

conventional upstream weighting method. Numerically,

the new scheme uses exactly the same dual-continuum

grids, which will otherwise be used with the traditional

dual-continuum approaches, without requiring an addi-

tional computational burden or using refined grids, to

achieve not only accurate but also physically correct re-
sults for fracture–matrix interaction.

To verify the proposed mobility-weighting scheme,

we carried out two theoretical studies in this work.

The new mobility-weighting method was used to simu-

late an imbibition process into a single unsaturated ma-

trix cube, and unsaturated flow in a radially fractured

formation with fully transient fracture–matrix interac-

tion. In both cases, the proposed physical upstream
weighting scheme is found to provide accurate simula-

tion results when compared with analytical solutions.

It is also found that the conventional weighting scheme

will result in significant errors in estimating fracture–

matrix flow in modeling the same physical processes.

As an additional verification example, we sought to

match published laboratory results for oil–water dis-

placement through a fractured core. Our proposed ap-
proach proved able to match laboratory experimental

results of fracture–matrix interaction.

An alternative numerical technique to enforce relative

permeability consistent with capillary continuity at frac-

ture–matrix interfaces was also explored. It consists of

employing an additional gridblock to represent a thin

matrix interface layer with the traditional upstream

weighting scheme. This paper shows that adding a
skin-layer cell to matrix blocks, as long as the volume

of the skin cell is sufficiently small or the mobility be-

tween fractures and the skin cell is large, could in some

cases achieve the similar results as the proposed new

weighting scheme. Adding skin-cell approaches, how-

ever, increases grid size by 50% and needs to use small

volume of skin cells, which will limit timestep size as well

as require extra CPU times for simulation, when com-
pared with the proposed scheme.
In this work, we demonstrate that the proposed,

physical upstream weighting method is accurate, numer-

ically efficient, and easy to implement into existing

dual- or multiple-continuum reservoir simulators. It is

recommended as a valid modeling approach for field

applications with both dual-continuum and discrete-
fracture models.
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Appendix A. Derivation of analytical fracture–matrix flux

An analytical solution describing transient unsatu-

rated flow is derived for rigorous treatment of frac-
ture–matrix interaction in a uniform fractured radial

formation [10,21]. The analytical solution relies on the

assumption that the specially correlated relative perme-

ability and capillary functions, Eqs. (4.1) and (4.2), are

satisfied, respectively, for fractures and the matrix. In

addition, it further requires that the two exponential

parameters are specified as a = 2 and b = 1 in Eqs.
(4.1) and (4.2). Under these conditions, along constant
liquid saturation at the wellbore boundary and constant

initial saturations in both fracture and matrix systems,

the analytical solution is given in the Laplace space

[21] as

SMD ¼ CpM
CpF

SFD
xD

sinhðrxDÞ
sinhðrÞ ðA:1Þ

and

SFD ¼ SOD
p

K0
ffiffiffiffi
x2

p
rD

� �
K0

ffiffiffiffi
x2

p� � ; ðA:2Þ

where SMD and SFD are the normalized matrix and frac-
ture saturations, respectively, in the Laplace space,

defined similarly by Eq. (4.3); CpM and CpF are coeffi-

cients Cp of the capillary function, Eq. (4.2), for matrix

and fracture, respectively; p is the Laplace variable; SOD
is the normalized fracture saturation at the well;
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r ¼
ffiffiffiffiffiffiffiffi
A3p

p
, K0 is the modified Bessel function of the sec-

ond kind of zero order; and x2 is defined as

x2 ¼ A1A4½r coth r � 1� þ A2p ðA:3Þ
with

A1 ¼
12DM/Mr

2
w

Df/FB
2

1� SMr
1� SFr

;

A2 ¼
4r2w
B2

; and A3 ¼
DF
DM

; ðA:4Þ

where subscript M denotes matrix and F for fracture; rw
is the well radius; B is fracture spacing or the dimension

of matrix cubes (m); /M and /F are matrix and fracture
porosities; SMr and SFr are residual saturations, respec-

tively, of fracture and matrix systems; and DF or DM is

the moisture diffusivity term for fracture or matrix,
respectively, defined [21] as
Dn ¼
knkrn
/nlw

oPwn

oSw
¼ knCknCpn

/nlwð1� SnrÞ
ðA:5Þ
with a dimension of m2/s. Subscript n is an index for
fracture (n = F) or matrix (n = M); Ckn and Ckn are coef-

ficients Ck of the relative permeability function, Eq.

(4.1), for matrix and fracture, respectively.

The analytical solution uses the following dimension-
less variables: dimensionless radial distance, dimension-

less spherical distance inside matrix blocks, and

dimensionless time:

rD ¼ r
rw

; xD ¼ 2x
B
; and tD ¼ DFt

ðB=2Þ2
; ðA:6Þ

where r is the radial distance from the well; x is the dis-

tance from a nested cross-sectional surface within matrix

blocks (having an equal distance to the matrix surface or

equivalent to spherical radial distance) to the center of
cube; and t is time.

From the analytical solutions, Eqs. (A.1) and (A.2),

the fracture–matrix mass flux in the Laplace space can

be derived from its definition:

�qFM ¼ � kMkrM
lw

qw
oPw
ox

����
x¼B=2

¼
kMqwC

2
pMCkM

lwBCpF
SFD½r coth r � 1�; ðA:7Þ

where �qFM is the Laplace transformed transient frac-

ture–matrix flux and a unit of kg/s/m2 in real space as

a function of time and radial distance. Similarly, a

cumulative fracture–matrix mass flow or exchange rate

(QFM) can be derived as

QFM ¼
Z t

0

qFMðr; tÞ dt: ðA:8Þ
In the Laplace space, the cumulative rate is determined

by

QFM ¼ ðB=2Þ2

DF

�qFM
p

: ðA:9Þ

Note the cumulative fracture–matrix mass flow rate has

a unit of kg/m2, which is not the net amount of mass ex-

change, but an integrated exchange rate per unit area.
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