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Abstract

Selecting the proper primary variables is a critical step in efficiently modeling the highly
nonlinear problem of multiphase subsurface flow in a heterogeneous porous-fractured media.
Current simulation and ground modeling techniques consist of (1) spatial discretization of mass
and/or heat conservation equations using finite difference or finite element methods; (2) fully
implicit time discretization; (3) solving the nonlinear, discrete algebraic equations using a Newton
iterative scheme. Previous modeling efforts indicate that the choice of primary variables for a
Newton iteration not only impacts computational performance of a numerical code, but may also
determine the feasibility of a numerical modeling study in many field applications. This paper
presents an analysis and general recommendations for selecting primary variables in simulating
multiphase, subsurface flow for one-active phase (Richards equation), two-phase (gas and liquid)
and three-phase (gas, water and nonagueous phase liquid or NAPL) conditions. In many cases, a
dynamic variable switching or variable substitution scheme may have to be used in order to
achieve optima numerical performance and robustness. The selection of primary variables
depends in general on the sensitivity of the system of equations to the variables selected at given
phase and flow conditions. We will present a series of numerical tests and large-scale field
simulation examples, including modeling one (active)-phase, two-phase and three-phase flow
problems in multi-dimensional, porous-fractured subsurface systems. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Even with the continual progress made in both computational algorithms and
computer hardware, numerical simulation of multiphase subsurface flow remains a
challenging task. Flow of two- or three-phase fluids in the subsurface results in a highly
nonlinear, difficult problem and in general extensive computational resources are
needed. In the past few decades, modeling multiphase flow through porous or fractured
porous media has received increasing attention because of its importance in the areas of
underground natural resource recovery, waste storage, soil physics, and environmental
remediation. Since the late 1950s, significant progress has been made in developing and
applying numerical simulation techniques in petroleum engineering (Coats, 1987; Aziz
and Settari, 1979; Peaceman, 1977; Thomas, 1982) and groundwater literature (Huya-
korn and Pinder, 1983; Istok, 1989). Despite these advances, modeling the coupled
processes of multiphase fluid flow in a heterogeneous porous medium remains a
conceptual and mathematical challenge. The difficulty stems from the nature of the
inherent nonlinearity and poorly determined constitutive relations for multiphase flow,
as well as the computational requirements for a field application. Numerical modeling
approaches currently used for simulating those coupled multiphase processes are gener-
ally based on methodologies developed for petroleum and geothermal reservoir simula-
tions. They involve solving fully coupled formulations describing these processes using
finite-difference or finite-element schemes with a volume averaging approach.

Earlier research on modeling multiphase flow in porous media was initialy carried
out for the development of petroleum (Douglas et al., 1959; Peaceman and Rachford,
1962; Coats et a., 1967) and geothermal reservoirs (Mercer et al., 1974; Thomas, 1978;
Pruess, 1987). More recently, problems involving unsaturated and two-phase flow in
aquifers and soils were increasingly recognized and studied in hydrology and soil
science. Many numerical approaches were developed (e.g., Narasimhan and Wither-
spoon, 1976; Cooley, 1983; Huyakorn et al., 1984; Morel-Seytoux and Billica, 1985;
Cellaet al., 1990) for modeling flow and transport phenomena in the vadose zone (Gee
et al., 1991).

While there has been an ongoing interest in understanding multiphase flow processes
using a numerical approach in different disciplinary areas, in recent years soil and
groundwater contamination by nonagueous phase liquids (NAPL), such as contaminants
from oil and gasoline leakage, or other organic chemicals, has received increasing
attention. The NAPL-related environmental concern has motivated research activities in
developing and applying multiphase flow and transport models for assessing NAPL
contamination and the associated clean up operations. As a result, many numerical
models and computational algorithms have been developed and improved for solving
multiphase fluid flow and organic-chemical transport problems in the vadose zone,
porous, and fractured media (Abriola and Pinder, 1985; Faust, 1985; Forsyth, 1988;
1991, 1994; Forsyth and Shao, 1991; Kaluarachchi and Parker, 1989; Falta et al.,
1992a,b; Huyakorn et al., 1994; Panday et al., 1994; Wu et al., 1994; Kuiper and
Illangasekare, 1998). Numerical modeling approaches have become standard techniques
in investigating subsurface NAPL contamination and implementing remediation mea-
sures.
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In general, the numerical techniques used for modeling multiphase subsurface flow
consist of (1) spatial discretization of mass conservation equations using finite-dif-
ference or finite-element schemes; (2) fully implicit time discretization; (3) iterative
approaches, such as the Newton iteration, to solve nonlinear, discrete algebraic equa-
tions. The previous studies of modeling multiphase flow through porous media (e.g., Wu
et al., 1992; Forsyth et a., 1995, 1998; Forsyth, 1994) have identified that choice of the
primary variables for a Newton iteration has a significant impact on computational
performance of a multiphase model. However, little investigation has been carried out
regarding the general strategy and selection of primary variables in modeling multiphase
flow and transport processes.

This paper presents a comparative analysis and general recommendations for select-
ing primary variables in simulating: (1) one phase flow (solving Richards' equation); (2)
two-phase (gas and liquid) flow; and (3) three-phase (gas, water and NAPL) flow. We
present and discuss a general, mass-conservative model formulation for a control-volume
discretization and perform a series of numerical tests using large-scale field simulation
examples, including modeling one-phase, two-phase and three-phase flow problems in
multi-dimensional, heterogeneous fractured rocks. In all the cases of solving Richards
equation for one-active-phase flow, two-phase (gas and water) flow, and three-phase
(gas, water and NAPL) flow, the fully implicit approach is used and tested.

