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[1] This paper presents an approximate analytical solution for non-Darcy flow of a slightly
compressible fluid through a fractured reservoir. The analytical solution is obtained using the
traditional Warren-Root solution superposed on a dimensionless non-Darcy flow coefficient. The
model formulation incorporates the Forchheimer equation into the Warren-Root model for
describing non-Darcy flow through fractured media. The approximate analytical solution, verified
for its accuracy by comparison with numerical solutions, provides a useful tool in analyzing non-
Darcy flow in fractured reservoirs for practical applications. INDEX TERMS: 1829 Hydrology:
Groundwater hydrology; 1832 Hydrology: Groundwater transport; 1875 Hydrology: Unsaturated
zone; 1719 History of Geophysics: Hydrology; KEYWORDS: non-Darcy flow, fractured reservoirs,
double porosity

1. Introduction

[2] Darcy’s law of flow (or Darcy flow), describing a linear

relationship between volumetric flow rate (Darcy velocity) and

pressure (head or potential) gradient, has been the fundamental

principle in analyzing flow and transport processes in porous

and fractured media. Any deviations from this linear relation

may be defined as non-Darcy flow. In this work, I would like

to focus on the non-Darcy flow in a fractured medium caused

by high flow velocities. Even though Darcy’s law has been

used exclusively in studies of porous-medium phenomena, there

is considerable evidence that high-velocity, non-Darcy flow

occurs in many subsurface systems, such as in the flow near

wells of oil or gas production, water pumping, and liquid waste

injection.

[3] The effects of non-Darcy or high-velocity flow regimes in

porous media have been observed and investigated for decades

[e.g., Tek et al., 1962; Scheidegger, 1972; Katz and Lee, 1990].

Theoretical, field, and experimental studies performed on non-

Darcy flow in porous media have focused mostly on flow in single-

porosity media that pertains to the oil and gas industry [Tek et al.,

1962; Swift and Kiel, 1962; Lee et al., 1987]. Few investigations

have been conducted for non-Darcy flow in fractured reservoirs

[Skjetne et al., 1999] or in fractured wells [Guppy et al., 1981,

1982]. Other studies have concentrated on finding and validating

correlation of non-Darcy flow coefficients [Liu et al., 1995].

Because of insufficient studies in this area as well as the mathe-

matical difficulty in handling nonlinear, non-Darcy flow terms in

flow equations, understanding of non-Darcy flow through porous

media, in particular for fractured reservoirs, is currently very

limited.

[4] The objective of this work is to present an analytical

solution for non-Darcy flow of slightly compressible fluids through

a homogeneous fractured formation, described by the Warren-Root

double-porosity model. The Forchheimer equation, the most

widely used non-Darcy flow model [Katz and Lee, 1990], is

adapted to describe flow through a fracture continuum. The new

analytical solution is derived by simply superposing the Warren-

Root solution [Warren and Root, 1963] on a dimensionless non-

Darcy flow coefficient. The analytical solution is checked using a

numerical method and found to be very accurate in many cases for

which the Warren-Root model applies. This approximate analytical

solution can be applied to analyze well tests and obtain insight into

non-Darcy flow through fractured reservoirs.

2. Flow Model

[5] The non-Darcy flow model of this work is based on the

same assumptions as those for the Warren-Root model, except

that the non-Darcy flow effect, described by the Forchheimer

equation, is included for flow through fractures only. The Warren-

Root model treats fracture and matrix flow and interactions using

a double-porosity concept [Barenblatt et al., 1960; Warren and

Root, 1963; Kazemi, 1969]. It is a physically based approach,

which assumes that a flow domain is composed of matrix blocks

of low permeability, embedded in a network of interconnected,

more permeable fractures. Global flow in the formation occurs

only through the fracture system, described as an effective

continuum. The matrix behaves as spatially distributed sinks or

sources to the fracture network without accounting for global

matrix-matrix flow. In addition, the double-porosity model relies

on a quasi-steady state flow assumption to account for fracture-

matrix interporosity flow.

