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Abstract

This paper presents an integral method for analyzing transient ¯uid ¯ow through a porous medium, which has pressure-

dependent permeability. Approximate analytical solutions have been obtained for one-dimensional linear and radial ¯ow by an
integral-solution technique, in which the density of the ¯uid, and the porosity and permeability of the formation, are treated as
arbitrary functions of pressure. The integral solutions have been checked by comparison with exact solutions for constant-
permeability cases and with numerical simulation results for general non-linear ¯ow problems, and good agreement has been

obtained for both cases.
In the study of transient ¯ow of ¯uids through porous media, intrinsic or absolute permeability of the formation has often

been treated as a constant in order to avoid solving a non-linear problem. The present work shows that the assumption of a

pressure-independent permeability may introduce signi®cant errors for ¯ow in certain pressure sensitive media. Application of
the integral solutions to slightly compressible ¯uid ¯ow in a horizontal fracture set is illustrated. The calculations show that
neglect of changes in fracture permeability leads to large errors under the condition of high injection pressure. 7 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Fluid ¯ow in porous media is determined by a
coupled process between ¯uid movement and rock de-
formation. This process is in general described by the
¯ow potential gradient and permeability of the for-
mation according to Darcy's law. When ¯uid ¯ow
occurs in porous media, the ¯ow potential will change
spatially and temporally, and so will the ¯uid pressure.
Therefore, the e�ective stress acting on the rock
changes accordingly and will cause the solid skeletons
of the rock to deform. The deformation of the solids
in turn changes the ¯uid ¯ow channels and geometries
and this will a�ect the potential ®eld.

Permeability of porous media is dependent on pore
pressures and/or the stress ®eld. In most studies of

transient ¯uid ¯ow in porous media, however, it has
been assumed that the in¯uence of the rock defor-
mation on permeability is negligible, i.e., only ¯uid
density and rock porosity are treated as functions of
pressure. This assumption may be reasonable for
slightly compressible ¯uid ¯ow in certain purely por-
ous media, such as sandstone, since the pore compres-
sibility of sandstone is usually very small.
Nevertheless, even for ¯ow in fractured media, the
same assumption of constant permeability is often
made. The permeability for pre-existing fractures may
be enhanced signi®cantly due to the deformation of
fractures in response to changes in stress ®elds, pore
pressure and temperature as well [4]. Neglect of e�ects
of rock deformation on ¯uid mobility in fractures may
introduce large errors, because the ¯ow in fractures is
very sensitive to changes in apertures, which directly
correlates with permeability and porosity of the frac-
tured media. Apertures may change signi®cantly under
high ¯uid pressure conditions.
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In one of the earlier studies, Raghavan et al. [21]
developed a numerical method for transient pressure
responses in a well ¯ow test, which included e�ects of
changes in rock and ¯uid properties with pressure.
They de®ned a ``pseudopressure'' to represent the ¯uid
and rock properties in the ¯ow equation. Their model
was studied analytically by Samaniego et al. [24] after
applying a linear approximation to the non-linear pro-
blem, and was used for drawdown, buildup, injection,
and fallo� testing analyses. In addition, Pedrosa [18]
and Kikani et al. [10] applied the perturbation analysis
technique to look at pressure transient response in
stress-sensitive formations, in which permeability was
represented by a special, exponential function of press-
ure.

More recently, Berumen and Tiab [1] presented a
new numerical approach for interpreting the e�ect of
pore pressure on the conductivity and permeability of
arti®cially fractured rock. The non-linear e�ects were
included in their mathematical model and new type
curves for pressure-sensitive fractured formation were
generated to interpret pressure data from fractured
wells. They concluded that use of the conventional
techniques to evaluate fractured wells may lead to
incorrect estimates of fracture-formation properties.

The e�ects of con®ning or overburden pressure on
the permeability of porous media were studied exper-

imentally by a number of authors [6±8,12,13]. The
major conclusions of these studies are that the rock
properties are dependent only on the e�ective stress,
and that the relationship between rock properties and
e�ective stress is history dependent. If total or external
stress is kept constant, the absolute permeability of a
porous medium can be expressed as a function of the
di�erence between the con®ning pressure and the pore
pressure. Some theoretical models have, therefore,
been proposed to relate rock permeability and con®n-
ing pressure [9,25,27].

