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Abstract

This paper presents an efficient massively parallel scheme for modeling large-scale multiphase flow, multicomponent transport

and heat transfer in porous and fractured reservoirs. The new scheme is implemented into a parallel version of the TOUGH2 code

and the numerical performance is tested on a Cray T3E-900 (a distributed-memory parallel computer with 692 processors) and IBM

RS/6000 SP (a distributed-memory parallel computer with 3328 processors). The efficiency and robustness of the parallel-computing

algorithm are demonstrated by completing three over-million-cell simulations using site-specific data for site characterization. The

first application is the development of a three-dimensional unsaturated zone numerical model simulating flow of moisture in the

unsaturated zone of Yucca Mountain, Nevada; the second problem is the modeling of flow of moisture, gas, and heat at the same

site. The third application is the study of flow-focusing phenomena through fractures for the same site. Simulation results show that

the parallel-computing technique enhances modeling capability by several orders of magnitude in speedup of computing times for

large-scale modeling studies. Published by Elsevier Science Ltd.
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1. Introduction

Even with the significant advances made in both
computational algorithms and computer hardware in
reservoir modeling studies over the past half century,
large-scale simulation of multiphase fluid and heat flow
in heterogeneous reservoirs remains a challenge. The
problem commonly arises from intensive computational
efforts required for solving large sparse-matrix systems
of highly nonlinear, discrete equations, resulting from
detailed modeling investigations of reservoirs. In a
continual effort to improve performance of reservoir
simulators, massively parallel computing techniques
have been developed that show promise in overcoming
the limitations (such as constraints on problem size, and
CPU time and space resolution) of reservoir simulation
using reservoir simulators running on single-processor
computers. High-performance, parallel-computing tech-

niques have gradually received more attention in
reservoir simulation and groundwater modeling com-
munities, and a great deal of research effort has been
devoted to this area in the past few decades.

Motivated by the desire to perform large-scale res-
ervoir simulations using shared memory and distributed
memory machines, researches on parallel reservoir sim-
ulation took place in the early 1980s. Those earlier re-
searches, primarily in petroleum engineering (e.g.,
[6,25,27,44]), were focused on improving modeling ca-
pabilities. They used the then supercomputer’s capabil-
ity of vectorization with very different approaches to
enhance modeling capabilities for dealing with large
reservoir problems, as summarized by Coats [9].

More serious attempts to improve parallel-computing
schemes and their applications were not made until the
late 1980s and early 1990s. During this period of de-
velopment, significant progress was made in several ar-
eas, including improvement in algorithms for
parallelization [3,31,41,42,50], implementation into
simulators using different computers [8,24,54], and ap-
plications to large-scale reservoir problems [45]. The
parallel-computing techniques were implemented into
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black-oil type simulators with the IMPES solution
scheme and compositional models (e.g., [5]). The largest
problem (containing more than one million gridblocks)
was demonstrated [59]. In the same time period, work
on improving numerical algorithms associated with
parallel computing was also carried out [4,28].

Up to the mid-1990s, progress in parallel computing
was continuous. Several more sophisticated and efficient
parallel reservoir simulators were developed [19–21];
and so were techniques for linear equation solution [26].
By the late 1990s, the parallel-computing reservoir-
simulation technology was further improved and be-
came more mature [12,53]. No longer relying solely on
the mainframe multi-CPU or vector supercomputers, as
in the early stage, distributed-memory parallel simula-
tions were successfully implemented into and performed
by Workstation clusters [23] and PC clusters [51]. Re-
alistic field applications of parallel simulation techniques
were demonstrated with multimillion gridblocks or
megacell reservoir simulation [49].

In recent years, the demand on modeling capability in
the fields of groundwater analysis, subsurface contami-
nation study, environmental assessment, and geother-
mal engineering investigation has increased rapidly with
the increase in computational intensity, as required by
efforts in detailed site characterization and reliable per-
formance assessment. Modeling capabilities based on
the traditional single-CPU simulators have reached their
limits with regard to what can be accomplished on those
platforms. The high-performance computing technology
has been increasingly viewed as an important, alterna-
tive modeling approach to resolving large-scale simula-
tion problems [34]. Several parallel-computing methods
have been developed and applied in these fields, in-
cluding high-performance simulation of groundwater
flow and contamination transport [1,29,35,46,58,62],
multiphase flow modeling [15,61], algorithm develop-
ment [2], and geothermal engineering application [60].

Despite significant progress in developing high-per-
formance modeling tools over the past few decades,
parallel-computing techniques have not been as widely
applied in reservoir simulation as the traditional, one-
processor simulators. One of the reasons for this may be
the rapid advance in computing hardware, such as PCs
and workstations, during the same period. Many types
of small-to-intermediate-size reservoir problems can be
adequately handled using a PC or workstation, which is
much more affordable and available than a supercom-
puter. Secondly, many earlier-developed parallel
schemes are machine dependent and are too difficult to
implement on different computers or architectures.
Perhaps more importantly, the reluctance to use parallel
computing stems from the lack in development of effi-
cient parallel schemes that can meet the needs of reser-
voir simulation. The severely nonlinear nature of
reservoir dynamics, created by multiphase, multicom-

ponent, and heat flow through heterogeneous porous
media, poses a serious challenge to parallel-computing
methodology. This is because the domain-partitioning
scheme used in parallel computing may introduce ad-
ditional non-linearity, as shown in two example prob-
lems of this work, to the global discretized equation for
describing a fully coupled physical system, while han-
dling many extra cross-bound flux terms between par-
titioned grid domains. This additional perturbation to
the equation system from parallelization may sometimes
override the numerical performance benefit from par-
allel computing itself, when solving highly nonlinear
problems using non-Newton iteration or a less than fully
implicit scheme. This may explain why parallel-com-
puting technology has found more general application in
solving geophysical inversion problems than in reservoir
simulation, because equations governing geophysical
processes are generally more linear than those for res-
ervoir flow and transport.

Recent development in reservoir simulation and
groundwater modeling identifies several rapidly growing
areas of interest. These are: (1) a scaleup to simulate an
oil or gas reservoir with a detailed, multimillion-to-
multibillion-cell geological model [11,30]; (2) history-
match, inverse, and optimization modeling for a
reservoir with a long, complex production history that is
subject to various physical and chemical processes; (3)
application of Monte Carlo or other geostatistical
modeling approaches; and (4) site characterization and
long-term prediction of flow and transport processes in
highly heterogeneous fractured media [57]. All of these
model applications pose strenuous demands on model-
ing capability and numerical performance of reservoir
simulators. In addition, future modeling investigations
will tend to be more focused on analysis of fluid flow,
multicomponent transport and heat transfer using
much-refined grids with detailed spatial and temporal
resolution, and a comprehensive description of complex
geological, physical, and chemical processes at actual
field sites. Therefore, continuous improvement in high-
performance modeling tools is currently needed in both
research and application.

