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Abstract. A numerical method as well as a theoretical study of non-Darcy fluid flow through porous
and fractured reservoirs is described. The non-Darcy behavior is handled in a three-dimensional, mul-
tiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation
for describing single-phase or multiphase non-Darcy flow and displacement. The non-Darcy flow
through a fractured reservoir is handled using a general dual-continuum approach. The numerical
scheme has been verified by comparing its results against those of analytical methods. Numerical
solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in
reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to
demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including
flow in petroleum and geothermal reservoirs.

Key words: non-Darcy flow, numerical reservoir simulation, well tests, multiphase flow, porous and
fractured reservoirs.

Nomenclature

a dimension of 1-D matrix blocks or x-directional dimension for 2-D or 3-D matrix
blocks (m).

b y-directional dimension for 2-D or 3-D matrix blocks (m).
c z-directional dimension for 3-D matrix blocks (m).
Cf fluid compressibility (Pa−1).
Cr rock (porosity) compressibility (Pa−1).
Ct total compressibility (Pa−1).
Cβ non-Darcy flow constant (m3/2).
di distance to the interface from gridblock i a (m).
Di depth to the center of gridblock i (m).
Ff mass flux of fluid f (kg s−1).
g, g gravitational constant (m s−2).
h thickness of formation (m).
k absolute permeability (m2).
kF fracture permeability (m2).
kM matrix permeability (m2).
krf relative permeability to phase f.
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l average linear distance for fracture/matrix flow with the double-porosity model (m).
lFM characteristic distance for calculating fracture/matrix flow with the double-porosity

model (m).
P pressure (Pa).
Pcgn gas–NAPL capillary pressure (Pa).
Pcgw gas–water capillary pressure (Pa).
Pcnw NAPL–water capillary pressure (Pa).
PD dimensionless pressure.
Pg gas pressure (Pa).
Pn NAPL pressure (Pa).
Pw water pressure (Pa).
Qf mass sink/source term (kg s−1).
Rf mass residual term (kg s−1).
qf mass sink/source term (kg s−1 m3).
qm mass injection rate (kg s−1).
qv volumetric injection rate (m3 s−1).
Sg gas pressure.
Sn NAPL pressure.
Sw water pressure.
xm primary variables to residual equations.
r radial distance (m).
rD dimensionless radius.
re outer boundary radius (m).
rw wellbore radius (m).
t time (s).
tD dimensionless time, Equation (6.2).
v Darcy or volumetric flow velocity (m s−1).
vr radial Darcy or volumetric flow rate (m s−1).
Vi volume of gridblock i (m3).
β, βf non-Darcy flow coefficient of fluid f (m−1).
βD dimensionless non-Darcy flow coefficient.
βD,f,βD,m dimensionless non-Darcy flow coefficients for fracture and matrix, respectively.
γij transmissivity between gridblocks i and j (kg m−3).
λf mobility of fluid f (Pa • s)−1.
µf viscosity of fluid f (Pa • s).
ρf density of fluid f (kg m−3).
ρi initial or reference fluid density (kg m−3).
φ porosity.
φi initial or reference porosity.
#f flow potential term (Pa).

1. Introduction

Darcy’s law of flow (or Darcy flow), describing a linear relationship between volu-
metric flow rate (Darcy velocity) and pressure (head or potential) gradient, has
been the fundamental principle in flow and transport processes in porous media
(Muskat, 1946). Any deviations from this linear relation may be defined as non-
Darcy flow. In this work our concern is only with the non-Darcy flow caused by
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high flow velocities. Even though Darcy’s law has been used nearly exclusively
in the studies of porous-medium phenomena, there is considerable evidence that
high-velocity non- Darcy flow occurs in many subsurface systems, such as in the
flow near wells of oil or gas production, water pumping, and liquid waste in-
jection.

The effects of non-Darcy or high-velocity flow regimes in porous media have
been observed and investigated for decades (e.g. Tek et al., 1962; Scheidegger,
1972; Katz and Lee, 1990). However, theoretical, field and experimental studies
performed so far on non-Darcy flow in porous media have focused mostly on
single-phase-flow conditions that pertain to the oil and gas industry (Swift and
Kiel, 1962; Tek et al., 1962; Lee et al., 1987). Some investigations have been
conducted for non-Darcy flow in fractured reservoirs (Skjetne et al., 1999) and
for non-Darcy flow into highly permeable fractured wells (Guppy et al., 1981,
1982). Other studies have concentrated on finding and validating correlations of
non-Darcy flow coefficients (Liu et al., 1995).

In studies of non-Darcy flow through porous median, the Forchheimer equation
is generally used to describe single-phase non-Darcy flow. Several studies reported
in the literature extend the Forchheimer equation to multiphase flow and provide
equations for correlating non-Darcy flow coefficients under multiphase conditions
(Evans et al., 1987; Evans and Evans, 1988; Liu et al., 1995). A recent study (Wang
and Mohanty, 1999) has discussed the importance of multiphase non-Darcy flow in
gas-condensate reservoirs and presents a pore-scale network model for describing
non-Darcy gas-condensate flow. Because of insufficient study in this area as well
as the mathematical difficulty in handling highly nonlinear, non-Darcy flow terms
in multiphase flow equations, our understanding of non-Darcy flow through porous
media is currently very limited.

The objective of this study is to develop a numerical method for modeling
single-phase and multiphase non-Darcy flow through heterogeneous porous and
fractured rocks. The model formulation incorporates the Forchheimer equation,
based on an integral finite-difference or a control volume numerical discretization
scheme. The proposed model formulation is implemented into a three-dimensional,
three-phase flow simulator and is applicable to both single-porosity porous me-
dia and fractured rocks. For flow in a fractured medium, fracture-matrix interac-
tions are handled using an extended dual-continuum approach, such as double- or
multiple-porosity, or dual-permeability methods.

This paper discusses the model formulation and the numerical schemes im-
plemented for modeling non-Darcy flow in porous media. The numerical scheme
has been verified by comparing its results against those of analytical methods. As
applications, numerical solutions are used to obtain some insight into the physics
of flow involving non-Darcy flow effects in reservoirs. Furthermore, several type
curves and analytical solutions are provided well-test analysis of non-Darcy flow
to demonstrate the proposed methodology for modeling this type of flow in porous
and fractured rocks.
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2. Governing Equations

A multiphase system in a porous or fractured aquifer is assumed to be composed
of three phases: NAPL (oil), gas (air), and water. For simplicity, the three fluid
components, water, NAPL, and gas, are assumed to be present only in their associ-
ated phases. Each phase flows in response to pressure, gravitational, and capillary
forces according to the multiphase extension of Darcy’s law for Darcy flow and
the Forchheimer equation for non-Darcy flow. In an isothermal system contain-
ing three mass components, three mass-balance equations are needed to fully de-
scribe the system, as described in an arbitrary flow region of a porous or fractured
domain.

