
Non-Darcy displacement of immiscible fluids in porous media

Yu-Shu Wu
Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Abstract. This paper presents a Buckley-Leverett analytical solution for non-Darcy
displacement of two immiscible fluids in porous media. The multiphase non-Darcy
displacement is described using a Forchheimer equation or other non-Darcy flow
correlations under multiphase flow conditions. The analytical solution is used to obtain
some insight into the physics of displacement involving non-Darcy flow effects in porous
media. The solution reveals how non-Darcy displacement is controlled not only by relative
permeability curves but also by non-Darcy flow coefficients as well as injection or flow
rates. This analytical solution is then applied to verify a numerical simulator for modeling
multiphase non-Darcy flow.

1. Introduction

Flow and displacement of multiphase fluids through porous
media occur in many subsurface systems in the areas of oil, gas,
and geothermal reservoir engineering, vadose zone hydrology,
and soil sciences. Buckley and Leverett [1942] established the
fundamental principle for flow and displacement of immiscible
fluids through porous media in their classic study of fractional
flow theory. Their solution involves the noncapillary displace-
ment process of two incompressible, immiscible fluids in a
one-dimensional, homogeneous system. Several forms of ana-
lytical solutions with capillary effects have also been presented
in the literature [Yortsos and Fokas, 1983; Chen, 1988; Mc-
Whorter and Sunada, 1990]. In addition, the Buckley-Leverett
solution has been extended to flow in a composite, one-
dimensional heterogeneous system [Wu et al., 1993].

The Buckley-Leverett fractional flow theory has been ap-
plied and generalized to study enhanced oil recovery problems
[Pope, 1980], surfactant flooding [Larson and Hirasaki, 1978;
Hirasaki, 1981], polymer flooding [Patton et al., 1971; Hirasaki
and Pope, 1974], the mechanisms of chemical methods [Larson
et al., 1982], detergent flooding [Fayers and Perrine, 1959],
displacement of oil and water by alcohol [Wachmann, 1964;
Taber et al., 1961], displacement of viscous oil by hot water and
chemical additive [Karakas et al., 1986], and alkaline flooding
[de Zabala et al., 1982]. An extension to more than two immis-
cible phases dubbed “coherence theory” was described by
Helfferich [1981]. The more recent example in the development
of the Buckley-Leverett theory is the extension to non-
Newtonian fluid flow and displacement [Wu et al., 1991, 1992].
However, studies of multiphase non-Darcy flow have received
little attention in the literature [Evans and Evans, 1988; Wang
and Mohanty, 1999].

The effects of non-Darcy or high-velocity flow regimes in
porous media have long been noticed and investigated for
porous media flow [e.g., Tek et al., 1962; Scheidegger, 1972; Katz
and Lee, 1990]. However, theoretical, field, and experimental
studies performed so far on non-Darcy flow in porous media
have focused mostly on single-phase flow conditions that per-
tain to the oil and gas industry [Tek et al., 1962; Swift and Kiel,
1962; Lee et al., 1987]. Some investigations have been con-

ducted for non-Darcy flow in fractured reservoirs [Skjetne et
al., 1999] and for non-Darcy flow into highly permeable frac-
tured wells [Guppy et al., 1981, 1982]. Those studies have con-
centrated on finding and validating correlations of non-Darcy
flow coefficients [Liu et al., 1995].

There are several studies reported in the literature that
extend the Forchheimer equation to multiphase flow and
provide equations for correlating non-Darcy flow coeffi-
cients under multiphase conditions [Evans et al., 1987; Evans
and Evans, 1988; Liu et al., 1995]. A recent study [Wang and
Mohanty, 1999] has discussed the importance of multiphase
non-Darcy flow in gas-condensate reservoirs and presents a
pore-scale network model for describing non-Darcy gas-
condensate flow. Because of the insufficient studies as well
as the mathematical difficulty in handling highly nonlinear,
non-Darcy flow terms in multiphase flow equations, our
knowledge is very limited in the area of non-Darcy mul-
tiphase flow through porous media. In general, compared
with multiphase Darcy flow, the mechanism of immiscible
displacement involving non-Darcy porous media flow is not
well understood.