The in¯uence of ¯uid injection in a fractured porous
medium was investigated numerically by Noorishad et
al. [15], using a ®nite element code. Noorishad and
Tsang [16] present a numerical model (ROCMAS) for
two-dimensional coupled ¯ow and stress analysis in de-
formable, saturated, fractured rock media. More
recently, coupled hydromechanical processes of ¯uid
injection tests into deformable rocks were investigated
using the numerical and experimental approaches
[22,23].

There are few studies on analytical solutions for the
general coupled process of ¯uid ¯ow and rock defor-
mation without using linearization approximations, in
particular for ¯uid ¯ow in fractured reservoirs. This
paper presents an analytical method for analyzing the
non-linear coupled rock permeability variation and

Nomenclature

A cross-sectional area (m2)
b aperture of fracture (m)
bi initial aperture of fracture (m)
Cf ¯uid compressibility (Paÿ1)
ck slope of the void ratio [f/(1ÿf )] plotted

against log (k )
Cr rock compressibility (Paÿ1)
Ct total compressibility (Paÿ1)
D half-spacing between fractures (m)
E Young's modulus (Pa)
F formation factor of Brace's permeability

model
h thickness of formation (m)
k absolute permeability (m2)
ke� e�ective permeability, in Eq. (42) (m2)
kf fracture permeability (m2)
ki coe�cient of pore-geometry model (m2)
k0 shape factor of Brace's permeability model
m hydraulic radius (m)
P pressure (Pa)
P0 pressure at inlet, x=0, or r=rw (Pa)
Pi initial formation pressure (Pa)
Pinj injection pressure (Pa)
Pn (r ) nth-degree polynomial in r

qm mass injection rate (kg/s)
Qm (r ) mth polynomial in r
qinj volumetric injection rate (m3/s)
x distance to inlet (m)
r radial distance (m)
rw wellbore radius (m)
t time (s)
T reservoir temperature (8C)
tD dimensionless time, Eq. (39)
u Darcy's velocity (m/s)
V volume of ¯uid (m3)

Greek symbols
a constant, Eq. (3)
b exponential of Brace's permeability model
d(t ) pressure penetration depth (m)
m ¯uid viscosity (Pa�s)
x de®ned in Eq. (37)
r ¯uid density (kg/m3)
ri initial ¯uid density (kg/m3)
s stress (Pa)
s ' e�ective stress (Pa)
f formation porosity
fi initial formation porosity
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¯uid ¯ow problem. Approximate analytical solutions
for one-dimensional linear and radial ¯ow are obtained
by an integral method, which is widely used in the
study of steady and unsteady heat conduction pro-
blems [17]. The integral method, as applied to heat
transfer problems, utilizes a parametric representation
of the temperature pro®le by means of low-order poly-
nomials, which is based on physical concepts such as a
time-dependent penetration distance. An approximate
solution to the heat transfer problem is then obtained
from simple principles of continuity of temperature
and heat ¯ux, and energy conservation. This solution
satis®es the governing partial di�erential equations
only in an average, integral sense. However, the accu-
racy of integral solutions in heat transfer problems is
generally acceptable for engineering applications.
When applied to ¯uid ¯ow problems in porous media,
the integral method consists of assuming a pressure
pro®le in the pressure-disturbance zone and determin-
ing the coe�cients of the pro®le by making use of the
integral mass balance equation [29,30].

The integral solutions obtained in this paper are
very general. Fluid density and formation porosity and
permeability may be treated as arbitrary functions of
pressure under isothermal conditions. The integral sol-
utions are checked by comparison with the solutions
for special linear ¯ow cases when the exact solutions
are available. Furthermore, a numerical simulator is
used to check the integral solution for general non-lin-
ear ¯ow problems. It is found that the accuracy of the
integral solutions for both linear and radial ¯ow is
very good when compared with the exact solution and
with the numerical results for ¯uid ¯ow through a
semi-in®nite system. We have also found that the
shape of the pressure pro®le for radial ¯ow in a per-
meability-dependent medium can be quite di�erent
from temperature pro®les typically recommended for
heat conduction in radial ¯ow systems [11]. Several
analytical expressions for pressure pro®les are pro-
posed which result in very accurate results for transient
¯uid ¯ow in a radial system.

As an example of application, the integral solution
is applied to discuss the e�ects of ¯uid pressure on
fracture permeability during slightly compressible ¯uid
¯ow through a horizontal fracture system. The analyti-
cal results show that changes in fracture permeability
due to changes in pressure can have a dominant in¯u-
ence on the ¯ow ®eld for high-pressure injection.
Neglecting e�ects of pressure on fracture permeability
may introduce large errors in the ¯ow behavior predic-
tion.