This study indicates that use of proper primary variables is a critical step in
efficiently modeling highly nonlinear multiphase subsurface flow problems in heteroge-
neous porous and fractured media. The optimal selection of primary variables depends,
in genera, on the particular problem being simulated. In some circumstances, the
selection of primary variables has a large effect on the conditioning of the Jacobian
matrix and hence a large effect on the number of Newton iterations (and the number of
iterations required to solve the Jacobian system). In formulating a multiphase flow
model, we must decide upon proper primary dependent variables after taking into
account (1) computational efficiency; (2) robustness; and (3) simplicity in evaluating
other secondary variables and setting up the linearized equations.

2. Flow-governing equations

Multiphase systems of interest in this study include the three cases: (1) one-active-
phase water flow in unsaturated media, as described by Richards equation; (2) two-ac-
tive-phase flow of water and gas (or air); and (3) three-active-phase flow of gas (air),
water and NAPL. For simplicity, we focus on the formulation for three-phase flow and
two-phase flow (of gas and water). One-active-phase flow can be considered a specia
case of three-phase flow.

The multiphase system in a porous or fractured formation is assumed to be composed
of three phases: gas (air), water, and NAPL (ail). Although each of these three phases
contains a number of components, they are treated here as a single “pseudo-component”
with averaged properties of the fluids. In addition, the three fluid components of gas,
water and NAPL are assumed to be present only in their associated phases. Each phase
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flows in response to its pressure, gravitational, and capillary forces according to the
multiphase extension of Darcy’s law. In an isothermal system containing three mass
components, three mass-balance equations are needed to fully describe the system for
flow in a porous or fractured domain.

For flow of phase g (B =g for gas, B =w for water, and g = n for NAPL or ail):

ad
a_t(d)%pﬁ): =V (perp) + G (2-1)
where the Darcy velocity of phase 3 is defined by:
Kkg
UB= _M_(VPB_pBgVD)' (2-2)
B

In Egs. (2-1) and (2-2), p; is the density of phase B under subsurface conditions; ¢ is
the effective porosity of the formation; w, is the viscosity of phase B; S, is the
saturation of phase B; P, is the pressure of phase B; gy is the sink/source term of
phase (component) B per unit volume of formation; g is gravitational acceleration; k is
the absolute/intrinsic permeability (tensor) of the formation; kg is relative permeability
to phase 8; and D is depth.

The governing Eq. (2-1) of mass balance for three-phase fluids needs to be supple-
mented with constitutive equations. The following relationships will be used to complete
the description of multiphase flow through porous media.

For flow in a two-phase (one- or two-active-phase) system:

S +§=1 (2-3)
For three-phase flow:
S+S+§=1 (2-4)

The capillary pressures relate pressures between the phases. The agueous and gas
phase pressures are related by:

PW = Pg - chw( SN) (2-5)

where P, is the gas—water capillary pressure in a gas-water, two-phase system or a
three-phase (gas, water and NAPL) system; and it is assumed to be a function of water
saturation only. The NAPL pressure is related to the gas phase pressure by:

P, = Pg - chn( S !Sn) (2'6)

where P, is the gas-NAPL capillary pressure in a three-phase system, which is a
function of both water and NAPL saturations. For many aquifer formations, the
wettability order is (1) agqueous phase, (2) NAPL phase, and (3) gas phase. The
gas—water capillary pressure is usualy stronger than the gas—NAPL capillary pressure.

The NAPL —water capillary pressure, P,,,, in a three-phase system, may be defined as:
P(:nw = chw - chn = Pn - PW' (2-7)
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The relative permeabilities are assumed to be functions of fluid saturations only. The
relative permeability to the water phase in a water—gas, two-phase or three-phase system
is described by:

Ko = K (Sw) (2-8)
to the NAPL phase by:

km =kin(Sy:S) (2-9)
and to the gas phase by:

Kig = kig(&)- (2-10)

The densities of gas, water, and NAPL, as well as the viscosities of fluids under
reservoir conditions, can in general be treated as functions of fluid pressures at a given
temperaure.

3. Numerical formulation
3.1. Discrete equations

In this study, the flow formulation of Section 2 has been implemented into a
general-purpose, two-phase flow simulator, the TOUGH2 code (Pruess, 1991), and a
three-phase simulator MSFLOW code (Wu, 1998). One-phase, Richards flow, is
modeled using a modified version of the TOUGH2 EOS9 module (Wu et a., 1996a),
which includes an option of selecting two types of primary variables for solving
Richards' equation. The two active phase problem and the three-phase flow problems
are handled using a specia version of the MSFLOW code, which has the capability of
selecting various sets of primary variables. As implemented in the TOUGH2 and
MSFLOW codes, Eqg. (2-1) can be discretized in space using an integra finite-difference
or control-volume finite-element scheme for a porous and/or fractured medium. The
time discretization is carried out with a backward, first-order finite-difference scheme.
The discrete nonlinear equations for gas, water and NAPL at node i are as follows (for
fully implicit time stepping):

n+1 n V| n+1 n+ n+ n+
{(‘f’% I Ps)i}ﬂ= )» (PB)‘B)in/z?’ij[%j g, 1] + Q5

jem;
for B(B =g,w,andn) (31)

where superscript n denotes the previous time level; n+ 1 is the current time level; V,
is the volume of element i (porous or fractured block); At is time step size; and )
contains the set of neighbor nodes (j) (porous or fractured block) to which element i is