This paper presents an analytical solution describing the
displacement mechanism of non-Darcy multiphase flow in po-
rous media. The analysis approach follows upon the work for
multiphase non-Newtonian fluid flow and displacement in po-
rous media [Wu et al., 1991, 1992] and results in an analytical
solution that includes effects of non-Darcy multiphase dis-
placement. A practical procedure for evaluating the behavior
of the analytical solution that is similar to the graphic method
by Welge [1952] for solving the Buckley-Leverett problem is
also provided. The analytical solution and the resulting proce-
dure can be regarded as an extension of the Buckley-Leverett
theory to the non-Darcy flow problem of two-phase immiscible
fluids in porous media.

The analytical results reveal that the saturation profile and
displacement efficiency are controlled not only by relative per-
meabilities, as in the Buckley-Leverett solution, but also by the
non-Darcy flow equations and parameters as well as injection
rates. Using the new analytical solution, this paper discusses
how immiscible displacement of two fluids is affected by non-
Darcy flow. In addition, the analytical solution is used to check
numerical solutions from a reservoir simulator for simulating
multiphase non-Darcy flow.
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2. Governing Equations
Consider the flow of two immiscible fluids (one wetting and

one nonwetting phase) in a homogeneous, isothermal, and
isotropic porous medium. Assume that no interphase mass
transfer occurs between the two fluids and ignore dispersion
and adsorption effects. The governing equation for fluid f is
then given by the mass conservation equation,

�� � �� fv f� �
�

�t �� f Sf �� (1)

where � f is the density of fluid f ( f � w for the wetting phase
and f � n for the nonwetting phase), vf is the Darcy (or
volumetric flow) velocity of fluid f, Sf is the saturation of fluid
f, t is time, and � is the effective porosity of formation.

The Darcy velocity (volumetric flow rate) in non-Darcy flow for
each fluid and its dependence on other parameters need to be
defined before the governing equation (2) can be solved. On the
basis of experimental data and analyses several recent studies
[e.g., Evans and Evans, 1988; Liu et al., 1995] extended the Forch-
heimer-type equation to two-phase non-Darcy flow condition:

���Pf � � f g� �
� f

kkrf
v f � � f� fv f�v f� (2)

where k is the absolute permeability of the porous media, g is
the gravitational constant, krf is the relative permeability to
fluid f, � f is the dynamic viscosity of fluid f, and � f is the
effective non-Darcy flow coefficient (per meter) for fluid f
under multiphase flow conditions [Evans and Evans, 1988].
Under single-phase flow condition this coefficient is tradition-
ally called the turbulence coefficient or the inertial resistance
coefficient [Tek et al., 1962; Lee et al., 1987]. Note that to
include multiphase effects on non-Darcy flow, (2) is modified
by the following: (1) Pressure gradient is replaced by flow
potential gradient (the left-hand side term of (2)) to include
gravity effects. (2) Absolute permeability is replaced by an
effective permeability term (kkrf). (3) � f is described as the
effective non-Darcy flow coefficient (per meter) for a flowing
phase under multiphase flow conditions.

Note that the reasoning for this extension of the Forchhei-
mer-type equation to two-phase non-Darcy flow is based on
very limited laboratory testing and analysis only [Evans et al.,
1987; Evans and Evans, 1988; Liu et al., 1995]. The physical
model has not been thoroughly established, contrary to the
viscous control case, i.e., the Darcy flow. The validity of such an
extension needs further investigation.

Darcy law describes a linear relationship between volumetric
flow rate and pressure (head or potential) gradient in porous
media. Any deviations from this linear relation may be defined
as non-Darcy flow. In this work the only concern is with the
non-Darcy flow caused by high flow velocities. The linear term,
the first term [(� f/kkrf)vf] on the right-hand side of (2), rep-
resents viscous flow, and it is dominant at low flow rates.
Additional pressure drop or energy assumption due to non-
Darcy or high flow velocities is described by the second term
(� f� fvf�vf�) on the right-hand side of (2) for the extra friction
or inertial effects [Katz and Lee, 1990]. Equation (2) indicates
that the non-Darcy flow equation reduces to the multiphase
Darcy law if the non-Darcy term (� f� fvf�vf�) can be ignored,
when compared with the first term [(� f/kkrf)vf] for low flow
velocity. For high velocities, however, the second term be-
comes dominant, and it must be included. Therefore Darcy

flow can generally be considered as a special case of non-Darcy
flow as described by (2).