The approximate integral solutions for transient
¯uid ¯ow through a permeability-dependent porous
medium derived in this paper will ®nd their appli-
cations in the following ®elds: (i) to obtain certain
physical insight into the phenomenon of coupled ¯uid

¯ow and rock permeability variations; (ii) to design
and analyze well tests to determine formation and
¯uid properties; (iii) to verify numerical simulators
which include pressure-dependent ¯uid and formation
properties.

2. Mathematical formulation

To formulate the ¯ow model, the basic assumptions
used for ¯uid ¯ow in porous media are as follows:

. isothermal, isotropic and homogeneous formation;

. single phase horizontal ¯ow without gravity e�ects;

. Darcy's law applies; and

. physical properties of ¯uid and rock are purely elas-
tic, depending only on stress (no hysteresis).

The governing equation is derived by combining (a)
the mass conservation law, (b) Darcy's law, and (c)
equations of state of the ¯uid and rock,

r�ru� � ÿ @
@t
�fr� �1�

where the volumetric ¯ux u is described by Darcy's
law as

u � ÿk
m
rP �2�

and k, r, and m are formation permeability, ¯uid den-
sity and dynamic viscosity (constant), respectively; P is
¯uid phase pressure, t is time and f is formation por-
osity.

It has been shown [6,8,26] that hydrologic properties
may be functions only of the e�ective stress, de®ned as

s 0 � sÿ aP �3�
where s and s ' are the total (external) stress and e�ec-
tive stress, respectively; a is a parameter which depends
on the mechanical properties of the rock and the geo-
metry of the rock grains. For a particular reservoir,
the total stress s is essentially a constant, depending
on the overburden weight of the formation. Therefore,
the e�ective stress s ' is a function of the ¯uid pressure
only. Therefore, we assume the following constitutive
relations for ¯uid and rock:

r � r�P � �4�

f � f�P � �5�
and

k � k�P � �6�
These correlations are often called equations of state
for ¯uid and rock.
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Isothermal compressibilities are de®ned as:

Cf � 1

r

�
@r
@P

�
T

� ÿ 1

V

�
@V

@P

�
T

�7�

for ¯uid and

Cr � 1

f

�
@f
@P

�
T

�8�

for rock pores. In Eqs. (7) and (8), V is volume of
¯uid, and T is reservoir temperature. The compressibil-
ities Cf and Cr may or may not be constants.

Introducing Eqs. (2), and (4)±(6) into (1), we have
the ¯ow equation

r
�
r�P �k�P �

m
rP

�
� @

@t
�f�P �r�P �� �9�

By using Eqs. (7) and (8) in (9), another form of the
¯ow equation can be obtained:

r
�
r�P �k�P �

m
rP

�
� Ctrf

@P

@t
�10�

where

Ct � Cf � Cr �11�
is the total compressibility. Again, Ct is not necessarily
a constant. Eqs. (9) and (10) are generally non-linear
and will be solved directly using the integral method
with appropriate boundary and initial conditions in
the following two sections.

3. Integral solution for one-dimensional linear ¯ow

The integral method, which has been widely used in
the heat transfer literature [17], is applied here to
obtain an analytical solution for the non-linear
coupled ¯uid ¯ow and rock permeability varying pro-
blem. The ¯ow system of interest is a semi-in®nite lin-
ear reservoir with a constant cross-sectional area A,
initially fully saturated with a single-phase ¯uid. The
same ¯uid is injected (or produced) at a given constant
mass rate, qm. Then the problem to be solved is as fol-
lows:

@

@x

�
r�P �k�P �

m
@P

@x

�
� @

@t
�f�P �r�P �� �12�

The initial condition is

P�x, t � 0� � Pi �constant� �13�
The boundary conditions are

ÿA
�
r�P �k�P �

m
@P

@x

�
x�0
� qm �14�

and

lim
x41 P�x, t� � Pi �constant� �15�

The integral solution for the pressure pro®le in the
pressure penetration zone is given by [30]

P�x, t� � Pi � d�t�
3

�
qmm

Ar�P0�k�P0�
��

1ÿ x

d�t�
�3

�16�

where the pressure penetration distance, d(t ), and the
injection pressure, P0=P0(t ) at x = 0, are treated as
unknowns, to be determined by the two following
equations,�d�t�
0

Ar�P �f�P �dx � Arifid�t� � qmt �17�

and

P0 � Pi � d�t�
3

�
qmm

Ar�P0�k�P0�
�

�18�

Simultaneous solution of Eqs. (17) and (18) will deter-
mine the two unknowns, P0 and d(t ), and substituting
them into Eq. (16) yields the ®nal, closed-form sol-
ution for pressure and distribution of the problem.