282 Y.-S Wu, P.A. Forsyth / Journal of Contaminant Hydrology 48 (2001) 277-304

directly connected. Subscript ij + 1/2 denotes an appropriate averaging of properties at
the interface between two nodes i and j. The mobility of phase B is defined as:

kep

Mg

Ag =

(32)
Mobhilities are always upstream weighted in this study. The flow potential term in Eq.
(3-1) is defined as:

‘!’EPiJrl: Pp?iH_P[Q,Jirjlﬂ/z gb, (33

and the transmissivity v;; in Eq. (3-1) is defined, if the integral finite-difference scheme
is used (Pruess, 1991), as:

Aijkij+l/2

-4
d +d, (34)

Yii =
where A;; is the common interface area between connected nodes i and |, d; is the
distance from the center of element i to the interface between nodes i and |, ki, , is
an averaged (e.g., harmonic weighted) absolute permeability along the connection
between nodes i and j, and D; is the depth to the center of node i. The mass
sink /source term at element i, Qg; for phase B, is defined as:

Q' =05 Vi (35)

Discrete Eg. (3-1) applies in al the three scenarios studied in this work: (1)
one-phase flow with only the water equation (B = w only) to be solved; (2) two-phase
flow with water and gas equations (B = g and w) to be solved; and (3) three-phase flow
with all three equations (8 = g, w, and n) to be solved. The equation has the same form
regardless of the dimensiondity of the system (i.e., whether it is a one-dimensional,
two-dimensional or three-dimensional flow domain).

3.2. Mass conservative discretization

A mass-balance check has been traditionally used to examine the accuracy and
correctness of humerical solutions to subsurface flow problems. In petroleum reservoir
simulation applications, mass conservative numerical schemes have been used exclu-
sively (Coats, 1987) as well as in the geothermal studies (Pruess, 1987). In contrast,
many of the “standard” numerica models, currently used in groundwater and soil
science applications, have been based on nonmass-conservative methods for solving
Richards equation, as discussed in Cella et al. (1990). In recent years, the importance of
using mass conservative numerical schemes has been recognized and implemented in the
groundwater literature (e.g., Cella et al., 1990; Huyakorn et al., 1994; Forsyth et al.,
1995; Berg, 1999). It should be pointed out that a nonmass-conservative numerical
scheme may still give accurate and correct solutions with mass conservative results as
long as both spatial and temporal discretization are sufficiently small. At the same time,
at a mass conservative solution may not guarantee the accuracy of the solution, i.e,



Y.-S Wu, P.A. Forsyth / Journal of Contaminant Hydrology 48 (2001) 277-304 283

mass conservation is a necessary but not sufficient condition for convergence (Cella et
al., 1990).

In this work, we are interested only in the mass-conservative formulation of the
discretized equations. Note that the discrete Eq. (3-1) is exactly mass conservative for
each phase fluid. This is because Eq. (3-1) states that the rate of change in mass
accumulation of a phase at a node over a time step is exactly balanced by the
inflow /outflow of the phase and sink/source terms on the right-hand side of the
equation. Note that the transmissivity (Eq. (3-4)) has the property v;; = v;;, which
indicates that flow from node i to node j is equal to and opposite to that from node j to
node i. Therefore, no mass will be lost or created during the solution, and the
discretization is mass conservative. A mass-conservative discretized equation such as
Eg. (3-1) will guarantee a mass conservative solution to within the special convergence
tolerance of the discrete algebraic equations.

There exists a significant inconsistency in the literature regarding the definition of a
mass-conservative formulation, and in general there is confusion between mass-con-
servative discretized equations and mass-conservative discretization in the groundwater
and soil-science literature. There have been various efforts, as discussed in Gee et al.
(1991), to relate mass-balance errors with different formulations of the multiphase fluid
flow governing equations and primary variable selection. This can only be explained as
the consequence of using honmass-conservative formulations or nonconverged solutions.
Here, we define a mass-conservative scheme of a numerical formulation as a discretiza-
tion that guarantees mass conservation for all phases, independent of how nonlinear
equations are solved and which primary variables are selected. Once a converged
solution is obtained, mass balance errors will become sufficiently small, which is related
directly to the convergence tolerance specified for the problem.

3.3. Numerical solution scheme

In general, the discrete nonlinear Eq. (3-1) are solved using a Newton iteration
scheme fully implicitly. Let us write Eq. (3-1) of mass balance in a residual form as:

n+1

n Vi
RE 1= {(05,00) "~ (65 90)] ) 1

1
- X T e A e i o
Jem

forB(B=g,wandn;i=1,2,3,...,N) (3-6)

where N is the total number of nodes of the grid. For a three-phase flow system, 3 X N
coupled nonlinear equations must be solved, with three equations at each node for the
three mass-balance equations of gas, water, and NAPL, respectively. In general, three
primary variables (x;, X,, X3) are needed for each node. The primary variables are
selected from fluid pressures and saturations in this work, and the rest of the dependent
variables, such as relative permeability, capillary pressures, viscosity, and densities (as
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well as nonselected pressures and saturations), are treated as secondary variables. The
selection of primary variables is discussed below for the three flow scenarios. In terms
of the primary variables, the Newton iteration scheme gives rise to:
Z aRIiS,n+ 1( X
aXx

m.p) (8Xp pr1) = —REML(x form=1,2,and3 (3-7)
m m

m.p)
where index m= 1, 2, and 3 indicates the primary variable 1, 2, and 3, respectively, at
node i and all its direct neighbors; p is the iteration level; and i =1, 2, 3,...,N. The
primary variables are updated after each iteration:

Xm,p+1=Xm,p+8Xm,p+l' (3-8)

A numerical method is used to construct the Jacobian matrix for Eq. (3-7). For afully
implicit element, the Jacobian is evaluated using numerical differentiation, as outlined
by Forsyth et al. (1995). Eq. (3-7) represents a system of 3 X N linearized equations for
a three-phase flow problem, solved by an iterative sparse matrix solver (Forsyth, 1992).
During a solution, the iteration is continued until the residuals R"** for solving
Richard's equation or changes in primary variables 8x, ,,, over an iteration for
two-phase and three-phase flow cases are reduced below a preset convergence tolerance.