On the basis of their experimental study of single-phase flow,
Tek et al. [1962] correlated the non-Darcy flow coefficient to
porosity and permeability for a given porous formation:

� �
C�

k5/4�3/4 , (3)

where C� is a non-Darcy flow constant with a unit of meters3/2

if converted to SI units. A recent study [Liu et al., 1995] indi-
cates that the � coefficient may be also correlated to tortuosity
or the representative length of tortuous flow paths in pore
structures of a porous material.

The empirical correlations, e.g., (3), for estimating the non-
Darcy flow coefficient, �, were originally determined experi-
mentally for single-phase flow. Some recent work has extended
the single-phase non-Darcy flow correlations, such as (3), to
incorporate the multiphase effect in terms of the saturation
and effective permeability correction [Liu et al., 1995; Evans
and Evans, 1988]. These studies show that non-Darcy flow
coefficients are dependent on relative permeability functions
as well as fluid saturations under multiphase flow conditions.
Non-Darcy flow coefficients may change significantly as mobile
or immobile phase saturation changes. Using a pore-scale,
microscope model, Wang and Mohanty [1999] show that non-
Darcy flow coefficients for gas-condensate fluid flow depend
not only on wetting phase saturation but also on capillary
numbers or pressure gradients to a certain extent.

Note that a capillary number is defined as [Willhite, 1986]

Nc �
� fv
	

(4)

where v is the magnitude of Darcy velocity for a fluid and 	 is
the interface tension between the two phases. For non-Darcy
flow the velocity, as shown in (2), depends on pressure gradi-
ents and relative permeability among other factors and is in-
terrelated with non-Darcy flow coefficient. Therefore it may be
logical and reasonable to assume that the non-Darcy flow co-
efficient in (2) for multiphase non-Darcy flow can be, in gen-
eral, expressed as a function of fluid saturation, relative per-
meability, and pressure gradients:

� f � � f�Sf, krf, �Pf� (5)

for a given porous medium.
Equation (2) implicitly defines the Darcy velocity as a func-

tion of pressure gradient as well as saturation, relative perme-
ability, and effective non-Darcy flow coefficient. A more gen-
eral relation for the Darcy velocity in multiphase non-Darcy
flow may be proposed as follows:

v f � v f��Pf, Sf, krf� (6)

as a function of pressure gradient, saturation, and relative
permeability functions. It should be mentioned that (6) implic-
itly includes effects of non-Darcy flow coefficient with the
definition of (5). With (6) many other kinds of equations for
non-Darcy flow, in addition to the Forchheimer equation [e.g.,
Scheidegger, 1972], can be selected, if available, to describe
multiphase non-Darcy flow.

Similar to multiphase Darcy flow, krf and capillary pressure
(Pc) may be assumed to be functions only of saturations under
non-Darcy flow conditions. However, some recent studies
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[Henderson et al., 1997; Wang and Mohanty, 1999; Pope et al.,
1998] indicate that in addition to dependence on saturation the
relative permeability for multiphase non-Darcy flow may also
depend on capillary number, which, in turn, can be expressed
as a function of pressure gradients, saturation, etc., as dis-
cussed above. We may assume the following general function:

krf � krf�Sw, �Pf� (7)

to include non-Darcy flow effects on relative permeability.
Note that relative permeability functions of (6) should be

determined using the selected non-Darcy flow equation, such
as (2), under a two-phase, non-Darcy flow condition instead of
using a linear Darcy law as in the case of Darcy flow. For
capillary pressure we still use

Pc � Pn � Pw � Pc�Sw� (8)

Sw � Sn � 1. (9)

3. Analytical Solution
For the derivation of the analytical solution we assume the

following Buckley-Leverett flow conditions [Wu et al., 1991]:
(1) Both fluids and the porous medium are incompressible. (2)
Capillary pressure gradient is negligible. (3) Gravity segrega-
tion effect is negligible (i.e., stable displacement exists near the
displacement front). (4) One-dimensional flow and displace-
ment is along the x coordinate of a semi-infinite linear flow
system with a constant cross-sectional area ( A).