For flow of phase f (f = w for water, f = n for NAPL or oil, and f = g for gas),

∂

∂ t
(φ Sf ρf) = −∇ • (ρfvf)+ qf (2.1)

where ρf is the density of fluid f; vf is the Darcy (or volumetric) velocity of fluid f;
Sf is the saturation of fluid f; φ is the effective porosity of formation; t is time; and
qf is the sink/source term of phase (component) f per unit volume of formation,
representing mass exchange through injection/production wells or due to fracture
and matrix interactions.

Volumetric flow rate (namely Darcy velocity for Darcy flow) for non-Darcy flow
of each fluid may be described using the multiphase extension of the Forchheimer
equation (Evans and Evans, 1988; Liu et al., 1995)

−(∇Pf − ρfg) = µf

krf
kvf + βfρfvf|vf|, (2.2)

where Pf is the pressure of phase f; g is the gravitational constant vector; k is
the absolute/intrinsic permeability of the formation; krf is relative permeability to
phase f; and βf is the effective non-Darcy flow coefficient with a unit m−1 for fluid
f under multiphase flow conditions (Evans and Evans, 1988).

Under single-phase flow conditions the coefficient, βf, is traditionally called a
turbulence coefficient or an inertial resistance coefficient (Tek et al., 1962; Lee
et al., 1987). Note that to include multiphase effects on non-Darcy flow, Equation
(2.2) has been modified by the following:

• Pressure gradient is replaced by flow potential gradient (the left-hand side term
of (2.2)) to include gravity effects.

• Absolute permeability is replaced by an effective permeability term (k krf).
• βf is described as the effective non-Darcy flow coefficient for a flowing phase

under multiphase flow conditions.

Darcy’s law states that a linear relationship exists between volumetric flow rate
and pressure (head or potential) gradient in porous media. The linear term, the first
term ((µf/kkrf) vf) on the right-hand side of Equation (2.2), represents viscous flow;
it is dominant at low flow rates. The additional pressure drop or energy assumption
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resulting from non-Darcy or high flow velocities is described by the second term
(βfρfvf |vf|) on the right-hand side of (2.2) for the extra friction or inertial effects
(Katz and Lee, 1990). Equation (2.2) indicates that the non-Darcy flow equation
reduces to the multiphase Darcy law if the non-Darcy term (βfρfvf|vf|) can be
ignored, when compared with the first term ((µf/kkrf) vf), at low flow velocity,
Equation (2.2) becomes Darcy’s law. For high velocities, however, the second term
becomes dominant and must be included. Therefore, Darcy flow can generally be
considered as a special case of non-Darcy flow, as described by Equation (2.2).

Equation (2.2) implicitly defines the Darcy velocity as a function of pressure
gradient as well as saturation and relative permeability. A more general relation for
the Darcy velocity in multiphase non-Darcy flow may be proposed as a function of
pressure gradient, saturation, and relative permeability functions

vf = vf(∇Pf, Sf, krf). (2.3)

With Equation (2.3), many other kinds of equations for non-Darcy flow in ad-
dition to the Forchheimer equation (e.g. Scheidegger, 1972) can be extended to
multiphase non-Darcy flow situations.

Equation (2.1), the governing of mass balance for three phases, needs to be
supplemented with constitutive equations, which express all the secondary vari-
ables and parameters as functions of a set of primary thermodynamic variables of
interest. The following relationships will be used to complete the description of
multiphase flow through porous media:

Sw + Sn + Sg = 1. (2.4)

The capillary pressures relate pressures between the phases. The aqueous- and gas-
phase pressures are related by

Pw = Pg − Pcgw(Sw), (2.5)

where Pcgw is the gas–water capillary pressure in a three-phase system and assumed
to be a function of water saturation only. The NAPL pressure is related to the gas
phase pressure by

Pn = Pg − Pcgn(Sw, Sn), (2.6)

where Pcgn is the gas–NAPL capillary pressure in a three-phase system, which is
a function of both water and NAPL saturations. For many aquifer formations, the
wettability order is (1) aqueous phase, (2) NAPL phase, and (3) gas phase. The gas–
water capillary pressure is usually stronger than the gas–NAPL capillary pressure.
In a three-phase system, the NAPL–water capillary pressure, Pcnw, may be defined
as

Pcnw = Pcgw − Pcgn = Pn − Pw. (2.7)

The relative permeabilities are assumed to be functions of fluid saturations only.
The relative permeability to the water phase is taken to be described by
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kr w = kr w(Sw) (2.8)

to the NAPL phase by

kr n = kr n(Sw, Sg) (2.9)

and to the gas phase by

kr g = krg(Sg). (2.10)

The densities of water, NAPL, and gas, as well as the viscosities of fluids, can
in general be treated as functions of fluid pressures.

3. Numerical Formulation

The multiphase non-Darcy flow equations, as discussed in Section 2, have been im-
plemented into a general-purpose, three-phase reservoir simulator, the MSFLOW
code (Wu, 1998). As implemented in the code, Equation (2.1) can be discretized in
space using an integral finite-difference or control-volume finite-element scheme
for a porous and/or fractured medium. The time discretization is carried out with
a backward, first-order, finite-difference scheme. The discrete nonlinear equations
for water, NAPL, and gas flow at Node i are written as follows:

{(φ Sf ρf)
n+1
i − (φ Sf ρf)

n
i }
Vi

* t
=

∑
j ∈ ηi

Ff)
n+1
i j +Qn+1

f i (3.1)

where n denotes the previous time level; n+ 1 is the current time level; Vi is
the volume of element i (porous or fractured block); *t is the time step size; ηi
contains the set of neighboring elements (j), porous or fractured block, to which
element i is directly connected; and Ff is a mass flow term between elements i and
j , defined (when Equation (2.2) is used) as

Ff = Aij

2(kβf)ij+1/2


− 1

λf
+

[(
1

λf

)2

− γij (ψfj − ψfi )

]1/2

 , (3.2)

where subscript ij + 1/2 denotes a proper averaging of properties at the interface
between the two elements and Aij is the common interface area between connected
elements i and j . The mobility of phase f is defined as

λf = kr f

µf
(3.3)

and the flow potential term is

ψfi = Pfi − ρij+1/2gDi, (3.4)
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where Di is the depth to the center of element i. The mass sink/source term at
element i, Qfi for phase f, is defined as

Qf i = qfi Vi. (3.5)

In (3.2), transmissivity of flow terms is defined (if the integral finite-difference
scheme is used) as,

γij = 4(k2ρfβf)ij+1/2

di + dj
, (3.6)

where di is the distance from the center of element i to the interface between
elements i and j .