In an effort to improve the current parallel-computing
technology, this paper describes a new massively parallel
computing scheme for conducting large-scale multi-
phase and multicomponent reservoir simulation. The
primary objective of the new development is to present a
machine- or platform-independent parallel algorithm
that can be easily implemented into a mainframe su-
percomputer, a multi-processor workstation, or a cluster
of PCs or workstations. Secondly, this work is intended
to overcome numerical problems with the efficiency and
robustness characteristic of the developed parallel-
computing technology for handling severely nonlinear
problems of multiphase flow and heat transfer in porous
media. These goals are achieved by integrating and
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optimizing the following procedures: (1) efficient do-
main partitioning; (2) parallel Jacobian calculations; (3)
parallel-solving linearized equation systems; (4) fast
communication and data exchange between processors;
and (5) efficient memory sharing among processors.

This work presents our continual effort towards im-
proving parallel reservoir simulation technology [14].
We here further develop and enhance the capabilities of
a parallel version of the TOUGH2 family of codes [38]
and evaluate the software on large-scale real-world ap-
plication problems on Cray T3E and IBM SP massively
parallel (MPP) computers. TOUGH2 is a general-pur-
pose numerical simulation program for modeling mul-
tidimensional, multiphase, multicomponent fluid and
heat flows in porous and fractured media. The parallel
version of the TOUGH2 code preserves all the capa-
bilities and features of its original one-processor version,
based on the integral finite difference (IFD) method [33]
for spatial discretization using an unstructured grid.
Time is handled fully implicitly, and the resulting dis-
cretized nonlinear system of IFD equations for mass
and energy balances is solved using the Newton method
with an iterative or direct sparse matrix solver.

This paper presents an implementation and applica-
tion of the massively parallel version of the TOUGH2
code. Also discussed are the efforts in reducing memory
constraints by individual processors and in optimization
to solve extremely large simulation problems. Applica-
tion of the proposed parallel scheme is demonstrated
through modeling three unsaturated flow problems at
the Yucca Mountain site, a potential repository site for
a high-level nuclear waste. The first two examples use a
large, mountain-scale 3-D model, consisting of more
than 106 gridblocks and 4 � 106 connections (interfaces),
to simulate isothermal unsaturated flow, and noniso-
thermal flow of water, air and heat in an unsaturated
zone domain of about 43 km2 in area and 500–700 m in
thickness of highly heterogeneous and fractured tuffs. In
addition, these two test problems are also used to eval-
uate the numerical performance of the parallel scheme.

The third example is a study of the phenomena as-
sociated with focusing flow and discrete flowpaths
through fractures at a potential repository. The 3-D
model domain ð50 m � 50 m � 150 mÞ is discretized
into two million gridblocks for detailed modeling
analyses of fractures on the scale of average fracture
spacing, which cannot be simulated using the single-
processor code. Simulation results for the three appli-
cations indicate that the parallel-computing technique
implemented in TOUGH2 code is very efficient for both
computing speedup and memory usage. Furthermore,
results obtained with the refined-grid models provide
detailed predictions of the ambient flow conditions as
well as fracture flow behavior at the site, predictions that
would not be possible to obtain with the single-proces-
sor version of the code.

2. Methodology and implementation

The massively parallel computing technique of this
work is based on a fully implicit formulation with
Newton iteration and an ILU-based sparse iterative
solver with BiCGSTAB/GMRES acceleration. This is
because the fully implicit scheme has proven to be the
most robust numerical approach in modeling multi-
phase flow and heat transfer in reservoirs over the past
several decades. For a typical simulation with the fully
implicit scheme and Newton iteration, such as within the
TOUGH2 run, the most time-consuming steps of the
execution consist of two parts that are repeated for each
Newton iteration: (1) assembling the Jacobian matrix
and (2) solving a linear system of equations. Conse-
quently, one of the most important aims of a parallel
code is to distribute computational time for these two
parts. In addition, a parallel scheme must take into ac-
count grid node/element domain partitioning, grid node/
element reordering, data input and output optimizing,
and efficient message exchange between processors.
These important parallel strategies and implementation
procedures are discussed below.

2.1. Grid domain partitioning and gridblock reordering

Developing an efficient and effective method for
partitioning unstructured grid domains is a first, critical
step for a successful parallel scheme. In order to obtain
optimal performance, the partitioning algorithm should
ideally take the following five issues into account: (1)
even computational load balance; (2) minimize the av-
erage (or total) communication volume; (3) even load
balance in communication volume; (4) minimize the
average (or total) number of neighboring processors; (5)
even load balance in the number of neighboring pro-
cessors. To find an optimal trade-off between these five
issues, computer system characteristics, such as floating-
point performance, and bandwidth and latency of the
communication subsystem, must be taken into account.
As this is a very complex problem, in general commonly
used algorithms and software for partitioning large grids
do not take all five issues into account. The current
practice typically finds a trade-off between computation
load balance and low total communication volume, even
though they may not be theoretically optimal. More
discussion on these issues and results for some state-of-
the-art software is given in [13].

In a TOUGH2 simulation, a model domain is rep-
resented by a set of three-dimensional gridblocks (or
elements), and the interfaces between any two grid-
blocks are represented by connections. The entire con-
nection system of gridblocks is treated as an
unstructured grid. From the connection information of
a gridblock, an adjacency matrix can be constructed.
The adjacency or connection structure of the model
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meshes is stored in a compressed storage format (CSR).
Fig. 1(a) shows the connection of a 12-element domain;
Fig. 1(b) illustrates its corresponding CSR-format ar-
rays.

We utilize three partitioning algorithms of the ME-
TIS package (version 4.0) [22] for our grid domain
partitioning. The three algorithms are here denoted as
the K-way, the VK-way, and the Recursive partitioning
algorithm. K-way is used for partitioning a global mesh
(graph) into a large number of partitions (more than 8).
The objective of this algorithm is to minimize the
number of edges that straddle different partitions. If a
small number of partitions are desired, the Recursive
partitioning method, a recursive bisection algorithm,
should be used. VK-way is a modification of K-way, and
its objective is to minimize the total communication
volume. Both K-way and VK-way are multilevel parti-
tioning algorithms.