Among these assumptions, incompressibility of fluids and
formation is critical to deriving the Buckley-Leverett solution.
This assumption provides a good approximation to displace-
ment processes of two liquids (e.g., oil and water) through
porous media, because of the small compressibilities of the two
fluids. For gas and liquid displacement, however, this assump-
tion may pose certain limitation to the resulting solution, when
large pressure gradients build up in a flow system, such as in
the case of non-Darcy gas-water flow near a well in a low-
permeability formation. In many cases, however, this assump-
tion may still provide acceptable approximations because the
viscosity of the gas (air) phase in normal conditions is �2
orders of magnitude lower than the liquid phase. This tends to
prevent high-pressure gradients from building up, as in the
case of the Buckley-Leverett solution, which was also derived
for oil and gas displacement originally.

Equation (1) can then be changed to read as follows:

�
�v f

� x � �
�Sf

�t , (10)

where v f is the Darcy velocity component or volumetric flow
rate (m/s) per unit area of formation for fluid f. For the
one-dimensional flow, v f can be determined from (2) or (6).
When using (2), we have

v f �
1

2k� f� f
��

� f

krf
� � � � f

krf
� 2

� 4k2� f� f� �P
� x

� � fg sin �
�� � 1/ 2� , (11)

where (�P/� x) is a component of the pressure gradient along
the x coordinate, the same for the wetting or nonwetting phase

(since there is no difference in capillary gradients of the two
phases), g is the gravitational acceleration constant, and 
 is
the angle between the horizontal plane and the flow direction
(the x coordinate).

To complete the mathematical description of the physical
problem, the initial and boundary conditions must be specified.
For simplicity in derivation the system is initially assumed to be
uniformly saturated with both wetting and nonwetting fluids.
The wetting phase is at its residual saturation, and a nonwet-
ting fluid, such as oil or gas, is at its maximum saturation in the
system as follows:

Sn� x , t � 0� � 1 � Swr, (12)

where Swr is the initial, residual wetting phase saturation. Wet-
ting fluid, such as water, is continuously being injected at a
known rate q(t), generally a function of injection time t .
Therefore the boundary conditions at the inlet ( x � 0) are

vw� x � 0, t� � q�t�/A (13)

vn� x � 0, t� � 0. (14)

The derivation of the analytical solution follows the work by
Wu et al. [1991], in which the fractional flow concept is used to
simplify the governing equation (10) in terms of saturation
only. The fractional flow of a fluid phase is defined as a volume
fraction of the phase flowing at a location x and time t to the
total volume of the flowing phases [Willhite, 1986]. The frac-
tional flow can be written as

f f �
v f

vw � vn
�

v f

v�t� , (15)

where the total flow is

v�t� � vw � vn. (16)

From volume balance due to incompressibility of the system
we have

fw � fn � 1. (17)

The fractional flow function for the wetting phase may be
written in the following form:

fw

�
1

1 �
�w�w

�n�n � �
�n

krn
� � � �n

krn
� 2

� 4k2�n�n� �P
� x

� �ng sin �
�� � 1/ 2

�
�w

krw
� � � �w

krw
� 2

� 4k2�w�w� �P
� x

� �wg sin �
�� � 1/ 2	
(18)

when the Forchheimer equation, (11) is used for non-Darcy
flow.

In general, relative permeability functions and effective non-
Darcy flow coefficients, as discussed in section 2, are functions
of saturation and pressure gradients, and (18) indicates that
the fractional flow fw of the wetting phase is also a function of
both saturation and pressure gradient. However, for a given
injection rate at a time and for given fluid and rock properties
of a porous material the pressure gradient at a given time can
be shown by the following to be a function of saturation only
under the Buckley-Leverett flow condition:
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q�t� �
A

2k�w�w
��

�w

krw
� � � �w

krw
� 2

� 4k2�w�w� �P
� x

� �wg sin �
�� � 1/ 2� �
A

2k�n�n
��

�n

krn
� � � �n

krn
� 2

� 4k2�n�n� �P
� x � �ng sin �
�� � 1/ 2� � 0 (19)

Equation (19) shows that the pressure gradient and the
saturation are interdependent on each other for this particular
displacement system. Therefore, (19) implicitly defines the
pressure gradient in the system as a function of saturation.
When another non-Darcy flow equation, other than the Forch-
heimer equation, is chosen, a similar correlation between sat-
uration and pressure gradient can be easily derived from Equa-
tion (16) directly, instead of (19).