3.4. Sdection of primary variables

We have conducted a series of comparative studies to investigate the effects of
different primary variables on numerical performance. Selections and comparisons of
primary variables for the three scenarios of flow are discussed in this section. In certain
cases, the primary variables are not static, and a dynamic variable substitution or
switching may be needed, depending on the phase conditions of a node. In general,
primary-variable selection and switching affects only the update of the secondary
dependent variables and does not affect the equation setup, because the discrete
equations [e.g., Eq. (3-6)] are still mass-conservation equations for each node regardless
what primary or secondary variables are selected. With an efficient numerical schemein
evauating the Jacobian matrix and residuals of Eq. (3-7), as discussed by Forsyth et al.
(1995), primary variable selections and switching are straightforward to implement into
a multiphase flow code.

3.4.1. Richards equation

For one-active-phase flow, described by Richards equation, only one equation of the
linearized mass balance Eq. (3-7) per node needs to be solved. In this case, it has been
shown (Forsyth et al., 1995) that a robust and efficient numerical approach is to use a
water content- or saturation-based formulation with variable substitution, which works
well under any flow conditions including heterogeneous systems with dry conditions. In
this method, variable substitution is necessary for modeling flow in both unsaturated and
saturated zones, because saturation is no longer a dependent variable under saturated
flow conditions, and consequently the primary variable needs to be switched to a head-
or pressure-based formulation for nodes that become fully saturated.
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Theoretically, the pressure-based formulation works for both unsaturated and satu-
rated conditions as well. However, this formulation is not robust and performs very
poorly under dry flow conditions, when compared with the saturation-based formulation
(Forsyth et al., 1995). Physically, a dry end corresponds to the steepest or infinite slope
of a capillary curve, which makes a head or pressure formulation unstable with an
infinitesimal change in water content. On the other hand, the mass-balance Eqg. (3-6) is
still very sensitive to changes in water saturation under the same dry conditions for a
saturation-based formulation, because at least the accumulation of the equation is
directly proportiona to the saturation value. Water content or saturation is still well
defined, which gives rise to a much better conditioned Jacobian (as seen in numerical
experiments) and results in much smoother convergence.

We use the saturation-based formulation with variable substitution as a base-case in
selecting primary variables, and use pressure-based formulation for comparison purpose.
The two formulations and associated primary variables and variable-switching scheme
are shown in Table 1 for studies of numerical simulations using Richards' equation.

3.4.2. Two-phase flow

Two mass balance equations need to be solved for two-phase flow of gas and water,
with B = g and w, in Eqg. (3-7). We select two combinations of primary variables in this
scenario, the first a mixed formulation of one pressure and one saturation, and the
second a two-pressure formulation as shown in Table 2. It should be pointed out that the
two-pressure formulation has found fewer applications in multiphase flow simulationsin
the literature, other than in some theoretical studies. This formulation suffers the same
convergence problem as the pressure-based formulation for solving Richards' equation
under dry conditions as discussed above. Furthermore, this method is unable to handle
phase transitions on the wet end when the system becomes fully saturated (Binning and
Celia, 1999). In general, the two-pressure formulation collapses at a single-phase
condition where two pressures are no longer independent and at the same time two
primary variables are still needed to solve two mass balance equations. In addition, the
two-pressure formulation will break down for two-phase miscible displacement when
the capillary pressure between the two phases becomes zero. In this study, we use the
two-pressure formulation for comparison. In order to avoid collapse of the formulation,
we use variable switching at both ends of the dry and wet conditions, i.e., switching to a
mixed formulation when saturation is near the residua or unity.

Table 1
Choice and switching of primary variables for solving Richards' equation

Formulation Phase Primary variables

Saturation-based with variable substitution Two-phase
Single-phase water
Pressure-based Two-phase or single-phase water

L0
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Table 2

Choice and switching of primary variables for solving the two-phase flow equation

Formulation Phase Primary variables

Xy Xz

Mixed Two-phase, single-phase water, or single-phase gas Py S

Two-pressure Two-phase Py Pu
Single-phase water Pw S
Single-phase gas Py S

3.4.3. Three-phase flow

For three-phase flow, we select a mixed formulation only, i.e., one pressure and two
saturations as primary unknowns. Dealing with phase appearance and disappearance is
more important in modeling three-phase flow than in the case of two-phase flow,
because most model domains may contain regions at a single or two phases only for a
typica NAPL contamination site. Based on the discussion above, a three-pressure
formulation is not appropriate. In this work, we focus on the selection of different mixed
primary variables and comparing them with each other. Table 3 lists nine combinations
of primary variables selected for three-phase modeling with the fully implicit method,
each of which applies to phase conditions of one, two, or three existing fluids.