Fig. 1(a) shows a scheme for partitioning a sample
domain into three parts. Gridblocks are assigned to
particular processors through partitioning methods and
reordered by each processor to a local index ordering.
Elements corresponding to these blocks are explicitly
stored in the processor and are defined by a set of indices
referred to as the processor’s update set. The update set is
further divided into two subsets: internal and border.
Elements of the internal set are updated using only the
information on the current processor. The border set
consists of blocks with at least one edge to a block as-
signed to another processor. The border set includes
blocks that would require values from other processors
to be updated. The set of blocks not in the current
processor, but needed to update components in the
border set, is referred to as an external set. Table 1 shows

the partitioning results, and one of the local numbering
schemes for the sample problem presented in Fig. 1(a).

Local numbering of gridblocks is carried out to fa-
cilitate the communication between processors. The
numbering sequence is internal blocks, followed by
border blocks, and finally by the external set. In addi-
tion, all external blocks from the same processor are in
consecutive order.

Only nonzero entries of a submatrix for a partitioned
mesh domain are stored on the processor. In particular,
each processor stores only the rows that correspond to
its update set. These rows form a submatrix whose en-
tries correspond to variables of both the update set and
the external set defined on this processor.

2.2. Organization of input and output data

The input data include hydrogeologic parameters and
constitutive relations of porous media such as absolute
and relative permeability, porosity, capillary pressure,
thermophysical properties of fluids and rock, and initial
and boundary conditions of the system. Other process-
ing requirements include specification of space-discret-
ized geometric information (grid) and various program
options (such as computational and time-stepping pa-
rameters). In general, a large-scale, three-dimensional
simulation requires at least several gigabytes of memory
and the memory requirements should be distributed to
all processors at input.

To make efficient use of the memory of each pro-
cessor (considering that each processor has limited
memory available), the input data files for the TOUGH2
simulation are organized in sequential format. There are
two large groups of data blocks within a TOUGH2
mesh file, one with dimensions equal to the number of
gridblocks and the other with dimensions equal to the
number of connections (interfaces). Large data blocks
are read one by one through a temporary full-sized array
and then distributed to PEs (Processing Elements or
processors). This method avoids storing all input data in
a single PE (which may be too small) and greatly

Fig. 1. An example of domain partitioning and CSR format for

storing connections. (a) 12-elements domain partitioning on 3 pro-

cessors, (b) CSR format.

Table 1

Example of domain partitioning and local numbering

Update External

Internal Border

Processor 0

Gridblocks 1 2 3 4 5 7 10

Local numbering 1 2 3 4 5 6 7

Processor 1

Gridblocks 8 9 7 10 2 3 11

Local numbering 1 2 3 4 5 6 7

Processor 2

Gridblocks 6 12 5 11 4 10

Local numbering 1 2 3 4 5 6
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enhances the I/O efficiency. Other small-volume data,
such as simulation control parameters, are duplicated on
all PEs.

Initialization parts of the parallel code require full-
connection information such as for domain partitioning
and local-connection index searching. These parts can
exhaust the memory requirement for solving a large
problem. Since the full-connection information is used
only once at the beginning of a simulation, it may be
better to handle these tasks in a preprocessing proce-
dure.

2.3. Parallel computing strategy and program flowchart

In the TOUGH2 formulation, the discretization in
space and time using the IFD leads to a set of strongly
coupled nonlinear algebraic equations, which are solved
by the Newton method. Within each Newton iteration,
the Jacobian matrix is first constructed by numerical
differentiation. The resulting system of linear equations
is then solved using an iterative linear solver with dif-
ferent preconditioning procedures. The following is a
brief discussion of our parallel algorithm for assembling
and solving the linear systems of equations.

The fundamental goal of reservoir simulators is to
solve spatially discretized, nonlinear equations of mass
and energy, governing flow and transport processes in
porous media. These discrete mass and energy balance
equations solved by the TOUGH2 code can in general
be written in residual form [37,38]:

Rj
nðxtþ1Þ ¼ Mj

n ðxtþ1Þ �Mj
n ðxtÞ

� Dt
Vn

X
m

AnmF j
nmðxtþ1Þ

(
þ Vnqj;tþ1

n

)
¼ 0;

ð1Þ

where the vector xt consists of primary variables at time
t, Rj

n is the residual of component j (heat is also re-
garded as a ‘‘component’’) for block n, M denotes mass
or thermal energy per unit volume for a component, Vn
is the volume of the block n, and q denotes sinks and
sources of mass or energy. In addition, Dt denotes the
current time step size, t þ 1 denotes the current time, Anm

is the interface area between blocks n and m, and Fnm is
the flow between them. Eq. (1) is solved using the
Newton method, leading to

�
X
i

oRj;tþ1
n

oxi

�����
p

xi;pþ1

�
� xi;p

�
¼ Rj;tþ1

n ðxi;pÞ; ð2Þ

where xi;p represents the value of ith primary variable at
the pth iteration.

The Jacobian matrix as well as the right-hand side of
(2) needs to be recalculated at each Newton iteration,
and thus computational efforts may be extensive for a
large simulation. In the parallel code, the assembly of

linear equation system (2) is shared by all the processors,
and each processor is responsible for computing the
rows of the Jacobian matrix that correspond specifically
to blocks in the processor’s own update set. Computa-
tion of the elements in the Jacobian matrix is performed
in two parts. The first part consists of computations
relating to individual blocks (cumulative/source/sink
terms). Such calculations are carried out using the in-
formation stored on the current processor and no
communications with other processors are needed. The
second part includes all computations relating to the
connections or flow terms. Calculation of flow terms at
elements in the border set needs information from the
external set, which requires communication with
neighboring processors. Before performing these com-
putations, an exchange of relevant primary and
secondary variables is required. For elements corre-
sponding to border set blocks, one processor sends these
elements to other related processors, which receive these
elements as external blocks.

The Jacobian matrix for local gridblocks in each
processor is stored in the distributed variable block row
(DVBR) format, a generalization of the VBR format [7].
All matrix blocks are stored row-wise, with the diagonal
blocks stored first in each block row. Scalar elements of
gridblocks are stored in column major order. The data
structure consists of a real vector and five integer vec-
tors, forming the Jacobian matrix. Detailed explanation
of the DVBR data format can be found in [47].