The governing equation, (10), subject to the boundary and
initial conditions described in (12)–(14) can be solved as fol-
lows [Wu et al., 1991]:

� dx
dt�

Sw

�
q�t�
�A � �fw

�Sw
�

t

. (20)

This is the frontal advance equation for the non-Darcy dis-
placement of two immiscible fluids, and it has the same form as
the Buckley-Leverett equation. However, the dependence of
the fractional flow fw for the non-Darcy displacement on sat-
uration is different. The fractional flow, fw, is related to satu-
ration not only through the relative permeability functions but
also through the non-Darcy flow relation, as described by (5).

Equation (20) shows that for a given time and a given injec-
tion rate a particular wetting fluid saturation profile propa-
gates through the porous medium at a constant velocity. As in
the Buckley-Leverett theory, the saturation for a vanishing
capillary pressure gradient will, in general, become a triple-
valued function of distance near the displacement front [Card-
well, 1959]. Equation (20) will then fail to describe the velocity
of the shock saturation front since (�fw/�Sw) does not exist on
the front because of the discontinuity in Sw at that point.
Consideration of material balance across the shock front [Shel-
don et al., 1959] provides the velocity of the front:

� dx
dt�

SF

�
q�t�
�A � f w

� � f w
�

Sw
� � Sw

��
t

, (21)

where SF is the displacement front saturation of the displacing,
wetting phase. The plus and minus superscripts refer to values
immediately ahead of and behind the front, respectively.

The location xSw
of any saturation Sw traveling from the inlet

at time t can be determined by integrating (20) with respect to
time, which yields

xSw �
1

�A 

0

t

q���� �fw

�Sw
�

Sw

d� . (22)

This shows that for a general, time-varying injection rate, q(t),
the derivative, (�fw/�Sw), of fractional flow with respect to
saturation within the integral is also a time-dependent function
(see (19)). Therefore the solution (22) for non-Darcy displace-
ment differs from the Buckley-Leverett solution.

If a constant injection rate is proposed, then (22) becomes

xSw �
qt

�A � �fw

�Sw
�

Sw

, (23)

where q is the constant injection rate and qt is the cumulative
volume of the injected fluid.

Direct use of (23), given x and t, will result in a multiple-
valued saturation distribution, which can be handled by a mass
balance calculation, as in the Buckley-Leverett solution. An
alternative graphic method of Welge [1952] can be shown [Wu
et al., 1991] to apply to calculating the above solution in this
case. The only additional step in applying this method is to take
into account the contribution of the pressure gradient depen-
dence on the non-Darcy flow coefficient, using a fractional flow
curve. Therefore the wetting phase saturation at the displace-
ment saturation front may be determined by

� �fw

�Sw
�

SF

�
� fw�SF � � fw�Swr

SF � Swr
. (24)

The average saturation in the displaced zone is given by

� �fw

�Sw
�

SF

�
1

S� w � Swr
(25)

where S� w is the average saturation of the wetting phase in the
swept zone behind the sharp displacement front. Then, the
complete saturation profile can be determined using (23) for a
given non-Darcy displacement problem with constant injection
rate.

4. Discussion
In this section the analytical solution presented above is used

to give us some insight into non-Darcy flow and displacement
phenomena. The physical flow model is a one-dimensional
linear porous medium, which is at first saturated uniformly
with a nonwetting fluid (Sn � 0.8) and a wetting fluid (Sw �
Swr � 0.2). A constant volumetric injection rate of the wet-
ting fluid is imposed at the inlet ( x � 0), starting from t � 0.
The relative permeability curves used for all the calculations in
this chapter are shown in Figure 1, and their pressure gradient
dependence is ignored in the following problems, because
there are no explicit form expressions for such dependence
available in the literature. The properties of the rock and fluids
used are listed in Table 1. The solution (23) is used to obtain
the saturation profiles, with the sharp front saturation deter-
mined by (24). The solution evaluation procedure, as discussed
in section 3, is computer programmed for the analysis.

In the literature, there are several correlations for single-
phase non-Darcy flow coefficients, which have been extended
for analyzing experimental multiphase non-Darcy flow [Evans
and Evans, 1988]. We select one of those extended relations for
use in the demonstration examples. The selected expression is
similar to that defined by (3), and the multiphase extension is
given by

� f�Sw, krf� �
C�

�kkrf�
5/4���Sf � Sfr�	

3/4 , (26)

where Sfr is residual saturation of fluid f. Equation (26) is
incorporated into the calculation of the fractional flow to solve
pressure gradients and then fractional flow corresponding to
saturations under different flow conditions. It should be men-
tioned that pressure gradient dependence in determining non-
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Darcy flow coefficients is also ignored because of the lack of
available functions.