There is a special formulation that considers only two active liquid phases in a
three-phase system in modeling NAPL flow in vadose zones (Faust, 1985). This model
issimilar to Richards' assumption in three-phase flow and it ignores gas-phase dynamics
by assuming a constant gas-phase pressure. In this case, only two mass baance
equations for water and NAPL need to be solved; therefore the formulation is more
computationally efficient when applied. Forsyth et al. (1998) presented numerical
experimental results for this formulation and concluded that use of two liquid satura
tions, associated with variable switching from water saturation to NAPL pressure to deal
with the nodes of gas-phase disappearance provided the best numerical performance.

It should be pointed out that we scale the Jacobian by the inverse of one block
diagonal before solving the matrix. Since pivoting is used to invert the block diagonal,

Table 3
Choice of primary variables for solving the three-phase flow equation
Formulation # Primary variables
Xy X2 X3

O©CoO~NOOA~WNPRE
S99 00005000
DI DI DN
DL LI DD
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associations of different primary variables with mass-balance equations of the fluids for
two- and three-phase flow formulations are immaterial in this study.

3.5. Fractured media

The technique for modeling flow through fractured rock follows the dual-continua
methodology (Warren and Root, 1963; Pruess and Narasimhan, 1985; Wu and Pruess,
1988). This method treats fracture and rock—matrix flow, and interactions, using a
multi-continua numerical approach, including the double- or multi-porosity method, the
dual-permeability method, and the more general “multiple interacting continua” (MINC)
method (Pruess and Narasimhan, 1985).

The model formulation in this work, as discussed above, is applicable to both
single-continuum and multi-continua media. This fracture—matrix mesh is usually based
on a primary, single-porous medium mesh, which is generated using only geometric
information. Within a certain reservoir subdomain (corresponding to one finite-dif-
ference gridblock of the primary mesh), al fractures will be lumped into a fractured
continuum. All matrix material within a certain distance from the fractures will be
lumped into one or several different matrix continua, as required by the double-porosity,
dual-permeability, or MINC approximations. Several matrix subgridding schemes exist
for designing different meshes with different fracture—matrix conceptual models (Pruess,
1983).

Once a proper mesh for the fracture—matrix system is generated, fracture and matrix
blocks are specified to represent fracture or matrix domains, separately. Formally, they
are treated exactly the same during the solution in the model. However, physically
consistent fracture and matrix properties, weighting schemes and modeling conditions
must be appropriately specified for fracture and matrix systems, respectively.

3.6. Initial and boundary conditions

The initial status of a multiphase system needs to be specified by initially assigning a
complete set of primary variables to each gridblock. A commonly used procedure for
specifying a capillary—gravity equilibrium condition is the restart option, in which a
complete set of initial conditions is produced in a previous simulation with appropriate
boundary conditions.

First-type or Dirichlet boundary conditions denote constant- or time-dependent phase
pressure and saturation conditions. These types of boundary conditions can be treated
using the large-volume method, in which a constant pressure/saturation node is
specified with a numerically large volume while keeping al the other geometric
properties of the mesh unchanged. However, caution should be taken to (1) identify
phase conditions when specifying the “initial condition” for the large-volume boundary
node and (2) distinguish upstream /injection from downstream /production nodes. Once
specified, primary variables will be fixed at the large-volume boundary nodes, and the
code handles these boundary nodes exactly like any other computational nodes.

Flux-type or Neuman boundary conditions are treated as constant or time-dependent
sink /source terms, depending on the pumping (production) or injection condition, which
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can be directly added to Eq. (3-6). They are all implemented fully implicitly. This
treatment of flux-type boundary conditions is especially useful for a situation where flux
distribution along the boundary is known, such as dealing with surface infiltration. This
method may aso be used for an injection or pumping well connected to a single
gridblock without injection or pumping pressures to be estimated. More general treat-
ment of multilayered well boundary conditions is discussed in Wu (1999, 2000).

4. Test problems

We present three test examples in this section to investigate computational perfor-
mance when selecting different primary variables in numerical formulations for one
active phase, two-phase and three-phase flow problems, respectively, including:

1. three-dimensiona liquid flow in unsaturated fractured rock using Richards equa-
tion for comparisons of saturation-based and pressure-based formulations

2. two-dimensional gas—water, two-phase flow in unsaturated fractured rock for
comparisons of mixed and two-pressure formulations

3. three-dimensional gas—water—ail, three-phase flow with air injection in an uncon-
fined aquifer for comparisons of different primary variable selections.

4.1. Test 1—three-dimensional liquid flow in unsaturated fractured rocks

The first example is based on a large mountain scale model developed for investiga
tions of the unsaturated zone (UZ) at Y ucca Mountain, NV (Wu et al., 1998, 1999). The
unsaturated zone of Yucca Mountain has been selected as a potential subsurface
repository for storage of high-level radioactive wastes of the U.S. Since the mid-1980s,
the U.S. Department of Energy has pursued a program of site-characterization studies
designed to explore the geological, hydrological, and geothermal conditions in the
unsaturated and saturated zones of the mountain.