[6] Non-Darcy flow through fracture-matrix flow may also

occur and should in general be taken into consideration. However,

a recent study [Wu, 2002], using both analytical analyses and

numerical simulations, concludes that the impact of non-Darcy

fracture-matrix flow can be ignored for almost all practical pur-

poses with a typical fracture reservoir, when compared with non-

Darcy flow effects in fracture flow. In addition, that study also

finds that the quasi-steady flow assumption in the Warren-Root

model provides a good approximation to non-Darcy flow cases as

long as the double-porosity concept applies (i.e., the fracture

system has much higher permeability and much lower porosity

than the matrix system).

[7] Non-Darcy flow in a double-porosity reservoir is considered

in this work for fracture flow only and described by

�r � rvð Þ � fmCmri
@Pm

@t
¼ ff Cf ri

@Pf

@t
ð1Þ
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and for fracture-matrix flow, it is

fmCm

@Pm

@t
¼ akm

m
Pf � Pm

� �
; ð2Þ

where r is the density of the fluid, a linear function of pressure; v is
the Darcy (or volumetric) velocity of the fluid in the fracture

continuum; fm and ff and Cm and Cf are effective porosities and

total compressibilities of the matrix or fracture system, respec-

tively; Pm and Pf are fluid pressures in the matrix or fracture

system, respectively; ri is the initial or reference density of the

fluid; t is time; m is the viscosity of the fluid; km is matrix

permeability; and a is a shape factor for the matrix block geometry

with a unit of m�2, as defined by Warren and Root, for controlling

fluid exchange between fractures and matrix.

[8] The flow term in (1) for non-Darcy flow through fractures is

described using the Forchheimer equation [Katz and Lee, 1990]:

� rPf

� �
¼ m

kf
vþ brv vj j; ð3Þ

where kf is the permeability of the fracture continuum and b is the

non-Darcy flow coefficient with a unit of m�1 through fractures.

Under one-dimensional radial, horizontal flow conditions the

component of the flow vector in the r direction term may be solved

from (3) as

r v ¼ 1

2kf b
�mþ mð Þ2 þ 4k2f rb

@Pf

@r

� �� �1=2( )
; ð4Þ

where v is a component of the volumetric velocity vector along

the r coordinate. With the double-porosity model the governing

flow equations are (1), (2), and (4) for describing non-Darcy flow

through fractured media. To complete the flow problem

description, we also need the following initial and boundary

conditions. The problem of interest is a one-dimensional radial

flow into or from a fully penetrating well in a radially infinite,

horizontal reservoir with uniform fracture and matrix properties.

The well is subject to a constant volumetric flow rate of pumping

or injection.

[9] The initial pressure Pi is assumed constant within both

fracture and matrix systems throughout the reservoir

Pf r; t ¼ 0ð Þ ¼ Pm r; t ¼ 0ð Þ ¼ Pi; ð5Þ

The same constant pressure remains at the outer (infinite)

boundary,

Pf r ¼ 1; tð Þ ¼ Pm r ¼ 1; tð Þ ¼ Pi: ð6Þ

At the well bore a constant volumetric flow rate is imposed, with

well bore storage and skin effects ignored:

@Pf rw; tð Þ
@r

¼ mq
2prwkf h

; ð7Þ

where rw is the well radius, h is the thickness of the radial-infinite

horizontal formation, and q is the volumetric flow rate at the well.

3. Analytical Solution

[10] Before further discussing the analytical solution, let us

define the following group of dimensionless variables [Earlougher,

1977; Warren and Root, 1963]. The dimensionless radius is

rD ¼ r

rw
; ð8Þ

and the dimensionless time is

tD ¼ kf t

mr2w fmCm þ ff Cf

� � : ð9Þ

The dimensionless non-Darcy flow coefficient is

bD ¼ kf qmb
2prwhm

; ð10Þ

and the dimensionless fracture pressure is

PD ¼ Pi � Pf
q m

2pkf h
: ð11Þ

Note that in (10), qm is a mass production or injection rate, treated

as a constant.

[11] In addition, Warren and Root define two more dimension-

less parameters to characterize double-porosity flow behavior. The

first one is the ratio of porosity compressibility of fractures to the

total system porosity compressibility product as

w ¼
ff Cf

fmCm þ ff Cf

; ð12Þ

and the second is the interporosity flow parameter:

l ¼ ar2wkm
kf

: ð13Þ

For Darcy or linear flow in a double-porosity, fractured reservoir,

Warren and Root gave an asymptotic (long time) solution in terms

of the dimensionless fracture pressure at the well (rD = 1) as

PD;WR rD ¼ 1; tDð Þ ¼ 1

2

"
ln tD þ 0:80907þ Ei � ltD

w 1� wð Þ

� �

�Ei � ltD
1� wð Þ

� �#
; ð14Þ

where the function Ei is called the exponential integral.