In the model formulation, absolute permeability, relative permeability and the
effective non-Darcy flow coefficient are all considered as flow properties of the
porous media and need to be averaged between connected elements in calculating
the mass flow terms. In general, weighting approaches used are that absolute per-
meability is harmonically weighted along the connection between elements i and j ,
relative permeability and non-Darcy flow coefficients are both upstream weighted.

Newton/Raphson iterations are used to solve Equation (3.1). For a three-phase
flow system, 3 ×N coupled nonlinear equations must be solved (N being the total
number of elements of the grid), including three equations at each element for
the three mass-balance equations of water, NAPL, and gas, respectively. The three
primary variables (x1, x2, x3) selected for each element are gas pressure, gas satur-
ation, and NAPL saturation, respectively. In terms of the three primary variables,
the Newton/Raphson scheme gives rise to

∑
m

∂ R
β, n+1
i (xm, p)

∂ xm
(δxm, p+1) = −Rβ, n+1

i (xm, p) for m = 1, 2, 3, (3.7)

where indexm= 1, 2, and 3 indicates the primary variable 1, 2, or 3, respectively; p
is the iteration level; and i= 1, 2, 3, . . .,N , the nodal index. The primary variables
are updated after each iteration

xm, p+1 = xm, p + δxm, p+1. (3.8)

A numerical method is used to construct the Jacobian matrix for Equation (3.7),
as outlined by Forsyth et al. (1995).

Similarly to Darcy flow, first-type or Dirichlet boundary conditions denote con-
stant or time-dependent phase pressure, and saturation conditions. These types of
boundary conditions can be treated using the large-volume or inactive-node method
(Pruess, 1991), in which a constant pressure/saturation node may be specified with
a huge volume while keeping all the other geometric properties of the mesh un-
changed. However, caution should be taken in (1) identifying phase conditions
when specifying the ‘initial condition’ for the large-volume boundary node and
(2) distinguishing upstream/injection from downstream/production nodes. Once
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specified, primary variables will be fixed at the big-volume boundary nodes, and
the code handles these boundary nodes exactly like any other computational nodes.

Flux-type or Neuman boundary conditions are treated as sink/source terms, de-
pending on the pumping (production) or injection condition, which can be directly
added to Equation (3.1). This treatment of flux-type boundary conditions is espe-
cially useful for a situation where flux distribution along the boundary is known,
such as dealing with a single-node well. More general treatment of multilayered
well-boundary conditions is discussed in Wu (2000a).

4. Handling Non-Darcy Flow in Fractured Media

The technique used in the current model for handling non-Darcy flow through
fractured rock follows the dual-continuum methodology (Warren and Root, 1963;
Pruess and Narasimhan, 1985; Pruess, 1991). The method treats fracture and mat-
rix flow and interactions using a multi-continuum numerical approach, including
the double- or multiporosity method (Wu and Pruess, 1988), the dual-permeability
method, and the more general ‘multiple interacting continua’ (MINC) method
(Pruess and Narasimhan, 1985).

Since the 1960’s, significant progress has been made in understanding and mod-
eling fracture flow phenomena in porous media (e.g. Barenblatt et al., 1960; War-
ren and Root, 1963; Kazemi, 1969; Pruess and Narasimhan, 1985). The classical
double-porosity concept for modeling flow in fractured porous media, as developed
by Warren and Root (1963), is physically based, which assumes that a flow domain
is composed of matrix blocks of low permeability, embedded in a network of
interconnected, more permeable fractures. Global flow in the formation occurs
only through the fracture system, described as an effective porous continuum.
The matrix behaves as spatially distributed sinks or sources to the fracture sys-
tem without accounting for global matrix-matrix flow. If a global matrix-matrix
flow is included, the approach becomes a dual-permeability conceptual model. The
double-porosity or dual-permeability model relies on a quasi-steady-state flow as-
sumption to account for fracture-matrix interflow. This may limit their applicability
in application to situations having only matrix blocks of small size to satisfy the
quasi-steady state mass transfer condition. Some recent studies present more rigor-
ous mathematical derivations of the double-porosity model and therefore provide
better understanding into interactions between the overlapping fracture/matrix sys-
tems for both single-phase and two-phase flow (Douglas, 1989; Arbogast, 1993;
Douglas et al., 1993).

As discussed above, one of the major limitations of the Warren–Root double-
porosity model is the quasi-steady-state fracture/matrix assumption. This limita-
tion has been removed in an improved model of Lai et al. (1983). They couple
fracture/matrix interaction along matrix surfaces using the continuity condition in
pressure and mass exchange rate analytically for given size (cube) matrix blocks.
Numerically, on the other hand, it is much easier to handle fracture/matrix interac-
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Figure 1. Schematic of different discretizations of cubic matrix blocks by the MINC concept:
(a) explicit discretization; (b) nested discretization; (c) double-porosity discretization.

tions rigorously, because no quasi-steady-state assumption is needed. The general-
ized dual-continuum method, such as the MINC concept (Pruess and Narasimhan,
1985) and the multiporosity model (Wu and Pruess, 1988), can describe flow in
a fracture/matrix system with any size and shape of matrix blocks and with fully
transient handling of fracture/matrix interactions. The generalized dual-continuum,
MINC method, can handle any flow processes of fractured media with matrix size
varying from as large as the model domain of interest to as small as a representative
elementary volume (REV) of zero volume. In general, the fracture network can be
continuous in a pattern, randomly distributed or discrete.

For demonstration, Figure 1 presents several commonly used conceptual mod-
els of numerical discretization for handling fracture/matrix flow and interactions
with the dual-continuum approach. Here we use a cubic shape as an example.
Figure 1(a) shows a detailed, explicit discretized mesh for representing the matrix
block of any size. If needed, this type of MINC discretization can be used to study
heterogeneity within both matrix and fractures (by subdividing fractures into a
number of segments) and to cover discrete fracture models. Of course, compu-
tational requirements may be intensive because a large number of grid blocks are
often encountered with such discretization. The second MINC concept, as shown
in Figure 1 (b), describes gradients of pressures and saturations between fractures
and matrix by appropriate, nested subgridding of the matrix blocks. This approach
provides a better approximation for transient fracture-matrix interactions than us-
ing the quasi-steady-state flow assumption of the Warren and Root model and at the
same time results in better numerical performance then the explicit discretization.
This model is the basic concept of MINC (Pruess and Narasimhan, 1985), which is
based on the assumption that changes in fluid pressures and fluid saturations will
propagate rapidly through the fracture system, while only slowly invading the tight
matrix blocks. Therefore, changes in matrix conditions will be controlled locally
by the distance to the fractures. Fluid flow between fractures and matrix blocks
can then be modeled by means of one-dimensional strings of nested grid blocks.
The accuracy of this nested discretization depends on the one-dimensional flow
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approximation within matrix blocks, which may in turn depend on matrix block
size (Wu and Pruess, 1988).