The linearized equation system arising at each New-
ton step is solved using an iterative linear solver from
the Aztec package [47] with several different solvers and
preconditioners to be selected. The work solving the
global linearized equation is shared by all processors,
with each processor responsible for solving its own
portion of the partitioned domain equations.

During a simulation, the time steps are automatically
adjusted (increased or reduced), depending on the con-
vergence rate of iterations. In the parallel version code,
the time-step size is calculated at the first processor
(master processor, named PE0) after collecting neces-
sary data from all processors. The convergence rates
may be different in different processors. Only when all
processors reach stopping criteria will the time march to
the next time step. At the end of a time step or a sim-
ulation, the solutions obtained from all processors are
then transferred to the master processor for output.

Communication of data between processors working
on neighboring or connected gridblocks, partitioned into
different domains, is an essential component of the
parallel algorithm. Moreover, global communication is
also required to compute norms of vectors, contributed
by all processors, for checking the convergence. In ad-
dition to the communication that takes place inside the
Aztec routine to solve the linear system, communication
between neighboring processors is necessary to update
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primary and secondary variables (for example, a new
Jacobian matrix is calculated for each Newton iteration).
A subroutine is used to manage data exchange between
processors. When the subroutine is called by a processor,
an exchange of vector elements corresponding to the
external set of the gridblocks is performed. During time
stepping or Newton iteration, exchange of external
variables is also required for the vectors containing
the primary and secondary variables. More discussion
on the scheme used for data exchange is given in [14].

Fig. 2 shows an abbreviated overview of the program
flowchart for the parallel version of TOUGH2, which is
similar to the original version of the software [38]. Dy-
namic memory management, modules, array operations,
matrix manipulation, and other FORTRAN 90 features
are implemented on the parallel code. In particular, the
message-passing interface (MPI) library [32] is used for
message passing. Another important modification to the
original code is in the time-step looping subroutine. This
subroutine now provides general control of problem

Fig. 2. Simplified flowchart of the parallel version TOUGH2.
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initialization, grid partitioning, data distribution,
memory requirement balancing among all processors,
time stepping, and output options.

As shown in Fig. 2, all data input and output are
carried out through the master processor, while the most
time-consuming efforts (assembling the Jacobian matrix,
updating thermophysical parameters, and solving the
linear equation systems) are distributed to all proces-
sors. In addition, the memory requirements are also
distributed to all processors. The effort of distributing
both computing and memory requirements is essential
for solving large-scale field problems.

2.4. Specification of initial and boundary conditions

Similar to a simulation using a one-processor code,
the initial status of a multiphase system for the parallel
version needs to be specified by initially assigning a
complete set of primary variables to each gridblock. A
commonly used procedure for specifying a capillary-
gravity equilibrium condition is the restart option, in
which a complete set of initial conditions is produced in
a previous simulation with appropriate boundary con-
ditions.

First-type or Dirichlet boundary conditions denote
constant or time dependent phase pressure and satura-
tion, mass fraction, and temperature conditions. These
types of boundary conditions can be treated using the
large-volume method, in which a constant pressure/sat-
uration/concentration/temperature node is specified
with a numerically large volume (while keeping all other
geometric properties of the mesh unchanged). However,
caution should be taken to: (1) identify phase conditions
when specifying the ‘‘initial condition’’ for the large-
volume boundary node and (2) distinguish upstream/
injection from downstream/production nodes. Once
specified, primary variables will be fixed at the large-
volume boundary nodes, and the code handles these
boundary nodes exactly like any other computational
nodes. This physical-based treatment is easily handled
by the parallel scheme as part of grid-domain parti-
tioning initialization efforts.

Flux-type or Neuman boundary conditions are trea-
ted as constant or time-dependent sink/source terms,
depending on the pumping (production) or injection
condition, which can be directly added to Eq. (2). These
terms are all implemented fully implicitly. This treat-
ment of flux-type boundary conditions is especially
useful when flux distribution along the boundary is
known such as when dealing with surface infiltration.
This method may also be used for an injection or
pumping well connected to a single gridblock without
injection or pumping pressures to be estimated. More
general treatment of multilayered well conditions of
production or injection for reservoir simulations can be
handled using the virtual node method, as discussed in

[55]. In this approach, a well connecting to many grid
layers of production or injection is handled essentially
by preprocessing mesh connection data, taking advan-
tage of an unstructured TOUGH2 grid. This treatment
is also parallelized with the grid-domain partitioning
effort.

2.5. Handling fractured media

The TOUGH2 family of codes is equipped with a
generalized technology for modeling flow and transport
through fractured rock, based on the dual-continuum
methodology [39,52]. This method treats fracture and
rock-matrix flow and interactions, using a multi-con-
tinuum numerical approach, including the double- or
multiporosity, the dual-permeability, and the more
general ‘‘multiple interacting continua’’ (MINC) meth-
od.

The TOUGH2 model formulation and the parallel
implementation are applicable (as discussed above) to
both single-continuum and multi-continuum media. The
TOUGH2 technology of handling flow in fractured
reservoir by preprocessing a mesh to represent fracture
and matrix domains [40] is directly applied to parallel
simulation.

Once a proper mesh for the fracture-matrix system is
generated, fracture and matrix blocks are specified to
represent fracture or matrix domains, separately. For-
mally, they are treated exactly the same during grid
partitioning or solution in the model (i.e., handled as a
special case of the unstructured grid). However, physi-
cally consistent fracture and matrix properties, weight-
ing schemes, and modeling conditions must be
appropriately specified for fracture and matrix systems,
respectively.

3. Application examples

We present three testing examples in this section to
investigate computational performance and to demon-
strate application of the parallel scheme. The three ex-
amples include:
(1) 3-D isothermal moisture flow in unsaturated frac-

tured rock using more than one million gridblocks.
(2) 3-D gas, water and heat flow in unsaturated frac-

tured rock using more than one million gridblocks.
(3) 3-D unsaturated liquid flow through fractures us-

ing Richards’ equation and two million grid-
blocks.

3.1. 3-D site-scale example for unsaturated fluid flow

This large-scale 3-D model is used to evaluate the
numerical performance of the parallel scheme and to
demonstrate its application to modeling three-dimen-
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sional flow within the unsaturated zone at Yucca
Mountain, Nevada. The problem is based on the
site-scale model developed for investigations of the un-
saturated zone at Yucca Mountain, Nevada [56,57]. It
concerns unsaturated flow through fractured rock under
the ambient condition, using a 3-D, unstructured grid
and a dual-permeability approach for handling fracture-
matrix interactions. The unsaturated zone of Yucca
Mountain has been investigated as a potential subsur-
face repository for storage of high-level radioactive
wastes. The model domain of the unsaturated zone en-
compasses approximately 40 km2 of the Yucca Moun-
tain area is between 500 and 700 m thick, and overlies a
relatively flat water table.