[12] An analytical solution for describing steady state non-

Darcy flow in a one-dimensional, finite, radial fracture flow system

is derived Appendix A as follows:

PD rDð Þ ¼ ln
reD
rD

� �
þ bD

1

rD
� 1

reD

� �
: ð15Þ

Here we use the same dimensionless variables, as defined before,

and the dimensionless radius of the outer boundary is defined as

reD ¼ re

rw
; ð16Þ

with re being the radius of the outer boundary of the finite radial

formation.
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[13] The steady state solution, (15), for non-Darcy flow in

fracture consists of two terms on the right-hand side. The first

term, ln (rD
e /rD), is the precise steady state solution for Darcy flow,

and the second term, bD (1/rD�1/rD
e), represents non-Darcy flow

effect. From (15), as long as re 
 rw , which is almost always true,

at the well (rD = 1), we will have

PD rD ¼ 1ð Þ � ln reD
� �

þ bD: ð17Þ

Equation (17) indicates that a steady state solution for non-Darcy

flow in the fracture medium is simply a superposition of the Darcy

flow solution and a non-Darcy flow coefficient. For transient non-

Darcy flow in a double-porosity reservoir the flow may be quick to

approach a quasi-steady state within a region near the well because

of the low storage capacity and high permeability of the fracture

continuum. This encourages us to try an approximate analytical

solution for transient non-Darcy flow in a fractured medium as a

superposition of the Warren-Root solution, (14), and the non-Darcy

flow coefficient:

PD rD ¼ 1; tDð Þ ¼ bD þ PD;WR ¼ bD þ 1

2

"
lntD þ 0:80907

þEi � ltD
w 1� wð Þ

� �
� Ei � ltD

1� wð Þ

� �#
: ð18Þ
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Figure 1. Comparison of dimensionless pressures calculated from the approximate analytical solution (circled
symbol curves, denoted as PD,WR + bD) and numerical solutions (solid curves) for transient non-Darcy flow in double-
porosity, fractured rock with different non-Darcy flow coefficients.

Table 1. Parameters Used in the Verification Examples for Non-

Darcy Flow in a Double-Porosity, Fractured Reservoir

Parameter Value Unit

Matrix porosity fm = 0.30
Fracture porosity ff = 0.0006
Reference water density ri = 1,000 kg m�3

Water phase viscosity m = 1 � 10�3 Pa s
Matrix permeability km = 1.0 � 10�16 m2

Fracture permeability kf = 9.869 � 10�13 m2

Water production rate qm = 0.1 kg s�1

Rock compressibility Cr = 1.0 � 10�9 1 Pa�1

Water compressibility Cw = 5.0 � 10�10 1 Pa�1

Dimensionless non-Darcy
flow coefficient for fracture

bD,f = 1 � 10�4, 1, 5, 10,
15, and 20

Dimensionless non-Darcy
flow coefficient for matrix

bD,m = bD,f � 10

Shape factor a = 60 m�2

Well bore radius rw = 0.1 m
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It is easy to examine that the proposed solution, (18), satisfies the

boundary condition, (7), at the well but does not satisfy for the

initial condition (5) or the boundary condition (6) at the infinite, in

general, differing by a constant, bD. This indicates that the solution
may not be accurate in very early transient times at wells.

4. Verification

[14] In this section, we will check the proposed solution (18) for

its accuracy and applicability to non-Darcy flow in fractured

reservoirs. To evaluate the approximate analytical solution (18),

we have to use an exact analytical or numeric solution. However,

because of the extra nonlinear, non-Darcy flow term in the

governing equation, (1), the exact analytical solution to the non-

Darcy flow problem, as defined by (1), (2), and (4), may not be

traceable without several dramatic linearized assumptions. Instead

of using an exact solution, here we use a numerical simulator [Wu,

2002] to verify the approximate solution and examine the con-

ditions under which the solution may apply. The numerical

simulator has the capability to model single-phase and multiphase

non-Darcy flow through multidimensional fractured reservoirs.