As a special case of the MINC concept, the classical double-porosity or the
dual permeability model, as shown in Figure 1(c), approximates fracture and mat-
rix each by one gridblock and interconnecting between them. Because of the one
block representation of fractures or matrix, the interflow between fractures and
matrix has to be handled using some quasi-steady-state flow assumption, as used
with the Warren and Root model. Also, because the matrix is approximated using
a single gridblock, the ability to evaluate gradients of pressures, saturation and
capillary pressures within matrix will be limited. The accuracy of the discret-
ization depends in general on matrix block size as well as matrix permeability
and capillary properties for handling multiphase flow and interactions (Wu and
Pruess, 1988). However, a very attractive advantage with the double-porosity ap-
proach is its computational efficiency, compared with the other two discretizations.
Therefore, the double-porosity method has been the most widely used modeling
approach in application.

The non-Darcy flow formulation, Equations (2.1) and (3.1), as discussed above,
is applicable to both single-continuum and multi-continua media. Using the dual-
continuum concept, Equations (2.1) and (3.1) can be used to describe single-phase
and multiphase flow, respectively, both in fractures and inside matrix blocks when
dealing with fractured reservoirs. A special attention needs to be paid to treating
fracture/matrix flow terms with Equations (3.1) and (3.2) for estimation of mass
exchange at fracture/matrix interfaces using a double-porosity approach. In partic-
ular, Appendix B shows that the characteristic length of non-Darcy flow distance
between fractures and matrix crossing the interface for the double-porosity or the
nested discretizations may be approximated using the results for Darcy flow (War-
ren and Root, 1965; Pruess, 1983). The flow between fractures and matrix is still
evaluated using Equation (3.2), however, the transmissivity for the fracture/matrix
flow is then given by

γij = 4(k2
Mρfβf)ij+1/2

lFM
, (4.1)

where lFM is a characteristic distance for flow crossing fracture/matrix interfaces.
For 1-D, 2-D and 3-D dimensions of rectangular matrix blocks, characteristic dis-
tances, based on quasi-steady flow assumption, are given in Table I.

When handling flow through a fractured rock using the numerical formulation
of this work, the problem essentially becomes how to generate a mesh that rep-
resents both the fracture and matrix systems. Several fracture-matrix subgridding
schemes exist for designing different meshes for different fracture-matrix concep-
tual models (Pruess, 1983). Once a proper mesh of a fracture-matrix system is
generated, fracture and matrix blocks are specified to represent fracture or matrix
domains, separately. Formally, they are treated in exactly the same way in the solu-
tion of the discretized model. However, physically consistent fracture and matrix
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Table I. Characteristic distances for non-Darcy flow crossing fracture/matrix in-
terfaces using the double-porosity and nested discretizations (Warren and Root,
1963; Pruess, 1983)

Case Dimensions of Average linear Characteristic

matrix blocks1 distances (m) distance (m)

1-D a l = a lFM = l

6

2-D a l = 2ab
a+b lFM = l

8
b

3-D a l = 2abc

a + b + c
lFM = l

10
b

c

1a, b and c are dimensions of matrix blocks along x, y and z coordinates,
respectively, as defined by Warren and Root (1963).

properties and modeling conditions must be appropriately specified for fracture and
matrix systems, respectively.

5. Model Verification

In this section we provide three examples to test and verify the proposed numer-
ical schemes involved in handling non-Darcy flow of single-phase and multi-phase
fluids in porous and fractured media. Several analytical solutions are used in these
comparisons. The sample problems are:

• Single-phase, steady-state non-Darcy flow in homogenous porous media.
• Single-phase, transient non-Darcy flow through a double-porosity reservoir.
• Two-phase non-Darcy flow and displacement in a homogenous porous me-

dium.

5.1. SINGLE-PHASE, STEADY-STATE RADIAL FLOW

This problem is used to verify the numerical scheme for modeling steady-state,
non-Darcy flow in homogeneous porous media. For the comparative study, an exact
analytical solution for this problem is presented in Appendix A. The test problem
concerns steady-state, one-dimensional, and horizontal radial flow toward a well
in a uniform and homogeneous system. A non-Darcy flow correlation from Tek
et al. (1962) is used to evaluate the non-Darcy flow coefficient β versus porosity
and permeability as follows:

β = Cβ

k5/4φ3/4
, (5.1)
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Table II. Parameters for the steady-state single-phase flow problem

Parameter Value Unit

Reference pressure Pi = 10 Bar

Reference porosity φi = 0.20

Reference fluid density ρi = 1, 000 kg m−3

Formation thickness h = 10 m

Fluid Viscosity µ = 1 × 10−3 Pa • s

Fluid compressibility Cf = 5 × 10−10 Pa−1

Rock compressibility Cr = 5 × 10−9 Pa−1

Permeability k = 9.869 × 10−13 m2

Water production rate qm = 0.1 kg s−1

Wellbore radius rw = 0.1 m

Outer boundary radius re = 1, 000 m

non-Darcy flow constant Cβ = 3.2 × 10−3, m3/2

3.2 × 10−4, 3.2 × 10−9

where Cβ is a non-Darcy flow constant with a unit (m3/2) when converted to SI
units.

The numerical solution of this problem is performed by the multiphase flow
code, MSFLOW, in which single-phase flow is handled as a special case of three-
phase flow. A one-dimensional, radial-symmetric grid of 2,200 elements was gen-
erated along the 1,000 m of the radial flow direction. The parameters used for the
comparison are listed in Table II for evaluating both analytical and numerical solu-
tions. Comparisons of pressure distributions along the radial direction, calculated
from the exact and numerical solutions, are shown in Figure 2. The agreement
between the two solutions is excellent for different non-Darcy flow coefficients. In
fact, many additional steady-state simulations have been performed and the numer-
ical results are found to be in excellent agreement with the analytical solution in
every case.

5.2. SINGLE-PHASE FRACTURED-MEDIUM FLOW PROBLEM

This problem tests the numerical formulation for simulating transient flow in frac-
tured media by comparison with an analytical solution. The example concerns
transient flow towards a well that fully penetrates a horizontal, uniform, fractured,
radially infinite reservoir. When non-Darcy flow effects are small or can be ignored,
the analytical solution by Warren and Root (1963) can be used for this particular
test.