The thickness of the unsaturated zone at Yucca Mountain varies between about 500
and 700 m, depending on local topography. The potential repository would be located in
the highly fractured Topopah Spring welded unit (TSw), about 300 m above the water
table and 300 m below the ground surface. Subsurface flow and transport processes at
Y ucca Mountain occur in a heterogeneous environment of layered, anisotropic, fractured
volcanic rocks (Scott and Bonk, 1984; Rousseau et al., 1996). These volcanics consist of
aternating layers of welded and nonwelded ash flow and air-fall tuffs, with welded tuffs
generaly having much lower matrix permeability but considerably higher fracture
permeability than the nonwelded tuffs. These geologic formations are organized into
hydrogeologic units roughly based on the degree of welding (Montazer and Wilson,
1984): (from the land surface downwards) the Tiva Canyon welded (TCw), the
Paintbrush nonwelded unit (PTn), the Topopah Spring welded (TSw) unit, the Calico
Hills nonwelded (CHn), and the Crater Flat undifferentiated (CFu) units. In addition to
the highly heterogeneous and anisotropic nature of the fractured tuffs existing at the
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mountain, flow and transport processes are complicated by numerous strike-slip and
normal faults with varying amounts of offset. The complexity in the hydrogeological
settings and high contrast in fracture and matrix properties result in a challenging
numerical simulation problem (Wu et a., 1999).

The 3-D model domain and the numerical grid for this study are shown in a plan
view in Fig. 1. The model domain covers a total area of approximately 43 km?, roughly
from 2 km north of borehole G-2 in the north to borehole G-3 in the south, and from the
Bow Ridge fault in the east to about 1 km west of the Solitario Canyon fault. Fig. 1
indicates the numerical grid with increased resolution in the vicinity of the proposed
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Fig. 1. Plan view of the three-dimensional site-scale model domain, grid and incorporated major faults.



290 Y.-S Wu, P.A. Forsyth / Journal of Contaminant Hydrology 48 (2001) 277-304

repository, located near the center of the model domain. Also shown in the figure are the
locations of a number of boreholes used for model calibration and references. As shown
in Fig. 1, severa major faults are incorporated explicitly in the model, including the
Solitario Canyon, Ghost Dance, Dune Wash, and Bow Ridge faults. Some of these faults
are not labeled on the figure. The Bow Ridge fault is treated as the eastern boundary of
the model domain. Based on field evidence indicating that the fault zones are predomi-
nantly vertical or near vertical at Yucca Mountain, the faults are represented in the
model as vertical zones of finite thickness bounded by sudden stratigraphic offsets in
connection to adjacent gridlayers. The scheme used for generating the fault grid
elements was outlined by Wittwer et al. (1995).

In the vertical direction, the layering and subdivision of geological units in the
numerical grid are based on the geological model of Bandurraga (1996). Fig. 2 shows
the hydrogeological layers and offsets of the explicitly modeled faults in west—east
vertical cross-section aong line WE of Fig. 1. The 3-D model grid has 28 computational
grid layers that represent the different hydrogeological units and layers in the unsatu-
rated zone of the Mountain. A dual-continua (i.e., dual-permeability approach) is used
here to handle fracture—matrix flow and interactions.

Each model layer of the grid (Fig. 1) has 1470 irregular gridblocks for a total of
about 40,000 gridblocks. The 3-D grid was generated employing a Voronoi-type mesh
(Palagi and Aziz, 1994). A dual-permeability grid was generated based on the primary
grid (Fig. 1). The dual-permeability mesh subdivides each primary mesh element into
fracture and matrix domains, resulting in a grid of 80,000 gridblocks and 310,000
connections.

The boundary conditions are specified as follows. The ground surface is taken as the
top model boundary, and the water table is regarded as the bottom boundary. The
bottom boundary of the model are treated as Dirichlet-type boundaries, i.e., constant (but
spatially distributed) pressures and constant liquid saturations are specified along these
boundary surfaces. On the top boundary, a spatialy varying, steady-state infiltration map
(Flint et al., 1996) is used in this study to describe the net steady-state water recharge,
with an average infiltration rate of 4.9 mm /year over the model domain. In addition, all
the lateral boundaries surrounding the model domain (Fig. 1) are considered as closed
boundaries.

Initialy, uniform water saturation of 0.5 was specified to all grid blocks of fractures
and matrix, except for the bottom boundary nodes, as initial conditions for the S-based
simulation. For pressure—based formulation run, 0.5 water saturation was converted into
pressures as initial conditions, i.e., the same physical conditions to start with.

In this study, an isothermal condition is assumed with constant temperature of 25°C.
The properties used for fluids, rock matrix, and fractures, including two-phase flow
parameters of fractures and matrix characteristics, were estimated based on field tests
and model calibration studies, as summarized in Wu et al. (1998).

Two simulations were conducted for this problem, one using saturation-based (S
based) formulation with variable substitution for saturated nodes and one using
pressure-based (P-based) formulation (Table 1). In the two simulations, the same
convergence tolerance and time-stepping scheme were specified for a fair comparison.
The simulations were both run to 2700 years of simulation time. Simulation results are
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shown in part in Figs. 3—5 for matrix liquid saturations in boreholes SD-7, SD-9 and
SD-12 (see Fig. 1 for the borehole locations). Note that the current moisture conditions,
as shown in Figs. 3-5 (labeled as “USGS Data”), in the unsaturated zone of Yucca
Mountain are commonly conceptualized as those corresponding to the steady-state
ambient conditions. Here we use the simulation results of 2700 years to approximate a
steady-state condition by comparing them with the observations. Figs. 3, 4 and 5
indicate that the two formulations give almost identical results for the modeled liquid
saturations in rock matrix, and the numerical results are in reasonable agreement with
the field observations (“USGS data”), used in Wu et a. (1998), in al the cases. We
have checked comparisons with many others boreholes, and the comparisons are similar
to the results, as shown in Figs. 3-5.