It should be mentioned that Eq. (17) is simply a
mass balance equation for the ¯uid in the pressure
penetration region [0 < x < d(t )] of the system,
namely

mass in disturbed zone � initial mass�mass injected

�or ÿmass produced � �19�

The ``slightly compressible'' ¯uid ¯ow can be treated
as a special case of the above solution. In this case,
total compressibility is small and constant, and both
¯uid density and formation porosity are approximated
as linear functions of ¯uid pressure. Substituting the
two functions for density and porosity into (17) and
performing integration analytically will give the press-
ure penetration distance [30] as

d�t� �
�
12r�P0�k�P0�t

rifiCtm

�1=2
�20�

Introducing Eq. (20) into (18), will have one equation
for one unknown, P0(t ). Solving P0(t ) from the result-
ing equation for time t and substituting it back into
Eq. (20), the penetration distance, d(t ), is obtained.
Then using the P0(t ) and d(t ) in Eq. (16), a ®nal sol-
ution for the pressure pro®le will be determined for
the slightly compressible ¯ow system.
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4. Integral solution for one-dimensional radial ¯ow

The problem considered is ¯uid injection into a fully
penetrating well in an in®nite horizontal reservoir of
constant thickness, and the formation is initially satu-
rated with the same ¯uid. The governing equation (9)
can be expressed in a radial coordinate system as

1

r

@

@r

�
r�P �k�P �

m
@P

@r

�
� @

@t
�f�P �r�P�� �21�

The initial condition is

P�r, t � 0� � Pi �constant� �22�
At the inner boundary at the wellbore, r=rw, the ¯uid
is injected at a given mass injection rate, qm, i.e.

ÿ2prwh

m

�
r�P �k�P �@P

@r

�
r�rw

� qm �23�

Using two di�erent functional forms for P(r, t ) as trial
functions, the integral solutions for radial ¯ow under a
given mass injection rate, qm, are obtained in the fol-
lowing two alternative forms (for more analyses with
di�erent solutions, see [30].

1. The temperature pro®le recommended for radial
heat conduction [11,17] is

P�r, t� � �Pn�r�� ln�r� �24�
where Pn (r ) is an nth-degree polynomial in r. Using
a pressure trial function of the form (24), we have

P�r, t� � Pi ÿ
�

qmm
2phr�P0�k�P0�

�

� �1� Zÿ rD�
ln

�
rD

1� Z

�
Z� ln�1� Z�

�25�

for a ®rst-degree polynomial P1(r ), where Z=d(t )/rw
and rD=r/rw. It has been found [29] that Eq. (25)
cannot match well the Theis solution for a linear
¯ow case.

2. From the Theis solution for radial ¯ow with con-
stant permeability, we know that the pressure at a
given injection time is distributed as a logarithm in
(t/r 2). Thus, for tD > 100 [de®ned in Eq. (39)], the
line-source Theis solution is simpli®ed to [5]:

P�r, t� � Pi �
�
qinjm
4pkh

��
ln

kt

fmCtr2
� 0:80907

�
�26�

This approximate solution is very accurate except
near the pressure penetration front. Therefore, a
pressure pro®le for ¯ow in a porous medium with

pressure-dependent properties can be obtained in
the form [29]

P�r, t� � Pi � constant� ln�Pn�r�� �27�
Using this pro®le, we ®nd

P�r, t� � Pi ÿ
�

qmm
2phr�P0�k�P0�

��
1� 1

2Z

�

� ln

"�
2rD

1� Z

�
ÿ
�

rD

1� Z

�2
# �28�

It should be mentioned that the expressions (25)
and (28) apply only for rw R r R rw+d(t ), while
P(r, t )=Pi for rrrw+d(t ).

Similar to one-dimensional linear ¯ow, the two
unknowns, P0, the wellbore pressure, and, d(t ), the
pressure penetration distance, are determined by using
either of the Eqs. (25) or (28) at r=rw, together with
the following mass balance equation in the pressure
disturbance region:�rw�d�t�

rw

2prhr�P�f�P �dr

� phrifi��rw � d�t��2 ÿ r2w� � qmt �29�

The applicability and accuracy of the two solutions,
given by Eqs. (25) and (28), will be discussed in the
next section.