A radially symmetrical reservoir (r = 5 × 106 m) is discretized into a one-
dimensional (r), primary grid. The r-distance of 5 × 106 m is subdivided into 3,100
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Figure 2. Comparison of dimensionless pressures calculated from exact and numerical
solutions for steady-state non-Darcy flow with different non-Darcy flow coefficients.

intervals in logarithmic scale. A double-porosity mesh is generated from the pri-
mary grid, in which a three-dimensional fracture network and cubic matrix blocks
are used. The matrix block size is 1 × 1 × 1 m, and fracture permeability and aper-
ture are correlated by the cubic law. Input parameters are given in Table III. Note
that 10-times-larger non-Darcy flow coefficients than those for fractures are used
correspondingly for flow in matrix to account for lower matrix permeability. A
fully penetrating pumping well is represented by a well element with a specified
constant water-pumping rate.

Figure 3 shows a comparison of the numerical modeling results and the Warren
and Root solution for the pressure response at the well, in which the dimension-
less variables were defined by Warren and Root (1963). Figure 3 shows that the
simulated pressures at the well are in excellent agreement with the analytical solu-
tion, with a typical double-porosity behavior of two-parallel semi-log straight lines
developed on the plot.

Figure 4 presents the simulation results including non-Darcy effects in both
fracture-fracture and fracture-matrix flow, which is used to examines impact of
non-Darcy flow between fracture and matrix systems in a double-porosity model.
Figure 4 shows that non-Darcy flow between fractures and matrix has little effect
on well pressures, even with non-Darcy flow coefficients of matrix rock increased
by six orders of magnitude. Many additional simulations with different paramet-
ers have been performed for sensitivity analyses and all the results indicates flow
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Table III. Parameters for the single-phase, fractured-medium flow problem

Parameter Value Unit

Matrix porosity φM = 0.30

Fracture porosity φF = 0.0006

Reference water density ρw = 1, 000 kg m−3

Water phase viscosity µw = 1 × 10−3 Pa • s

Matrix permeability kM = 1.0 × 10−16 m2

Fracture permeability kF = 9.869 × 10−13 m2

Water production rate qm = 0.1 kg s−1

Rock compressibility Cr = 1.0 × 10−9 1 Pa−1

Water compressibility Cw = 5.0 × 10−10 1 Pa−1

Dimensionless non-darcy βD,f = 1 × 10−4, 1, 5,

Flow coefficient for fracture and 10

Dimensionless non-Darcy βD,m = 1 × 10−3, 10, 50,

Flow coefficient for matrix and 100

Wellbore radius rw = 0.1 m

between fractures and matrix be effectively approximated as Darcy flow even flow
through fractures are non-Darcy with a double-porosity concept.

5.3. TWO-PHASE NON-DARCY DISPLACEMENT

In this problem, an analytical solution (Wu, 2000b) is used to examine the valid-
ity of the numerical method for modeling multiphase non-Darcy flow and dis-
placement processes. The Forchheimer equation is also used for the comparison.
The physical flow model is a one-dimensional linear porous medium, which is
at first saturated uniformly with a nonwetting fluid (Sn = 0.8) and a wetting fluid
(Sw = Swr = 0.2). A constant volumetric injection rate of the wetting fluid is im-
posed at the inlet (x= 0), starting from t = 0. The relative permeability curves used
for all the calculations in this problem are shown in Figure 5, and rock and fluid
properties are listed in Table IV.

In this problem, the effective non-Darcy flow coefficient for multiphase flow is
treated as a function of fluid saturation and relative permeability. The non-Darcy
flow coefficient correlation, defined by Equation (5.1), is extended to the two-
phase flow situation with replacing the absolute permeability (k) by an effective
permeability (kkrf) and replacing porosity φ with φ(Sf − Sfr). Then, we can derive
the relationship for the non-Darcy flow coefficient as follows:

βf(Sw, krf) = Cβ

(kkrf)5/4[φ(Sf − Sfr)]3/4
, (5.2)
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Figure 3. Comparison of dimensionless pressures calculated from analytical and numerical
solutions for transient flow in double-porosity, fractured rock.

Figure 4. Effects of non-Darcy flow between fracture and matrix on dimensionless well
pressures in double-porosity, fractured rock (βD,f = 10).
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Figure 5. Relative-permeability curves used in analytical and numerical solutions for non-
Darcy displacement.

Table IV. Parameters for the non-Darcy displacement example

Parameter Value Unit

Effective porosity φ = 0.30

Permeability k = 9.869 × 10−13 m2

Wetting phase density ρw = 1, 000 kg m−3

Wetting phase viscosity µw = 1.0 × 10−3 Pa • s

Nonwetting phase density ρn = 800 kg m−3

Nonwetting phase viscosity µn = 5.0 × 10−3 Pa • s

non-Darcy flow constant Cβ = 3.2 × 10−6 m3/2

Injection rate qv = 1.0 × 10−5 m3 s−1

where Sfr is residual saturation of fluid f. Equation (5.2) is incorporated into both
the analytical and numerical calculations.

To reduce the effects of discretization on numerical simulation results, we
choose very fine, uniform mesh spacing (*x= 0.01 m). A one-dimensional 5 m
linear domain is discretized into 500 one-dimensional uniform gridblocks. In the
numerical simulation, the non-Darcy flow coefficient, Equation (5.2), is treated as
a flow property and is evaluated using a full upstream weighting scheme such as
that for the relative permeability function.
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Figure 6. Comparison between saturation profiles calculated from analytical and numerical
solutions after 10 h of injection.

Figure 6 shows saturation profiles after 10 h from both analytical and numerical
solutions. The figure indicates that the numerical results are in excellent agree-
ment with the analytical prediction of the non-Darcy displacement for the entire
wetting-phase sweeping zone. Except at the shock, advancing saturation front, the
numerical solution deviates only slightly from the analytical solution, resulting
from a typical ‘smearing front’ phenomenon of numerical dispersion effects that
occurs when matching the Buckley–Leverett solution using numerical results (Aziz
and Settari, 1979).

6. Application and Discussion

In this section, we present several applications and discuss single-phase, non-Darcy
flow behavior to demonstrate the applicability of the present modeling approach to
field problems. The applications generate dimensionless pressures or type curves
for non-Darcy-flow well-test analyses, including:

1. Pressure drawdown and buildup analyses.
2. Effects of finite boundaries of reservoirs.
3. Pressure draw-down in fractured reservoirs.
4. Pressure responses in partially penetrating wells of porous and fractured reser-

voirs.
5. Well test determination of non-Darcy flow coefficients.
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The first four examples deal with single-phase slightly compressible fluid transi-
ent flow and in these cases the compressibility of fluids and rock is an important
parameter. The last problem provides a technique for estimating non-Darcy flow
coefficients using steady-state well tests.