The 3-D model domain and the numerical grid used
for this example are shown in plan view in Fig. 3. The
irregular model grid uses a relatively fine gridblock size
in the middle, repository, area and includes several
nearly vertical faults. It has about 9900 blocks per grid

layer representing both fracture and matrix continua,
respectively, and about 60 computational grid layers in
the vertical direction from land surface to water table.
This results in a total of 1,075,522 gridblocks and
4,047,209 connections. A distributed-memory Cray
T3E-900 computer equipped with 692 processors was
used for this simulation example. Each processor of the
computer has about 256 MB memory available and is
capable of performing 900 million floating operations
per second (Mflops/s).

The ground surface is regarded as the top model
boundary, and the water table is regarded as the bottom
boundary. Both top and bottom boundaries of the
model are set as Dirichlet-type conditions. In addition,
on the top boundary, a spatially varying water infiltra-
tion is applied to describe the net water recharge, with
an average infiltration rate of 4.6 mm/yr over the model
domain. The properties used for rock matrix and frac-
tures for the dual permeability model, including two-

Fig. 3. Plan view of the 3-D site-scale model domain, gird and incorporated major faults.
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phase flow parameters of fractures and matrix, were
estimated from field tests and model calibration efforts,
as summarized in [56].

Continual site characterization efforts show that
fractured and matrix rocks at the site are extremely
heterogeneous on any spatial scales from centimeter to
kilometer. Flow characteristics within fracture and ma-
trix systems are entirely different, because there are
several-order-of-magnitude differences in permeability
and water potentials between the two systems. There-
fore, percolation through the two systems is also on very
different time scales. In addition, moisture flow pro-
cesses in the unsaturated zone are further complicated
by existence of many high-permeability fault zones and
low-permeability perched water areas. All of these, as
demonstrated in previous modeling efforts, make solving
the highly nonlinear equation for governing moisture
flow at the site a computational challenge.

The linear system of equations arising at each New-
ton iteration is solved by the stabilized bi-conjugate
gradient method. A domain decomposition-based pre-
conditioner with ILUT [43] incomplete LU factorization
was selected for preconditioning, and the K-way parti-
tioning algorithm was used for partitioning the problem
domain. The convergence criterion used for the iterative
linear solver is

krk2

kbk2

6 10�6; ð3Þ

where k � k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 r
2
i

p
, n is the total number of un-

knowns, and r and b are the residual and right-hand
side, respectively.

The problem was designed to obtain the steady-state
solution using the parallel code and to evaluate the code
performance and improvement when using different
numbers of processors. The simulation was conducted for
200 time steps. We ran the problem as a single-phase flow
(water with Richards’ equation using the EOS9 module
of TOUGH2). The entire simulation was run on 64 pro-
cessors for 3684 time steps to reach steady state, which
was confirmed by examining the global mass balance.

The percolation flux through the repository horizon
and below is one of the most important considerations in
evaluating repository performance. Fig. 4 shows a
comparison of the simulated flux distributions (Fig. 4(a))
along the repository, using the refined-grid model and
parallel version of TOUGH2 (this work) and comparing
its results to the coarse-grid results from 100,000 grid-
blocks for the same geological domain (Fig. 4(b)) [56,
nonparallel version]. In the figure, the dark blue color
indicates higher values of percolation fluxes. The flux is
defined in the figures as total mass flux through both

Fig. 4. Distribution of simulated vertical liquid fluxes at repository horizon: (a) using the refined-rid model (Fig. 3); (b) using the coarse-grid model

[56].
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fractures and matrix. Comparison of the simulation re-
sults in Figs. 5(a) and (b) indicates that the two models
predict very different flow patterns in the repository area
(along the middle of the model domain – see Fig. 3). The
refined-grid model, with its much higher resolution,
predicts much smaller percolation fluxes within the re-
pository area. This indicates that more significant lateral
flow occurs in the upper unit, above the repository ho-
rizon, when simulated by the refined grid model using the
finer vertical grid spacing in these layers. These results
will have a direct impact on performance assessment.

In performance evaluation, the unsaturated flow
problem was solved using 32, 64, 128, 256, and 512
processors, respectively. Because of the automatic time-
step adjustment, based on the convergence rate of the
iteration process, the cumulative length of simulation
times over 200 time-steps with different numbers of
processors may be slightly different. However, the
computational targets and efforts are similar, and com-
paring the performance of different numbers of proces-
sors with the same number of time steps is reasonable
for evaluating the parallel-computing efficiency.

Table 2 shows the improvement (or reduction) in the
total execution time as the number of processors in-
creases. Simulations were run from 32 processors up to
512 processors by repeatedly doubling the number of
processors. Clearly, the execution time is significantly
reduced with the increase in processors. Table 2 also lists
the times used for different computational tasks using

different numbers of processors. When fewer than 128
processors are used, doubling the processor number
reduces the total execution time by about a half. From
the table, we can find that the best parallel performance
is achieved in solving linear-equation systems. Note that
data input and output of the program were carried out
using a single processor; using a different number of
processors might produce different overheads.

Fig. 5 illustrates the speedup of the parallel-code
simulation versus processor numbers used. The speedup
is defined to be relative to the performance of 32 pro-
cessors as 32T32=Tp, where Tp denotes the total execution
time using p processors. Speedup factors using 32–64,
128, 256, and 512 processors are 2.63, 2.16, 1.87, and
1.54, respectively. Better than linear speedup appears
when the processor number doubles from 32 to 64, and
to 128 with a speedup of 2.63 and 2.16. The overall
speedup for 512 processors is 523. This behavior was
extensively analyzed, including performance results for
the different parts of the execution (hot spot analysis),
for smaller problems in [14]. This follows from the fol-
lowing characteristics of the preconditioned linear sol-
ver. As the number of processors used increases, the size
of a local domain for each processor decreases, which in
turn has two effects. First, the effect of the precondi-
tioner is decreased, so that the number of iterations in
the linear solver increases. Second, the amount of work
for computing the preconditioner is decreased as the
ILUT factorization is only performed on the diagonal
blocks of the Jacobian matrix (corresponding update
elements). As the domains gets more and smaller, the
ILUT factorization is computed on a more and more
narrow block diagonal matrix, leaving more and more
elements out of the computation. Most often, this effect
is neglected as the reduced work for computing the
preconditioner is often over-compensated by the in-
creased amount of work by additional iterations in the
linear solver. What is observed here (and in [14]) is that,
up to a certain number of processors, the reduction in
work from the second effect is large enough to influence
the characteristics of the whole execution. As the num-
ber of processors grows, this effect is gradually reduced.