[15] The verification problems below concern typical transi-

ent flow toward a well that fully penetrates a radially infinite

horizontal, uniform, fractured reservoir. In numerical modeling

for comparison, a radially finite reservoir (re = 5 � 106 m) is

used and discretized into a one-dimensional (primary) grid. The

r distance of 5 � 106 m is subdivided into 3100 intervals in a

logarithmic scale. A double-porosity mesh is generated from the

primary grid, in which a three-dimensional fracture network and

cubic matrix blocks are used. The uniform matrix block size is

1 � 1 � 1 m, and fracture permeability and aperture are

correlated by the cubic law. Input parameters are given in

Table 1. In addition, the numerical simulations also include

non-Darcy effects on flow between fracture and matrix, which

has been found to have insignificant, negligible impact on non-

Darcy flow through fractured rocks [Wu, 2002]. Here we use

10 times larger non-Darcy flow coefficients for the matrix than

those for fractures for each case to account for low matrix

permeability effects on non-Darcy fracture-matrix flow. A fully

penetrating pumping well is represented by a well element with

a specified constant water-pumping rate. Note that many

numerical tests and analyses have been performed to confirm
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Figure 2. Comparison of dimensionless pressures calculated from the approximate analytical solution (circled
symbol curves, denoted as PD,WR + bD) and numerical solutions (solid curves) for transient non-Darcy flow in double-
porosity, fractured rock with different l parameters and non-Darcy flow coefficients.
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the accuracy of these numerical simulation results, and the

numerical solutions are considered to be ‘‘exact’’ in the

following verification examples.

[16] Figure 1 shows a comparison of the numerical modeling

results and the approximate analytical solution (18) with different

dimensionless non-Darcy flow coefficients (defined in (10)). The

two characteristic parameters for these cases are: l = 6 � 10�5

and w = 2 � 10�3 from the parameters used as listed in Table 1.

Note that the values of these two parameters are within a typical

range of double-porosity flow behavior as discussed by Warren

and Root.

[17] Figure 1 shows an excellent agreement between the ana-

lytical (circled symbol curves, labeled as PD,WR + bD) and

numerical (solid curves) solutions, except at earlier times (tD <

100) or for large non-Darcy flow coefficients (bD > 10). Note that a

dimensionless time (tD = 219) corresponds to 1 s of actual time for

the parameters listed in Table 1. In addition, the Warren-Root

solution itself may not be valid for tD < 100. On the other hand,

values of dimensionless non-Darcy flow coefficients >10 are

considered very large in fields (e.g., Figure 1 shows that at tD =

104, the dimensionless pressure for bD = 20 is 5 times higher than

that predicted by the Warren-Root solution). This non-Darcy flow

effect may be too large for a normal well flow problem. Therefore,

early time errors with the proposed analytical solution may not

limit its practical applications, considering that during very early

times (i.e., the first several seconds), no accurate well testing data

can normally be measured because of well bore storage or other

well bore conditions effects.

[18] Figure 2 examines possible effects of the l parameter.

Here we increase and decrease matrix permeability km to vary the

l parameter by one order of magnitude lower and higher,

respectively. Figure 2 indicates that for the cases with the lower

matrix permeability scenario (l = 6 � 10�6), the approximate

analytical solution becomes more accurate than for the high

matrix permeability cases (l = 6 � 10�4) overall. For a lower

value of the non-Darcy flow coefficient (bD = 5) the approximate

analytical solution is good even for the very early times. In the

early times up to tD = 104 or 50 s of real times for the problem,

large errors are observed to occur only with the high matrix

permeability case (l = 6 � 10�4).
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Figure 3. Comparison of dimensionless pressures calculated from the approximate analytical solution (circled
symbol curves, denoted as PD,WR + bD) and numerical solutions (solid curves) for transient non-Darcy flow in double-
porosity, fractured rock with different w parameters and non-Darcy flow coefficients.
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[19] Figure 3 presents the results for checking the effect of the

w parameter (w = 2 � 10�4, 2 � 10�3, and 2 � 10�2 by varying

fracture porosity). Figure 3 shows that the smaller w is, the more

accurate the analytical solution becomes because non-Darcy flow

effect develops slower with large fracture porosity near the well.