For a given operating condition of constant injection rate the
solution (23) shows that non-Darcy fluid displacement in a
porous medium is characterized not only by relative perme-
ability data, as in Buckley-Leverett displacement, but also by
non-Darcy flow coefficients of the two fluids. Using the results
from the analytical solution, some fundamental aspects of non-
Darcy fluid displacement will be established. Figure 2 shows
the relationship between non-Darcy flow coefficients versus
saturation, as described by (26), with the relative permeability
functions of Figure 1. The large (or infinite) values of non-
Darcy flow coefficients at both ends of the wetting phase sat-
uration of Figure 2 are a result of one phase becoming nearly
immobile. This is equivalent to that when approaching the two
ends; decrease in effective permeability and porosity to the
disappearing phase causes an increase in non-Darcy flow co-
efficients [Evans et al., 1987]. This behavior is also consistent
with observations in the laboratory tests under low saturation
of a phase [Evans and Evans, 1988]. Physically, for any flow to
occur under near residual saturation or zero effective perme-

ability condition, the corresponding non-Darcy flow coefficient
must tend toward infinity.

Figure 3, determined using (19) for the flow system, shows
that pressure gradients change significantly as a function of
saturation for different non-Darcy flow constants. At both high
and low values for the wetting phase saturation the pressure
gradients become relatively smaller because the total flow re-
sistance decreases as the flow is close to single-phase flow
condition. In addition, Figure 3 shows that as the non-Darcy
flow constant increases, the pressure gradient increases at the
same saturation value under the same injection rate, and this is
due to a larger non-Darcy flow term or a large second term on
the right-hand side of (2).

The resulting fractional flow curves and their derivatives
with the three non-Darcy flow constants are shown in Figure 4.

Figure 1. Relative permeability curves used in analytical and
numerical solutions for non-Darcy displacement.

Table 1. Parameters for the Non-Darcy Displacement
Examples

Parameter Value Unit

Effective porosity � � 0.30
Permeability km � 9.869 
 10�13 m2

Wetting phase density �w � 1000 kg/m3

Wetting phase viscosity �w � 1.0 
 10�3 Pa s
Nonwetting phase density �n � 800 kg/m3

Nonwetting phase viscosity �n � 5.0 
 10�3 Pa s
Non-Darcy flow constants C� � 3.2 
 10�9 m3/2

C� � 3.2 
 10�6

C� � 3.2 
 10�5

Injection rates q � 1.0 
 10�5 m3/s
q � 10 
 10�4

q � 1.0 
 10�3

Directional angle 
 � 0

Figure 2. Non-Darcy flow coefficients as a function of dis-
placing phase saturation (C� � 3.2 
 10�9 m3/2).

Figure 3. Pressure gradients versus displacing wetting phase
saturation for different non-Darcy flow constants.
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Note that fractional flow curves change with the non-Darcy
flow constants because of the change in pressure gradient for
different non-Darcy flow constants under the same saturation.
Saturation profiles of displacement after a 10-hour injection
period are plotted in Figure 5. In terms of higher sweeping
efficiency or shorter displacement front travel distance a larger
non-Darcy flow constant or coefficient gives lower wetting
phase flow rates. This results in a better displacement effi-
ciency: More nonwetting phase is displaced from the swept
zone. On the other hand, the displacement becomes the Buck-

ley-Leverett process as the non-Darcy constant, C�, becomes
small or tends to zero.

Effect of injection rates on non-Darcy displacement is shown
in Figure 6, in which a constant non-Darcy flow constant, C� �
3.2 
 10�6 m3/2, is used with all three injection rates. Figure
6 indicates that non-Darcy displacement may be very sensitive
to injection or flow rates. This rate-dependent displacement
behavior is entirely different from a Buckley-Leverett or Darcy
displacement, because the latter is independent of injection or
flow rates. Under non-Darcy flow condition, Figure 6 shows

Figure 4. Fractional flow curves and their derivatives with respect to wetting phase saturation for different
non-Darcy flow constants.