For slightly compressible ¯uid ¯ow, we obtain the
following explicit expressions of the integral mass bal-
ance equation for the di�erent pressure pro®les of Eqs.
(25) and (28), respectively.

For the pressure pro®le, Eq. (25),

qmt� r2wrifiCtmqm

r�P0�k�P0��Z� ln�1� m��

�
�
ÿ 5

36
�1� Z�3 � 1

4
Z� 5

36

�
�
1

2
Z� 1

6

�
ln�1� Z�

�
� 0

�30�

For the pressure pro®le, Eq. (28),

qmt� r2wrifiCtmqm

r�P0�k�P0�
�
1� 2Z
2Z

�

�
�
ÿ 3

2
�1� Z�2 � �1� Z� � 1

2
� 2�1� Z�2

� ln�1� Z� ÿ 1

2
�1ÿ 4�1� Z�2� ln

�
1� 2Z

�1� Z�2
��
� 0

�31�
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Solving either pair of Eqs. (30) and (25) or (31) and
(28) for r=rw, simultaneously for the wellbore press-
ure, P0, and the pressure penetration distance, d(t ),
and then substituting them into (25) or (28), give the
®nal solution for the corresponding ¯ow problem.

5. Discussion on accuracy of integral solutions

The solutions from the integral method are approxi-
mate, and their accuracy needs to be con®rmed by
comparison with an exact solution or with numerical
results in general. In this section, the integral solutions
obtained in Sections 3 and 4 are checked by compari-
son with exact solutions and numerical calculations for
the one-dimensional linear and radial ¯ow of slightly
compressible ¯uid through a horizontal formation.
The numerical code used is a modi®ed version of
MULKOM-GWF [19], which includes a pressure-
dependent permeability. This is a fully implicit integral
®nite di�erence code for three-phase ¯ow of gas, water
and foam, which belongs to the ``MULKOM'' family
developed by Pruess [20].

The accuracy of integral solutions depends on the
choice of pressure pro®les, and on the nature of per-
meability dependence upon pressure as well as other
variables [29]. We consider that pressure changes cause
changes in porosity, which in turn a�ects permeability.
For the permeability-porosity relationship, we use two

alternative empirical models. One is a resistivity and
pore shape model [2], which relates permeability to
electrical resistivity by

k � �m2=k0�F ÿ2fÿ1 �32�
where m is the hydraulic radius, the volume of the
interconnected pores divided by their surface areas; k0
is a shape factor; F is the formation factor, the ratio
of the resistivity of ¯uid-saturated rock to the resis-
tivity of ¯uid alone, described by

F � fÿb �33�
where b is a constant close to 2. Thus, the per-
meability-porosity relationship is

k � �m2=k0�f2bÿ1 �34�
We also consider a pore-geometry model often used in
soil mechanics [14],

k � ki exp

�
2:303�f=�1ÿ f� ÿ fi=�1ÿ fi ��

ck

�
�35�

where ck is the slope of the void ratio [f/(1ÿf )]
plotted against log (k ). Fig. 1 shows the relationships
between the normalized permeability and the normal-
ized porosity from these two models.

5.1. Check on linear ¯ow integral solution

5.1.1. Comparison with exact solution
The exact solution of linear ¯ow of a slightly com-

pressible ¯uid in a semi-in®nite system, with constant
permeability and constant injection rate at inlet x= 0,
is given by [3]:

Table 1

Parameters for checking integral solution

Parameter Value Unit

Initial pressure Pi=107 Pa

Initial porosity fi=0.20

Initial ¯uid density rw=975.9 kg/m3

Cross-section area A=1.0 m2

Formation thickness h=1.0 m

Fluid viscosity m=0.35132� 10ÿ3 Pa s

Fluid compressibility Cf=4.556� 10ÿ10 Paÿ1

Rock compressibility Cr=2, 5� 10ÿ9, 5� 10ÿ10 Paÿ1

Initial permeability k=9.869� 10ÿ13 m2

Water injection rate qm=0.01, 0.1, 1.0 and 10 kg/s

Wellbore radius rw=0.1 m

Hydraulic radius m=10ÿ5 m

Shape factor k0=0.25

Exponential index b=2.0

Coe�cient, Eq. (35) ki=3.2� 10ÿ15 m2

Fig. 1. Permeability functions for checking integral solutions.
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P�r, t� � Pi �
�
qinjmx
kA

��
1

p1=2x
eÿx

2 ÿ erfc�x�
�

�36�

where qinj is the volumetric injection rate, and

x � x

2

�
kt

fiCtm

�1=2
�37�

The parameters as shown in Table 1 are used to evalu-
ate both the exact solution (36) and the integral sol-
ution (16)±(18).