In comparison, the time requirement for the model-
setup phase (input, distribution, and initialization) in
Table 2 increases when the processor number is doubled

Fig. 5. Speedup for the 3-D site-scale model of isothermal unsaturated

flow as function of number of processors used.

Table 2

Statistics of execution times (s) and iterations for the 3-D site-scale model problem of isothermal unsaturated flow for 200 time steps, using different

numbers of processors

Number of processors 32 64 128 256 512

Input, distribution, and initialization 592.3 248.1 116.5 84.3 134.3

Update thermophysical parameters and setup Jacobian matrix 2659.2 1420.8 764.6 399.5 260.0

Solve linear equations 6756.7 2078.7 806.6 373.4 188.0

Total execution time 10,100.5 3844.3 1780.8 950.6 618.0

Total Newton iterations 415 415 424 424 423

Total Aztec iterations of solving linear equations 5059 5520 5735 6353 6281
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from 256 to 512 (instead of generally decreasing). It
indicates that a saturation point has been reached. These
results from the increased communication overhead
when increasing the number of processors such that we
reach a point when the time saved from more processors
in work sharing may be cancelled by communication
overheads.

The partitioning algorithm may also significantly
impact parallel code performance. It is generally de-
sirable to distribute gridblocks evenly among the pro-
cessors, with not only approximately the same number
of internal gridblocks, but also roughly the same
number of external blocks per processor. In our ex-
ample, the domain-partitioning scheme implemented in
the parallel code divided gridblocks almost evenly
among processors. For example, on 128 processors, the
average number of internal blocks is 8402 at each
processor, with the maximum number 8657 and the
minimum number 8156. It is only about a 6% differ-
ence between the maximum and minimum number.
However, a close examination shows that considerable
imbalance exists in the number of external blocks,
which makes using unstructured grids difficult. The
average number of external blocks is 2447, while the
maximum number is as large as 3650 and the minimum
as small as 918. This large range indicates that the
communication volume can be four times higher for
one processor than another. The imbalance in com-
munication volume may lead to a considerable amount
of time wasted on waiting for certain processors to
complete their jobs during a solution. It was found [14]
that the partitioning algorithms in the METIS package
are generally effective in distributing the workload, but
may result in certain imbalances between processors in
terms of communication volume and number of mes-
sages.

3.2. 3-D site-scale example for two-phase fluid and heat
flow

This second example is used to evaluate the nu-
merical performance of the parallel scheme for highly
nonlinear, two-phase fluid and heat flow in fractured
rock. The model domain, geological model, numerical
grid, and modeling for this problem are the same as the
previous unsaturated flow case (Section 3.1). The dif-
ference is that the current problem models flows of
water, gas and heat in a two active phase system using
the multicomponent EOS3 module. The previous ex-
ample handles only one active phase, using Richards’s
equation. Therefore, there are three equations per
gridblock, and a total of 3 � 1; 075; 522 equations need
to be solved per Newton iteration for the simulation.
For this problem, another distributed-memory IBM SP
computer equipped with 208 16–processor nodes (with

a total of 3328 processors) was used. The 16 processors
in each node of this computer share 16–64 GB mem-
ory, and each processor is capable of performing at 1.5
Gflops/s.

For practical application, the two-phase fluid and
heat flow model can be used to estimate the natural
hydrological and geothermal conditions at Yucca
Mountain. This is an important part of modeling in-
vestigations, because liquid and gas (air and vapor)
flow in the unsaturated zone of the mountain is af-
fected by ambient temperature changes, geothermal
gradients, and atmospheric and water table conditions.
The boundary conditions for the nonisothermal flow
model are treated similarly to those for the isothermal
unsaturated flow case of Section 3.1 (i.e., top and
bottom boundaries are treated as Dirichlet-type
boundaries). Also the top boundary is subject to a
spatially varying net water recharge. In addition, tem-
peratures and gas pressures are needed (in this case)
along these top and boundary surfaces. These constant
(but spatially varying) temperatures on the top and
bottom boundaries were determined from field obser-
vation [57]. On the other hand, pressure conditions at
the bottom boundary of the water table were also
calculated using observed gas pressure, whereas surface
gas pressures are not fixed until a steady state is
reached under given temperature, bottom pressure, and
surface infiltration conditions.

In this problem, we selected the same options for the
linear solver and the convergence tests as those used in
Section 3.1. However, the calculation was designed to
run to 1000 year simulation, using 16, 32, 64, 128, 256,
512 and 1024 processors, respectively.

Table 3 shows the statistics of parallel simulation
performance with different numbers of processors. A
comparison of the execution times (shown in Table 3),
spent in simulations using different numbers of proces-
sors, indicates significant improvements achieved in
numerical performance as processor numbers increase.
Overall, the results of Table 3 are similar to those in
Table 2: much more significant improvements are seen
with processor numbers not too large (6 256) for this
test problem. Again, the best numerical performance is
in solving the linear systems as well as Jacobian matrix
assembly.

Fig. 6 presents the speedup of the parallel-code
simulation versus processor numbers used in the testing
problem. Similarly, the speedup is defined to be relative
to the performance with 16 processors (i.e., equal to 16
for using 16 processors). Fig. 6 also shows a better
than linear speedup until the number of processors
reaches 512. However, the speedup curve (as shown in
Fig. 6) for more than 512 processors becomes flat,
which is very different from Fig. 5. This deterioration
in speedup performance using a larger number of
processors results primarily from the increasing
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communication in the linear solver. Since this perfor-
mance test is performed for a relatively short simulated
time, the one-time expense spent on the input, distri-
bution, and initialization phase also contributes to this
effect, as this part is relatively large for this problem.
For example, the one-time expense takes 35% of the
total execution time in the case of using 1024 proces-
sors, compared to 8.5% for 16 processors. Nevertheless,
the effect of this one-time expense on the input, distri-
bution, and initialization phase will diminish as total
simulation times or time steps increase.