Table 4 presents computational statistics for the numerical performances of the two
formulations. The heading “inner iterations” denotes total numbers of iterations inside
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Fig. 3. Comparisons of matrix liquid saturations, simulated using the two formulations, and field observation
data for borehole SD-7.
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Fig. 4. Comparisons of matrix liquid saturations, simulated using the two formulations, and field observation
data for borehole SD-9.

the linear-equation solver, and the CPU times were recorded on a DEC-alpha worksta-
tion. Of course, if identical time steps are used and the algebraic equations are solved to
similar accuracy, then the computed solutions should be the same regardless of the
choice of primary variables. The small differences in solutions result from the fact that
even though the same convergence tolerances were used for both choices of primary
variables, the actual solution accuracy for each method is dightly different (i.e., the final
residuals that meet the convergence tolerance criteria are not identical). The simulation
results of the two runs are very similar, as given in Figs. 3, 4 and 5; however, Table 4
shows that the S-based, mixed formulation performs 22 times faster than the P-based
formulation for this particular problem of unsaturated flow in highly heterogeneous
fractured rocks. During the test, we have aso observed that the S-based, mixed
formulation is not only more efficient, but also much more robust than the P-based
method. The S-based method with variable substitution works for any initial and
boundary conditions.
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4.2. Test 2—two-dimensional, two-phase flow in unsaturated fractured rock

The second example is for comparison of two-active-phase, gas—water flow using
two formulations (Table 2): one saturation and one pressure (mixed), and two pressures
as primary variables. A two-dimensional west—east, vertical cross-section mode is
selected, along the middle of the repository near Borehole UZ-14 (Fig. 1), as shown in

Table 4

Comparison of numerical results for Test 1—three-dimensional flow in unsaturated rocks

Method Time Newton Inner CPU Normalized
steps iterations iterations times (min) CPU times

Saturation-based / mixed 364 1474 3980 196 1

Pressure-based 9000 40,245 49,100 4454 227
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Fig. 6 for the entire 2-D model domain and grid. Again, a dual-permeability approach is
used for fracture—matrix interactions in this study. The irregular vertical grid, which
includes four inclined faults, is designed for this two-dimensional cross-section, as
displayed in Fig. 6. The grid is locally refined at the repository horizon by three
5-m-thick layers and the actual repository length along the middle section. The grid has
a horizontal spacing of 56 m and vertical spacing of no more than 30 m. The 2-D model
has approximately 6300 fracture and matrix elements, and 16,000 connections.

The boundary conditions are similar to those used by the 3-D model of Test 1. The
ground surface is taken as the top model boundary. The water table is taken as the
bottom boundary, with fixed liquid saturation and gas pressure specified. The surface
infiltration map is implemented as source terms to the fracture gridblocks in the upper
boundary and the resulting infiltration rates varying along each gridblock, with an
average of 1.9 mm/year along the cross-section. An isotherma condition of 25°C is
assumed for the system. Fluid and rock properties for this problem are taken from those
for the recent modeling studies at Yucca Mountain (Bodvarsson et al., 1998).

To make a fair comparison of the two formulations of Table 2 (Table 1) for the
two-phase flow problem, we specified the same convergence tolerance with 8 P = 1000
Pa and 8S= 0.01, and time-stepping scheme. In this problem, an automatic time-step-
ping option was invoked with using a constant time-step increasing multiplier (1.5) and
a cutting factor (0.5). However, we found that the two-pressure formulation was not
robust and could not handle a uniform initial condition. Therefore, the actua initia
condition, specified for the two simulations, was generated using the results of mixed
formulation, which correspond to the flow condition after 100 years surface infiltration
with a uniform saturation guess initially.

The two simulations were both run to 100,000 years of simulation time, at which time
the system has almost reached a steady state. Figs. 7 and 8 display contours of liquid
saturations of matrix and fracture, respectively, along the cross-section. On the top of the
figures is shown the nonuniformly distributed surface infiltration map. Figs. 7 and 8
show that in this case the two formulations predict nearly identical results for both
matrix and fracture saturations.

Computational statistics for the numerical solution of the two formulations are given
in Table 5 (smulations were conducted on a DEC-apha workstation). Table 5 shows
that the two formulations perform amost the same numericaly in terms of both
iterations and CPU times for this test problem. This is because (1) no phase transition
occurs in the system with two phases present al the time and (2) good, smooth initial
conditions exist to start with—the ideal conditions for the two-pressure formulation.
However, the two-pressure formulation cannot be used for an arbitrary initial condition,
and its performance is still no better than the mixed formulation.

4.3. Test 3—three-dimensional, three-phase flow of air, water and NAPL

The problem was adopted from an air injection study (Wu et d., 1996b), and it
concerns three-phase well flow in a three-dimensional, layered system, consisting of a
quarter of a five-spot well pattern, with constant-rate air injection and pumping wells,
located diagonally, as shown in Fig. 9. The computational domain is 100 m (x) X 100 m
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Fig. 7. Comparisons of matrix liquid saturations, simulated using the two formulations, along the west—east
cross-section.