Before further discussing these applications, we introduce several dimension-
less variables for analyzing single-phase flow and well test results (Earlougher,
1977). Let us define the following group of dimensionless variables:

The dimensionless radius

rD = r

rw
, (6.1)

the dimensionless time

tD = kt

φiµCtr2
w

, (6.2)

the dimensionless non-Darcy flow coefficient

βD = kqmβ

2πrwhµ
, (6.3)

and the dimensionless pressure

PD = Pi − P
qvµ

2πkh

. (6.4)

In these notations, the subscript referring to a phase is ignored, r is radial distance
(coordinate), rw is wellbore radius, φi is the effective (or initial) porosity of forma-
tion at reference (initial) pressure (P =Pi), Ct is total compressibility of fluid and
rock, h is thickness of formation, qm is mass production or injection rate, and qv

is volumetric production or injection rate. Note that the permeability k in (6.2) and
(6.3) should be fracture permeability with a double-porosity model.

6.1. PRESSURE DRAWDOWN AND BUILDUP ANALYSES

This example presents a set of type curves for analyzing well tests of single-phase,
slightly compressible non-Darcy fluid flow in an infinite-acting reservoir. The basic
modeling parameters are summarized in Table V. Non-Darcy flow is considered to
occur into a fully penetrating well (the case of partial penetration is presented in
§ 6.4) from an infinite-acting, homogeneous and isotropic, uniform and horizontal
formation. Even though skin and wellbore storage effects are ignored in the results,
they can easily be included if needed.

The infinite-acting reservoir is approximated by a one-dimensional, radially
symmetrical reservoir in the numerical model with age outer boundary radius of
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Table V. Parameters for the pressure drawdown and buildup analysis

Parameter Value Unit

Initial pressure Pi = 10 Bar

Initial porosity φi = 0.20

Reference fluid density ρi = 1, 000 kg m−3

Formation thickness h = 10 m

Fluid viscosity µ = 1 × 10−3 Pa • s

Fluid compressibility Cf = 5 × 10−10 Pa−1

Rock compressibility Cr = 5 × 10−9 Pa−1

Permeability k = 9.869 × 10−13 m2

Water pumping rate qv = 0.1 m3 d−1

Wellbore radius rw = 0.1 m

Outer boundary radius re = ∞ ≈ 5] × 106 m

Dimensionless non-Darcy βD = 1 × 10−3, 1, 10, 100

Flow coefficient 1 × 103, 1 × 104, 1 × 105

5 × 106 m, discretized into a one-dimensional grid of 3,100 gridblocks in logar-
ithmic scale. Initially, the system is undisturbed and at constant pressure. A fully
penetrating production well, represented by a well element, starts pumping at t = 0,
specified at a constant water-pumping rate.

A set of type-curves for pressure drawdown, calculated by the numerical model
in terms of dimensionless pressure versus dimensionless time, is shown in Figure 7.
Figure 7 clearly indicates that the non-Darcy flow coefficient is a very important
and sensitive parameter to the pressure drawdown curves. When non-Darcy flow
coefficients are sufficiently large, they affect pressure transient behavior during
both earlier and later times. Note that in the simulation, the non-Darcy flow coef-
ficient is evaluated to be uncorrelated with other parameters. Figure 7 indicates
that the non-Darcy flow coefficient can be effectively estimated using the type
curves with the traditional type-curve matching approach. Note also that for small
non-Darcy flow coefficients, pressure declines at the well during pumping are ap-
proaching those predicted by the Theis solution, as they should do. This results
from the diminishing effect of non-Darcy flow with flow behavior now tending
towards to Darcy flow regime.

Figure 8 presents simulated pressure drawdown and buildup curves, in which
the well is pumped for 1 day only and then shut off. The well pressure variations
during the entire pumping and shut-in period, as shown in Figure 8, indicate that
pressure buildup is insensitive to the values of non-Darcy flow coefficients, as
compared with drawdown in pumping periods. This is because of rapid reduction
in flow velocity near the well after a well is shut off and non-Darcy flow ef-
fects become ineligible. Many additional modeling investigations have verified this
observation. This indicates that pressure-buildup tests are not suitable for estima-
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Figure 7. Type curves for dimensionless pressures for non-Darcy flow in an infinite system
without wellbore storage and skin effects.

ting non-Darcy flow coefficients. On the other hand, the pressure-buildup method,
following non-Darcy flow pumping tests, will be a good test for determining per-
meability values without significant non-Darcy flow.

6.2. EFFECTS OF FINITE RESERVOIR BOUNDARIES

For practical well tests, boundary effects or well interference in finite, developed
reservoirs will show up sooner or later. Two types of boundary conditions, closed
and constant pressure conditions, are commonly used to approximate the effects of
finite reservoir/well boundaries. In this section, effects of finite-system boundary
conditions on pressure drawdown behavior will be discussed.

The flow system and parameters for finite systems are similar to those in Sec-
tion 6.1. Only two finite radial systems with outer boundary radii (re = 1,000 and
10,000 m) are considered. Figures 9 and 10 show dimensionless pressure draw-
down curves, for closed and constant-pressure boundaries as well as the two radii.
For a smaller formation system with re = 1,000 m, Figure 9 shows that significant
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Figure 8. Dimensionless pressures for one-day pumping, followed by pressure buildup, of
non-Darcy flow in an infinite system without wellbore storage and skin effects.

boundary effects occur at about dimensionless time tD = 108 (1 day in real time),
at which the well pressure responses deviate from the infinite-acting solution (say,
the Theis solution for small non-Darcy flow coefficients). For the larger system
with re = 10,000 m, boundary effects are very similar but show up much later
(Figure 10).

6.3. ANALYSIS OF NON-DARCY FLOW IN FRACTURED MEDIA

This problem portrays non-Darcy flow through a fractured reservoir. The fracture-
matrix formation is described using the Warren and Root double-porosity model.
The physical flow model is the same as that in Section 5.2 for one-dimensional
fracture-matrix system, with basic properties of rock and fluid also given in
Table III.

For non-Darcy flow into a well from an infinite fractured system, well pressure
type curves are shown in semi-log plots of Figure 11. The type curves on the
figures show that well (fracture) pressures are extremely sensitive to the value of
non-Darcy flow coefficients; therefore, well pumping tests will help to determine
this constant in a fractured reservoir. Furthermore, Figure 11 indicates that the
effects of non-Darcy flow on early transient pressure responses are very strong,
such that the first semi-log straight lines may not develop when non-Darcy flow is
involved.
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Figure 9. Type curves for dimensionless pressures for non-Darcy flow in a finite system with
an outer boundary radius of 1,000 m.