A comparison of injection pressures calculated from
the integral and the exact solutions is shown in Fig. 2.
The agreement between the two solutions is excellent
for the entire transient period.

5.1.2. Comparison with numerical solution
The above example is simple, because we are dealing

with a linear governing equation for which an exact
solution exists. For the case of a pressure-dependent
permeability, the governing equations become non-lin-
ear, and we no longer have exact solutions. Therefore,
a numerical method is used to examine the integral
solutions found in this work. The numerical code has
been modi®ed by implementing the permeability func-
tions (34) and (35) to take into account the e�ects of
pressure on formation permeability. The parameters of

¯uids and rock used for this numerical simulation are
given in Table 1 and are also provided on the ®gures.

A comparison between the injection pressures at the
inlet computed from the integral solution and the nu-
merical model are shown in Figs. 3 and 4, for the per-
meability functions of Eqs. (34) and (35), respectively.
It is obvious that the integral solution matches the nu-
merical results very well for the entire injection period,
while the constant-permeability (const. k ) calculations
lead to larger errors as injection pressure increases.
The integral solutions are always expected to introduce
some error; however, comparisons in Figs. 3 and 4
show that the integral solution for one-dimensional lin-
ear ¯ow is excellent for applications.

5.2. Check on radial ¯ow integral solution

5.2.1. Comparison with exact solution
For an in®nite-acting radial system with a constant

permeability, the exact (Theis) solution for slightly
compressible ¯uid ¯ow is [5]:

P�r, t� � Pi �
�
qinjm
4pkh

��
ÿ Ei

�
ÿ 1

4tD

��
�38�

where qinj is the volumetric injection rate, a constant,
and tD is the dimensionless time, de®ned as

Fig. 3. Comparison of injection pressures calculated from integral,

exact (constant permeability) and numerical solutions for linear ¯ow

in a permeability-dependent medium with permeability function (34).

Fig. 2. Comparison of injection pressures calculated from integral

and exact solutions for linear ¯ow in a constant permeability med-

ium.
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tD � kt

fmCtr2
�39�

If Eq. (24) is used to represent the pressure pro®le for
radial ¯uid ¯ow in a constant-permeability porous
medium, the solution is given by Eq. (25). It has been
found [29,30] that the integral solution in this form
overestimates the pressure buildup due to injection by
about 5±10%. On the other hand, the integral solution
using a pressure pro®le of Eq. (27), with Pn (r ) being a
second-degree polynomial, is given by Eq. (28). A
comparison study [29] indicates that, essentially, no
di�erences can be observed in the wellbore injection
pressure calculations from the Theis solution and the
integral solution (28).

5.2.2. Comparison with numerical solution
Brace's [2] permeability of model (34) is used to

examine the integral solution for the radial ¯ow case.
The input parameters are given in Table 1. The calcu-
lations of the numerical, Theis and two integral sol-
utions, are shown in Fig. 5. The integral solution, Eq.
(25), with a pressure pro®le like (24), gives the best ap-
proximation to the problem, while both Theis and the
other integral solution (28) result in larger errors. It is
interesting to note that the integral solution (25) is
poor for the constant permeability calculations.
Obviously, the pressure pro®le for ¯ow in a per-

meability-dependent medium deviates from the logar-
ithmic distribution due to changes in permeability, and
a pressure pro®le such as Eq. (24) best represents the
physics.