For example, a larger value, w = 2 � 10�2, introduces significant

errors in earlier times up to tD = 103 (or 5 s real time) for the

analytical solution. However, as shown in Figure 3, the ‘‘late’’

time (more than several seconds in real times) solutions are all

very accurate when compared with those of the numerical

solutions.

[20] The l parameter increases as matrix permeability

increases, and the w parameter increases with the increase in

fracture porosity. In both cases, the formation is said to be

approaching a single-porosity medium or getting further away

from the definition of a typical fractured reservoir. A typical

double-porosity, fractured reservoir is characteristic of two fea-

tures: (1) kf 
 km and (2) fm 
 ff. Under these two conditions,

both l and w parameters are small. In addition, Figures 1–3

show that errors in the analytical solutions occur mainly at an

earlier time within 100 s of flow, during which an accurate

pressure measurement is very difficult to make. Therefore, for a

wide range of practical applications, the analytical solution (18)

may provide a good approximation for analyzing non-Darcy flow

in a double-porosity reservoir.

5. Concluding Remarks

[21] This work presents an approximate analytical solution

for analyzing non-Darcy flow through double-porosity fractured

media. The analytical solution, a direct extension of the

Warren-Root solution to non-Darcy flow situation, has been

examined using a numerical method for its accuracy and

applicability. It has been shown that the analytical solution

provides good approximations for many practical applications

in non-Darcy flow in fractured reservoirs, as long as the two

conditions, kf 
 km and fm 
 ff, are satisfied. In general, the

approximate analytical solution is found to be accurate for the

flat or transitional portion as well as the late time (second

straight line portion of pressure versus time curves. However,

the solution will introduce errors in early transient times of

well flow.

[22] We can draw several conclusions from this work. The

behavior of non-Darcy flow through a fractured reservoir is

characteristic of the three parameters: l, w, and bD. The very

form of the approximate analytical solution (equation (18)) itself

indicates that the non-Darcy effect is similar to a skin effect on

Darcy flow into a well in a fractured reservoir. These two factors

(non-Darcy flow and skin effect) are inseparable from a single

non-Darcy flow testing result. This observation also indicates that

non-Darcy flow in a fractured reservoir is controlled by near-well

flow regimes because of the much higher flow velocities there.

Since skin and non-Darcy flow effects cannot be separated from a

single well test under non-Darcy flow condition, we recommend

that skin effects be estimated using a low flow rate or Darcy flow

test first. Then, non-Darcy flow coefficients can be effectively

determined using type curve fitting methods with the approximate

analytical solution. Furthermore, similarity between the Warren-

Root solution and the non-Darcy flow analytical solution makes it

possible to use the well-testing analyses developed from the

Warren-Root solution to determine formation parameters for

non-Darcy flow in fractured reservoirs.

Appendix A: Derivation of Steady State Solution

[23] At steady state, fracture-matrix flow under the double-

porosity conceptualization is no longer occurring, and the flow

through a double-porosity medium becomes flow through the

fracture system only. The steady state flow solution can then be

derived for a problem of fluid flow from a fully penetrating well in a

finite, radial system, subject to a constant outer boundary pressure.

@

@r
r Pf

� �
r v

� �
¼ 0; ðA1Þ

where v is volumetric flow rate along the r direction. At the outer

boundary (r = re),

Pf r ¼ reð Þ ¼ Pi constantð Þ ðA2Þ

and at the inner boundary of the well bore, r = rw, the fluid is

produced at a constant mass (not volumetric) rate,

2prwh r vr½ �r¼rw
¼ qm constantð Þ: ðA3Þ

Integrating (A1) and using the well boundary condition (A3) and

the following relation

v ¼ 1

2kf rb
�mþ m2 þ 4k2f rb

@Pf

@r

� �1=2
" #

; ðA4Þ

we will have

4k2f rb
@Pf

@r
¼ 2m

kf qmb
ph

1

r
þ kf qmb

ph
1

r

� �2

: ðA5Þ

Assuming a constant density, integrating (A5), and using the outer

boundary condition, we will have the steady state solution of (15)

(in terms of dimensionless variables). For a general case that the

density is a function of pressure, the steady state solution is given

by Wu [2002].
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