Examination of iteration numbers of Newton and
linear solvers from Tables 2 and 3 indicates a general
trend of both iteration numbers increasing as the num-
ber of processors used increases. For the linear solver,
this effect is already explained by the reduced efficiency
of the preconditioner as individual processors local do-
mains become smaller. For the Newton iteration, an
interpretation is that the problem may become more
nonlinear, since all the simulations in comparisons were
performed using the identical criteria for time-stepping
and convergence. The increase in numbers required by
Newton and linear solution iterations may be caused by
additional stiffness introduced by more domain parti-
tioning.

3.3. Example of 3-D liquid flow through unsaturated
fractures

The third application is an analysis of flow focusing
and discrete flow paths within the unsaturated zone of
the Yucca Mountain site. Elevated levels of 36Cl origi-
nating from atmospheric nuclear tests conducted in the
1950s and 1960s were found at several locations in an
underground tunnel at Yucca Mountain [16], suggesting
that preferential flow pathways may exist in the unsat-
urated rock of the mountain. Flow focusing along these
preferential paths or well-connected fracture networks
may play an important role in controlling patterns of
percolation through highly fractured tuffs (such as in the
Topopah Spring welded tuff [TSw] unit, which will
house the repository drifts). Phenomena with flow fo-
cusing and discrete flowpaths in the TSw unit are thus
considered to be of significant importance to potential
repository performance [36].

Modeling of flow-focusing patterns is motivated by
the needs of performance analysis, because water per-
colation in this unit cannot be readily measured at the
site and has to be estimated using a model. On the other
hand, grid resolution in the site-scale flow model of Wu
et al. [56] or in the above example is generally too coarse
to capture such localized flow phenomena. To quantify
flow-focusing behavior, a stochastic fracture-continuum
model is developed here to incorporate fracture data
measured from the welded tuffs and to study flow allo-
cation mechanisms and patterns. In particular, the
model is used to assess the frequency and flux distribu-
tions of major water-bearing flow paths from the bot-
tom of the Paintbrush nonwelded (PTn) unit, a unit
immediately above the TSw.

The model domain of the 3-D flow problem, as
shown in Fig. 7, is a 50 m � 50 m � 150 m parallelepi-
ped, with the upper boundary at the bottom of the PTn
and the lower boundary at the repository horizon. The
dimension of the model was considered sufficient in the
horizontal direction because the correlation length for
variability in fracture permeability and spacing is
approximately 1 m. The 150 m vertical extent of the
model corresponds to an average distance from the in-
terface between the PTn and TSw units to the repository

Table 3

Statistics of execution times (s) and iterations for the 3-D site-scale model problem of nonisothermal two-phase fluid and heat flow for 1000 year

simulation, using different numbers of processors

Number of processors 16 32 64 128 256 512 1024

Input, distribution, and initialization 1277.5 363.6 142.0 88.3 83.3 107.3 160.8

Update thermophysical parameters and setup Jacobian matrix 1328.8 1130.6 350.8 182.6 150.4 101.1 70.0

Solve linear equations 12,364.3 6413.1 1687.8 812.4 329.2 207.7 168.8

Total execution time 14,997.8 7960.4 2234.9 1137.6 618.8 472.3 461.7

Total Newton iterations 63 97 65 65 97 97 97

Total time steps 30 62 30 30 62 62 62

Total Aztec iterations/PE of solving linear equations 2022 2609 2211 3864 3017 4072 3226

Fig. 6. Speedup for the 3-D site-scale model of nonisothermal two-

phase fluid and heat flow as function of number of processors used.
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horizon. The model covers five hydrogeological subunits
from TSw31 to TSw35. The bottom of the PTn was
chosen as the upper boundary because this unit behaves
as a porous medium, leading to more uniform percola-
tion flux to the units below. The four side boundaries are
treated as no-flux boundaries, whereas the bottom
boundary allows for gravitational drainage out of the
model.

A refined grid is generated with each gridblock size of
0:5 m � 0:5 m � 0:75 m, in the same order in dimension
as observed for fracture spacing. Such a refined grid
captures flow behavior through individual discrete
fractures. This leads to 2 � 106 gridblock elements and
6 � 106 connections with the 3-D grid.

In this study, several assumptions are made. The
fracture network is modeled as a heterogeneous con-
tinuum, and flow through the matrix is neglected. This
is because the matrix system in the unit has several-
order-of-magnitude lower permeability and sensitivity
studies indicate that the matrix has little impact under
steady-state flow conditions in the rock unit. In addi-
tion, we focus our attention on investigating effects of
heterogeneity fracture permeability only, because in
prior modeling studies on seepage into drifts [18],
heterogeneous-fracture-permeability fields are identified
as a major factor impacting drift seepage, and large
uncertainties exist with measured fracture permeability
data.

Fracture permeability is prescribed stochastically for
its spatial distribution, using measured air-permeability
data. A spherical semivariogram model with empirical
log-permeability semivariograms [10] is used to generate
a three-dimensional, spatially distributed fracture-per-
meability multiplier. The permeability factor is corre-
lated to each gridblock of 0:5 m � 0:5 m � 0:75 m, with
a correlation length of 1 m. (Details on the methodology
of generating stochastic fracture permeability at the site
are discussed in [17].) The fracture permeability actually
used is determined by multiplying the randomly gener-
ated multiplier to the fracture permeability (as a mean)
of the gridblock’s hydrogeological layer. The basic
fracture properties, other than the spatially varying
permeability multiplier, are assumed to be layer-wise
constant and listed in Table 4 for the five geological
layers (see Fig. 7).

In the table, kf is fracture continuum permeability, af

is van Genuchten’s parameter [48] of capillary pressure
for fractures, mf is van Genuchten’s parameter of frac-
ture retention curves, /f is fracture porosity, and Srf is
residual liquid saturation in fracture.

The flow model results discussed below correspond to
steady-state flow simulations carried out using the par-
allel TOUGH2 EOS9 module (Richards’ equation).
Different cases were run with the upper boundary pre-
scribed with uniform infiltration flux of 1, 5, 25, and 100
mm/yr, respectively.