Figure 5. Saturation profiles of the non-Darcy displacement
for different non-Darcy flow constants after 10 hours of injec-
tion.

Figure 6. Saturation profiles of the non-Darcy displacement
for different injection rates after injection of 0.36 (m3) water
(C� � 3.2 
 10�6 m3/2).
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that for the same volume of water injected with the three
injection rates, saturation profiles in the system are very dif-
ferent. Larger injection rates display better sweeping efficiency
overall. This is because higher injection rates create larger flow
resistance to the displacing phase because of the non-Darcy
effect, and as a result this will lower flow velocity of the dis-
placing phase, relative to that of the displaced phase, resulting
in a better displacement performance.

5. Application Example
In this section the analytical solution is used to examine the

validity of the numerical method implemented in a general
purpose, three-phase reservoir simulator, the MSFLOW code
[Wu, 1998], for modeling multiphase non-Darcy flow and dis-
placement processes. The Forchheimer equation is also used
for the comparison.

To reduce the effects of discretization on numerical simula-
tion results, very fine, uniform mesh spacing (�x � 0.01 m) is
chosen. A one-dimensional 5-m linear domain is discretized
into 500 one-dimensional uniform grid blocks. The flow de-
scription and the parameters for this problem are identical to
those in section 4 for the case of C� � 3.2 
 10�9 (m3/2). In
the numerical simulation the non-Darcy flow coefficient, (26),
is treated as a flow property and is estimated using a full
upstream weighting scheme as that for the relative permeabil-
ity function.

The comparison between the analytical and numerical solu-
tions is shown in Figure 7. Figure 7 indicates that the numerical
results are in excellent agreement with the analytical predic-
tion of the non-Darcy displacement for the entire wetting
phase sweeping zone. Except at the shock, advancing satura-
tion front, the numerical solution deviates only slightly from
the analytical solution, resulting from a typical “smearing
front” phenomenon of numerical dispersion effects when
matching the Buckley-Leverett solution using numerical re-
sults [Aziz and Settari, 1979].

6. Summary and Conclusions
This paper presents a Buckley-Leverett analytical solution

and a theoretical study for non-Darcy displacement of two
immiscible fluids through porous media. The multiphase non-
Darcy flow can be described using an extended Forchheimer
equation or other correlation describing multiphase non-Darcy
flow. In addition, a procedure for evaluating the analytical
solution is developed and its use is demonstrated.

The analytical solution, derived in this work for non-Darcy
displacement, is based on the same assumptions as those used
for the Buckley-Leverett solution. In addition, the present so-
lution relies on one more critical assumption, that is, that
relative permeability can be expressed a function of both sat-
uration and pressure gradient to include possible effects of
capillary number. If the Forchheimer equation is used, its
effective non-Darcy flow coefficient is also treated as a func-
tion of saturation, relative permeability, and pressure gradient
in this work. Because of the lack in published correlations for
pressure gradient–dependent relative permeability or non-
Darcy flow functions in the literature, applications of the an-
alytical solution to a general case with pressure gradient–
dependent effective permeability and non-Darcy flow
coefficient are not examined. The physical model for governing
multiphase non-Darcy flow is not well established in the liter-
ature, as compared with multiphase Darcy flow. Therefore the
validity and reasonableness of the present solution and its
applicability to an actual porous medium flow problem need
further investigation.

The new analytical solution is used to obtain some insight
into the physics of displacement involving non-Darcy flow
when the effects of non-Darcy flow coefficients in porous me-
dia are included. The solution reveals that non-Darcy displace-
ment is a more complicated process than the Darcy displace-
ment described by the Buckley-Leverett solution. Multiphase
non-Darcy flow and displacement are controlled not only by
relative permeability curves, such as in Darcy displacement,
but also by non-Darcy flow relations and parameters as well as
injection or flow rates. As an example of application the ana-
lytical solution is applied to verify the numerical formulation of
a numerical simulator for modeling multiphase non-Darcy
flow.

The analytical solution of this work can be easily extended to
other one-dimensional geometries, such as cylindrical, radial
flow for a well flow problem, using the same procedure for
Darcy displacement [Willhite, 1986]. In addition, the analytical
solution is also applicable to displacement processes involving
Darcy flow for one phase and non-Darcy flow for the other.
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