(y) X 10 m (2), and is discretized using a 10 X 10 X 20 grid. Node spacing in the x and
y direction is a constant 10 m, while in the z (vertical) direction, the spacing is 0.5 m.
Air is injected a 1000 m®/day (constant rate at standard conditions) with the
injection well located at x =100 m, y= 100 m and 3.5 m <z < 5.5 m. The pumping
well islocated at x=y=0m, and 3.5 m< z< 5.5 m and subject to a constant liquid
(water + NAPL) rate of 10 m®/day. The wells are both screened over a 2-m length.
As shown in Fig. 9, the modeled unconfined aquifer consists of four horizontal layers
with different rock properties. A horizontal water table is approximately at an elevation
of z=5 m. In addition to the air-injection and liquid-pumping rates, the atmospheric
condition and bottom water pressure are also described to enforce constant air pressure
at the top boundary as well as stable water table conditions at the bottom. The initial
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condition of the system is generated by placing a NAPL layer of 2.5 m in height along
the water table and letting the system equilibrate. Fig. 10 illustrates the initial vertical
profiles of water and NAPL saturations in the model domain. After the system is

Table 5

Comparison of humerical results for Test 2—two-dimensional, two-phase flow in unsaturated rocks

Method Time Newton Inner CPU Normalized
steps iterations iterations times (s) CPU times

Saturation-based / mixed 3213 3412 7244 2191 1

Two-pressure 3263 3414 7169 2199 1.004
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equilibrated, air injection and liquid production are carried out for 100 days. Again, we
specified the same convergence tolerance with 8 P = 100 Pa and 8S= 0.001 for all the
runs in this problem, and the time-stepping parameters were the same as those used in
Test 2.

The input data of fluid properties, including relative permeability and capillary
pressure curves for the layers, are given by Wu et al. (1996b). Scaled van Genuchten
functions (Parker et al., 1987) are used here for evaluating the three-phase relative
permeabilities and capillary pressures. We use this problem to test al the formulations
of Table 3 for three-phase flow simulations. The simulations were all run to 100 days
since liquid pumping and air injection start. Altogether nine different formulations
(Table 3) were tested in this three-phase NAPL problem, including all the combinations
of one pressure and two-saturation, mixed formulations (Table 3).

The simulated cumulative NAPL recovery rate from the pumping well at 100 daysis
about 7% of the total initial NAPL in the system. Examination of the simulation results
for all the nine cases indicate that all the methods result in essentially the same NAPL
recovery rates after 100 days air injection and pumping. Table 6 lists the statistics for
numerical performances of each formulation in solving the problem (simulations were
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conducted on a Pentium Il PC). Note that Table 6 indicates that performances of
formulations with different pressure and saturation combinations are very different from
each other for this test problem. Overall, the formulations using gas pressure (Pg) asa
primary pressure variable perform the best in terms of CPU times required. In addition,

Table 6

Comparison of numerical results for Test 3—three-dimensional, three-phase flow of air injection in an

unconfined aquifer

Primary variables Time Newton CPU Normalized
steps iterations times (s) CPU times
P-%-$ 346 1561 4238 1.16
Po—S—Sw 173 1650 4696 124
Py—-$-Sy 312 1454 3798 1.00
P-§-$ 825 6398 16,109 4.24
Po—%-Sy 841 5599 14,389 3.79
P.—-$-Su 1324 10,147 25,065 6.60
P.—§-S 1124 7500 19,006 5.00
Pu—%-Sy 1527 9713 23,183 6.10
P,—-$-S. 856 5256 12,816 3.37
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we found during the testing that selecting P, as a primary pressure variable was more
robust than using P,, or P, for this problem.

In general, in addition to the primary variables selected the numerical performance of
multiphase flow models depends also on relative permeability and capillary functions,
hydrogeological conditions and heterogeneity of aquifers, and the imposed boundary
operational conditions imposed. The results of Table 6 and our past experiences indicate
that using a gas-phase pressure with two saturations often performs better for simulating
NAPL flow through unconfined aquifer systems and at the same time, selection of
saturations is not very critical. This may be because in many cases, gas pressure is well
defined and controlled by the surface atmospheric condition and stays relatively stable
during a simulation. On the other hand, water or NAPL pressure will vary rapidly as
infiltration or recharge conditions change with gas pressure held nearly constant, which
may keep the solutions from converging.

5. Summary and conclusions

In this work, we present a comparative analysis of the selection (and subsequent
effect) of primary variables in solutions for the discrete equations of multiphase flow
simulations. The discussion of simulation results is based on a general, mass-conserva-
tive, discretized formulation for modeling multiphase, multi-dimensional flow through
porous and fractured rocks. We have performed a series of numerical tests using
large-scale field-simulation examples, including modeling one-active-phase, two-phase,
and three-phase flow problems in multi-dimensional, heterogeneous fractured and
porous rocks.

This study indicates that proper primary variable selection is crucial for efficiently
solving a highly nonlinear multiphase subsurface flow problem using a Newton iteration.
The selection of primary variables depends in general on how sensitive the system of
equations is to the variables selected at given phase and flow conditions, leading to a
better-conditioned Jacobian matrix. When determining primary variable selections in
formulating a multiphase flow problem, we must take into account (1) computational
efficiency, (2) robustness, and (3) simplicity in evaluating other secondary variables and
setting up linearized equations.

The standard, head- or pressure-based formulation is found to perform very poorly
numericaly in solving Richards equation for flow through highly heterogeneous
fractured rocks. On the other hand, use of pressures only as primary variables in a
two-active-phase or three-phase flow formulation creates difficulties in handling single-
phase conditions or phase transition without implementing a variable substitution
scheme. Numerically, the pressure-only method offers no advantages over a mixed
formulation in terms of efficiency or sophistication of coding, and therefore in practice
has little to offer. Based on this work and our previous experience, the following
recommendations are suggested for selecting primary variables in multiphase flow
formulation:

« saturation-based formulation with variable switching should be used for solving
Richards' equation of one active phase liquid flow.
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» one pressure (preferably gas pressure for unconfined aquifers) and one saturation
(mixed) formulation should be used for two-active-phase flow.

» one pressure (preferably gas pressure for unconfined aquifers) and two-saturation
(mixed) formulation should be used for three-phase flow.
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