6.4. NON-DARCY FLOW WITH PARTIAL PENETRATION AND PARTIAL

COMPLETION

This section is to provide modeling results for analyzing well tests of non-Darcy
fluid flow at a partially penetrating or completed well and also to present multi-
dimensional flow modeling examples. Non-Darcy flow is considered to occur into
a partially penetrating well from an infinite-acting, homogeneous and isotropic,
porous or fractured reservoir. The flow near a partially penetrating production well
is three-dimensional towards the wellbore and mathematically it is can be handled
using a 2-D, axially-symmetrical (r − z) grid.

The infinite-acting reservoir is approximated by a 2-D, radially symmetrical
reservoir in the numerical model with an outer boundary radius (r = 1 × 107 m)
and a thickness of 10 m in the vertical, z-direction. The system is discretized into
a 2-D grid of 1,000 divisions in the r direction using a logarithmic scale and five
uniform grid layers in the z direction for the porous reservoir. For the fractured
flow example, the single-porosity, porous reservoir grid is further processed into
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Figure 10. Type curves for dimensionless pressures for non-Darcy flow in a finite system with
an outer boundary radius of 10,000 m.

a double-porosity grid using the MINC technology. Initially, the two single-phase
systems are both at vertical-gravity equilibrium. Partially penetrating wells with
percentage of wellbore completion are represented by single well elements and the
results are compared.

The parameters for the porous medium reservoir are those as given in Table V
and the fractured reservoir properties are given in Table III. The fractured reservoir
is handled using the double-porosity model. Two type-curves for pressure draw-
down, calculated in terms of dimensionless pressure versus dimensionless time, are
shown in Figures 12 and 13, respectively, for the porous and fractured reservoirs.
Figures 12 and 13 show a significant impact of percentage of well penetration on
well pressure behavior in both the porous medium and fractured reservoirs. As
completed well screen lengths decrease (i.e. wellbore penetration getting smaller),
the flow resistance as well as pressure drops at the well increase significantly in
order to maintain the same production rates. A larger impact of well partial pen-
etration on non-Darcy flow regime near a well than on Darcy flow is expected,
because of higher flow rates or large non-Darcy flow effects near wellbore. How-
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Figure 11. Type curves for dimensionless pressures for non-Darcy flow in an infinite fractured
system without wellbore storage and skin effects.

ever, comparison of the straight lines developed in the type curves at late times
(Figures 12 and 13) indicates that the same pseudo skin concept (Earlougher, 1977)
may also be applicable to analyzing partial penetration effects of non-Darcy flow at
wells.

6.5. DETERMINATION OF NON-DARCY FLOW COEFFICIENTS

In addition to the type-curve matching method for determining non-Darcy flow
coefficients (as discussed above), we may derive a simpler approach. Type-curves
observation in Figures 7–11 indicates that vertical displacement (difference in di-
mensionless pressures) at the same time between non-Darcy and Darcy flow solu-
tions is always closely related to (dimensionless) non-Darcy flow coefficients as
long as closed boundary effects are insignificant. A close examination of Figure 7
or 11 reveals

*PD ≈ βD (6.5)
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Figure 12. Type curves for dimensionless pressures of non-Darcy flow at partially penetrating
wells in an infinite porous reservoir (βD = 10) with different degrees of well penetration.

after the early transient times (tD = 105 or 1,000 s in real time). Is this true? This can
be further illustrated using a simple steady-state solution, provided in Appendix A.
At steady-state and if re � rw, the solution (A.15) becomes

PD = ln

(
reD

rD

)
+ βD

(
1

rD
− 1

reD

)
≈ ln(reD)+ βD, (6.6)

at wells with r = rw or rD = 1. The first term of (6.6), on the right-hand side, is
identical to the solution for steady-state Darcy flow. Therefore, the difference in
dimensionless pressure under steady state is approximately equal to a dimension-
less non-Darcy flow coefficient, as defined in Equation (6.3). It is encouraging to
note that this relation may provide a good approximation even for unsteady-state
flow conditions after earlier transient periods, as shown in Figures 7–11.

The correlation of dimensionless non-Darcy flow coefficients with dimension-
less pressures, as shown in Figure 7 and 11, as well as Equation (6.6), is equivalent
to that of skin effects in a Darcy flow well-test analysis (Earlougher, 1977). This
indicates that the non-Darcy flow effect is dominated mainly by the flow near the
wellbore, because of the much higher flow velocities there. In general, skin and
non-Darcy flow effects cannot be separated from a single well test under non-Darcy
flow condition. We recommend that skin effects be estimated using a low flow rate
or Darcy flow test first.
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Figure 13. Type curves for dimensionless pressures of non-Darcy flow at partially penetrating
wells in an infinite fractured reservoir (βD = 1) with different degrees of well penetration.

Here, an example demonstrates how to use Equation (6.5) to determine non-
Darcy flow coefficients by well tests. This simple method can be demonstrated us-
ing the simulated well test of Section 6.1. From the simulation, at tD = 0.1243 × 108

(or t = 0.3778 × 105 s) the dimensionless well pressure PD = 18.53 for βD = 10,
and PD = 8.52 for βD = 0. Substituting these dimensionless pressure difference
data into Equation (5.6), together with the definition (6.3),

β = βD(2πrwhµ)

kqm
≈ *pD(2πrwhµ)

kqm

= (18.53 − 8.52)× 2 × π × 10 × 10−3

9.869 × 10−13 × 0.1
= 6.36 × 1012 m−1 (6.7)

The actual input value for β is 6.37 × 1012 in for the numerical test problem. The
result indicates that the proposed well test method is very accurate for determining
non-Darcy flow coefficients in this case.
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7. Summary and Conclusions

This paper presents a numerical method and theoretical study for non-Darcy flow
and displacement through porous and fractured media. The dual-continuum ap-
proach, commonly used for Darcy flow, is extended for handling non-Darcy flow
in fractured formations. A three-dimensional, three-phase flow reservoir simulator
has been enhanced to include the capability of modeling non-Darcy flow. Model
formulation incorporates the Forchheimer equation to describe single-phase and
multiphase non-Darcy flow. In addition, an analytical solution is derived for steady-
state non-Darcy flow toward a well in a uniform radial flow system. The numerical
scheme implemented has been verified by comparing numerical simulation results
with those of analytical solutions under single-phase and multiphase, steady-state
and transient flow conditions.

As applications, numerical as well as analytical solutions are used to obtain
some insight into the physics of flow involving non-Darcy flow effects in porous
media. The major findings of the work are as follows:

• Pressure drawdown not buildup behavior is sensitive to effects of non-Darcy
flow, therefore pressure drawdown testing will be a more suitable approach for
well-testing determination of non-Darcy flow coefficients.