Fig. 7. Schematic of the 3-D model domain for fracture flow focusing studies, showing geological layers and fracture permeability distribution along

a side surface.
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Fig. 8 shows the distributions of simulated liquid
fluxes extracted along a vertical slice from the 3-D
model results, with the infiltration rate of 5 mm/yr
specified on the top. The figure shows clearly that a
large number of high-flux (dark blue), nearly vertical
discrete flowing paths or weeps have developed along
the vertical section. However, the simulated vertical
flowpaths are generally short (less than 20 m) and
show a discontinuous and sparse pattern. The lack in
continuity throughout the vertical extent along the
high-flux flowpaths is primarily caused by the use of a
2-D plot to display 3-D flow results. Actual weeps may
flow freely into or from the third dimension, because

of one additional freedom in dimension with a 3-D
model. For comparison, Fig. 9 presents vertical flow
results simulated using a 2-D model. The 2-D model,
based on only one vertical cross-section of the 3-D
model, uses the same parameter sets and boundary
conditions as the 3-D model. Fig. 9 indicates that
somehow vertically continuous major pathways (or
weeps) appear in the upper layer (above the elevation
of )110 m), but considerable changes are present in the
lower layer. Comparison between the flow paths in
Figs. 8 and 9 indicates that the 3-D modeling study is
necessary for understanding the discrete-fracture
behavior.

Fig. 8. Distribution of vertical liquid flux within the 2-D vertical cross-section of the 3-D model domain (with the infiltration rate of 5 mm/yr

specified on the top boundary), indicating forming several high-flux, but short flow paths.

Table 4

Fracture properties used in the example problem

Model layer kf (m2) af (1/Pa) mf (–) /f (–) Srf (–)

TSw31 3.21E) 11 2.49E) 4 0.566 5.5E) 3 0.01

TSw32 3.56E) 11 1.27E) 3 0.608 9.5E) 3 0.01

TSw33 3.86E) 11 1.46E) 3 0.608 6.6E) 3 0.01

TSw34 1.70E) 11 5.16E) 4 0.608 1.0E) 2 0.01

TSw35 4.51E) 11 7.39E) 4 0.611 1.2E) 2 0.01
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Fig. 10 shows the horizontal distribution of simulated
percolation fluxes along the bottom boundary of the
model domain (i.e. on the repository level). The figure
indicates a significant variability in both flux values and
the sparseness of its distribution. The statistical analyses
on weeps distributions at the repository horizon, shown
in Fig. 10, will provide important input to the perfor-
mance assessment of the repository.

Table 5 presents a summary of execution times con-
sumed for two out of the four steady-state simulations
on the Cray T3E-900 machine. The other two runs are
not included in the table because they were interrupted
by other jobs, preventing accurate CPU times from be-
ing recorded. The statistics in Table 5 show that it took
about 2 h to complete a two-million-gridblock simula-
tion, demonstrating the efficiency of the parallel imple-
mentation. In addition, Table 5 shows that CPU times
used in calculations of secondary parameters and as-
sembly of the Jacobian are longer than those used in
solving linear equations for this problem. This is very
different from what we observe using a single-processor
simulator with the Newton iteration scheme. The same

behavior can also be found from Table 2, as the number
of processors increases. This is because of the increase in
overheads caused by communication between proces-
sors during the set up of the linear equation system.
Note that the longer execution times for the case 1 mm/
yr infiltration (compared with 25 mm/yr in Table 5) re-
sult from lower infiltration leading to a drier unsatu-
rated fracture or a more nonlinear problem. Therefore, a
smaller infiltration case takes in general a longer simu-
lation time for the example.

4. Summary and concluding remarks

This paper describes a new massively parallel
scheme, along with its implementation into the
TOUGH2 code and application examples to large-scale
reservoir simulations. We present a portable parallel
implementation in Fortran 77 and 90 using message
passing interface (MPI) for inter-processor communi-
cation. As MPI is currently available for all major
computing platforms, this ensures portability over a

Fig. 9. Distribution of vertical liquid flux magnitude within the vertical cross-section using 2-D model results (with the infiltration rate of 5 mm/yr

specified on the top boundary), indicating the forming of several high-flux and continuous flow paths.
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whole range of computers, including shared memory
machines, clusters of PCs or workstations and more
classical high performance computing systems. To fur-
ther improve the parallel performance, we devote in-
tensive effort to overcoming the efficiency problems
with existing parallel-computing technology in handling
highly nonlinear multiphase flow and heat transfer in
porous media. In particular, in the current scheme, both
computing and memory requirements are distributed
among and shared by all processors of a multi-CPU
computer or cluster. The best numerical performance
has been achieved by integrating and optimizing the
following procedures: (1) efficient domain partitioning;
(2) parallel assembly of the Jacobian matrix; (3) parallel
preconditioned iterative linear solver; (4) fast commu-

nication and data exchange between processors; and (5)
efficient utilization of the processors aggregated mem-
ory.

In this study, the efficiency and improvement derived
from parallel-computing technology are evaluated by
three large-scale applications of flow in the unsaturated
zone at Yucca Mountain. The first problem uses more
than a million gridblocks to develop a mountain-scale
moisture flow model. The second application models
two-phase (liquid and gas) and heat flow with the same
mountain-scale model. The third example is designed to
investigate detailed fracture behavior within the one
particular geological unit housing the repository drifts.
Test results conclude that the massively parallel com-
puting scheme of this work has achieved great im-

Fig. 10. Distribution of vertical liquid fluxes at the bottom boundary or the repository level (with the infiltration rate of 5 mm/yr specified on the top

boundary), indicating possible weeps patterns.

Table 5

Summary of execution times (s) used for two simulations of the 3-D fracture flow focusing problem, using 128 processors

Simulation 1 mm/yr infiltration 25 mm/yr infiltration

Input, distribution, and initialization 218 218

Update parameters and setup Jacobian matrix 4865 4655

Solve linear equations 2109 1194

Total execution time 8111 6960
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provement in computational efficiency and robustness
for dealing with highly nonlinear problems for large-
scale reservoir simulation problems and in particular has
enhanced our modeling capability significantly. The
parallel scheme implementation enables us to use much
more refined spatial discretization and obtain many
more insights into flow problems than coarse-grid
models would. None of the problems presented here
would be possible to solve without this parallel software.

Another intention of this work is to generate more
interest among scientists and engineers in studying and
applying parallel-computing techniques to solve
real-world modeling problems. Rapid advances in
computing-hardware technology make high-perfor-
mance computers (including PCs and workstations)
readily available for parallel-computing efforts. On the
other hand, ever-increasing demands on reservoir sim-
ulator performance efficiency (needed in conducting
detailed reservoir investigations) will lead to further
development and wider application of the parallel-
computing technology in the near future.
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