• Non-Darcy flow coefficients can be effectively estimated using type-curve fit-
ting methods or by steady-state flow tests. Several type curves for well testing
analyses for flow through fully and partially penetrating wells in porous and
fractured reservoirs are provided in this work along the methodology with
steady-state testing technique.

• Well pressure responses of non-Darcy flow could be approximated using Darcy
flow solutions, superposed only by a dimensionless non-Darcy flow coeffi-
cient (defined in this work), for flow problems in both single-porosity and
double-porosity media. Therefore, many well testing analysis techniques, de-
veloped for Darcy flow, may be applicable for analyzing non-Darcy flow test-
ing data.

• Non-Darcy flow effect lasts through the entire transient flow period during a
well pumping or injection test and is equivalent to that of skin effects in a
Darcy flow well-test analysis. Therefore the non-Darcy flow effect is domin-
ated mainly by the flow near a wellbore and cannot be separated from the skin
factor by a single well test under non-Darcy flow condition.

Appendix A. Steady-state Solution for Single-phase Flow

The steady-state flow problem considered here is fluid production from a fully
penetrating well in a finite, radial system, subject to a constant outer boundary
pressure.

∂

∂r
[ρ(P )rvr] = 0, (A.1)
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where vr is volumetric flow rate along the r-direction. At the outer boundary (r = re)

P(r = re) = Pi (constant) (A.2)

and at the inner boundary of the wellbore, r = rw, the fluid is produced at a constant
mass rate

2πrwh[ρvr]r=rw = qm (constant) (A.3)

Integrating Equation (A.1) leads to

[ρ(P )rvr] = C (A.4)

and using (A.3), we have

[ρ(P )rvr] = qm

2πh
. (A.5)

For the one-dimensional, horizontal, single-phase non-Darcy flow, vr can be
determined from Equation (2.2) as

vr = 1

2kρβ

{
−µ+

[
µ2 + 4k2ρβ

∂P

∂r

]1/2
}
. (A.6)

We have

r

2kβ

{
−µ+

[
µ2 + 4k2ρβ

∂P

∂r

]1/2
}

= qm

2πh
(A.7)

or

4k2ρβ
∂P

∂r
= 2µ

kqmβ

πh

1

r
+

(
kqmβ

πh

1

r

)2

. (A.8)

To solve Equation (A.8), we correlate the fluid density as a function of pressure

ρ = ρ(P ) = ρi[1 + Cf(P − Pi)], (A.9)

[1 + Cf(P − Pi)]∂P
∂r

= qvµ

2πkh

1

r
+ qvµ

2πkh

kqmβ

2πhµ

1

r2
, (A.10)

where qv = qm/ρi, is the volumetric production rate at the reference pressure. In
terms of dimensionless variables

−[1 −QDPD]∂PD

∂rD
= 1

rD
+ βD

1

r2
D

, (A.11)

where

QD = qvµCf

2πkh
. (A.12)
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Finally, we have the steady-state solution

PD =
1 −

[
1 − 2QD

(
ln

(
reD

rD

)
+ βD

(
1

rD
− 1

reD

))]1/2

QD
, (A.13)

where

reD = re

rw
. (A.14)

If we introduce a constant density in Equation (A.8), we have the simple steady-
state solution

PD = ln

(
reD

rD

)
+ βD

(
1

rD
− 1

reD

)
. (A.15)

Appendix B. Derivation of Characteristic Distances of non-Darcy
Fracture/Matrix Flow with the Double-porosity Model

We assume that at a given time non-Darcy flow of single-phase slightly compress-
ible fluid within rock matrix is subject to quasi-steady state flow condition, that is,
decrease or increase rate in pressure with time inside rock matrix reaches a con-
stant. The non-Darcy flow within matrix is then described by combining Equations
(2.1) and (2.2), for example, to a 1-D case, as

∂

∂x

[
− µ

2kβ

{
1 −

[
1 + 4k2ρβ

µ2

∂P

∂x

]1/2
}]

= φiCt
∂P

∂t
. (B.1)

Under quasi-steady state condition, the right-hand side of Equation (B.1) is a con-
stant. The left-hand side of (B.1) may be approximated, for purpose of evaluating
a characteristic length, as,

∂

∂x

[
− µ

2kβ

{
1 −

[
1 + 4k2ρβ

µ2

∂P

∂x

]1/2
}]

= ∂

∂x

[
− µ

2kβ

{
1 −

[
1 + 4k2ρβ

2µ2

∂P

∂x
+ · · ·

]}]

≈ ∂

∂x

[
− µ

2kβ

{
1 −

[
1 + 2k2ρβ

µ2

∂P

∂x

]}]
= k

µ

∂2P

∂x2
. (B.2)

The critical assumption used in (B.2) is the linearization of the nonlinear term of the
non-Darcy flow. The rationale behind the approximation is that matrix permeability
is normally several orders of magnitude lower than fracture permeability, the term
in the right-hand side of (B.2), describing non-Darcy flow, becomes

2k2ρβ

µ2

∂P

∂x
� 1. (B.3)
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Then, higher-order terms in the Tailor series in (B.2) may be ignored. This ap-
proximation can be further examined using the correlation (5.1) for non-Darcy
flow coefficient versus permeability and porosity with common parameter values
(in SI unit)

2k2ρβ

µ2

∂P

∂x
= 2Cβρk3/4

µ2

= 2 × (Cβ = 10−8)× (ρ = 1000)× (k = 10−14)3/4

(µ = 0.001)2

(
∂P

∂x

)

= 6.3 × 10−10

(
∂P

∂x

)
. (B.4)

Therefore, as long as the pressure gradients inside matrix are less that 1,000 bars
m−1 (or 108 Pa m−1), which is almost always true for any given fracture/matrix
systems, Equation (B.3) is a reasonable assumption. With this linearization, flow
inside matrix under a quasi-steady-state condition is then described by

∂2P

∂x2
= const, (B.5)

that is, the flow in the matrix is approximated as Darcy flow.
Similarly, it is easy to show that other-type 1-D flow (e.g. radial or spherical)

or multi-dimensional flow inside matrix flow becomes linear, Darcy-type flow.
Therefore, characteristic lengths derived for numerical calculation of Darcy flow
crossing fracture/matrix interfaces with the double-porosity method (Pruess, 1983;
Wu and Pruess, 1988) can be directly extended into non-Darcy flow cases, as sum-
marized in Table I. This is because these values of characteristic lengths are simply
determined using the same flow equation for a given shape of matrix blocks.
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