A comparison of the di�erent solutions for an
order-of-magnitude smaller compressibility, Cr=5 �
10ÿ10 Paÿ1, is given in Fig. 6. In this case, the integral
solution (28) is better than Eq. (25), even though cer-
tain errors with (28) are apparent. As discussed by Wu
et al. [30], the pressure pro®le of Eq. (24) or solution
(25) should be used in the integral solution in order to
include e�ects of signi®cant changes in permeability
due to pressure variation. The integral solution (28)
gives better accuracy if the medium is closed to rigid.
Another alternative form of solutions was derived in
Wu et al. [30] for the radial ¯ow problem, which gives
a better accuracy for intermediate ranges of compressi-
bility. We have performed many tests by comparing
integral solutions with numerical simulation results
and have found that the accuracy of the integral sol-
utions depends mainly on rock compressibility, among
others. For applications of those solutions, one may
substitute di�erent forms of integral solutions into the
original governing Eq. (9) or (10) to ®nd a certain
minimum or norm, in order to determine which sol-
ution should be used for a given problem when no nu-
merical code is available.

Fig. 5. Comparison of injection pressures calculated from integral

and numerical solutions for radial ¯ow in a strongly permeability-

dependent medium with permeability function (34).

Fig. 4. Comparison of injection pressures calculated from integral,

exact (constant permeability) and numerical solutions for linear ¯ow

in a permeability-dependent medium with permeability function (35).
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6. Flow through a horizontal fracture

Fluid ¯ow through fractured media is of fundamen-
tal importance in many problems relating to energy
recovery from the subsurface reservoirs and to nuclear
waste disposal in geologic media. A number of physi-
cal models for fractures have been proposed to study
transport phenomena in fractured media, and con-
siderable progress has been made in understanding
¯ow behavior of ¯uids through fractures since the
1950s. The simplest model is a set of parallel horizon-
tal fractures, with constant spacing and initial aperture
(see Fig. 7). This fracture model and the integral sol-
utions obtained in this paper are used to examine the
e�ects of coupled stress and ¯uid ¯ow through a hori-
zontal fracture system. The parameters of ¯uid and
rock for this study are shown in Table 2. The for-
mation is assumed to be subject to vertical uniaxial
stress. Then, the aperture b is given by

b � bi � 2D

E
�Pÿ Pi � �40�

where bi is the initial aperture, D is the half-spacing
between fractures, and E is Young's modulus of the
intact rock. Fracture permeability is described by the
cubic law [28] as

k � b2

12
� b2

i

12

�
1� 2D

Ebi

�Pÿ Pi �
�2

�41�

The e�ective permeability of fractures in the conti-
nuum sense, as used in Darcy's law, is then

keff � kf
b

2D
� 1

3
f3 �42�

where f is the porosity of the fracture system, given

Fig. 7. Schematic of a horizontal fracture system.

Table 2

Parameters for ¯ow through a horizontal fracture

Parameter Value Unit

Initial pressure Pi=107 Pa

Initial aperture bi=10ÿ3, 10ÿ4 m

Initial ¯uid density rw=975.9 kg/m3

Half-spacing D=0.25, 0.1 m

Fluid viscosity m=0.35132� 10ÿ3 Pa s

Fluid compressibility Cf=4.556� 10ÿ10 Paÿ1

Young's modulus E=5� 1011 Pa

Water injection rate qm=1.0 kg/s

Wellbore radius rw=0.1 m

Initial fracture permeability ki=1.66667� 10ÿ10 m2

Fig. 6. Comparison of injection pressures calculated from integral

and numerical solutions for radial ¯ow in a weakly permeability-

dependent medium with permeability function (34).
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by

f � b

2D
� bi

2D

�
1� 2D

Ebi

�Pÿ Pi �
�

�43�

Note that the cubic dependence of permeability on
porosity in (42) is identical to Brace's model (34) for
b=2. Since the system is uniform and symmetric, only
one basic section needs to be considered, as shown in
Fig. 7b.

A comparison of the injection pressures in a linear
horizontal fracture system, for a constant and a press-
ure-dependent permeability, is given in Fig. 8, for a
constant mass injection rate condition at the inlet x=
0. Here, the integral solution (25) is used. Fig. 8 shows
that, as the injection pressure gets higher, the injection
pressure would be overestimated if fracture per-
meability were taken as a constant.

Fig. 9 shows the di�erences in injection pressures
from constant and pressure-dependent fracture per-
meability solutions at the wellbore for a radial ¯ow
problem with di�erent fracture characteristics. The
constant-permeability solution always overestimates
the pressure response at the wellbore as injection press-
ure reaches a very high value. Since the parameters
used in these calculations are reasonable for actual
¯uid ¯ow through fractures, we conclude that neglect
of permeability dependence on pressure will lead to
large errors in calculated ¯uid ¯ow through fractured
media for a high injection pressure operation.

7. Conclusions

1. The integral method, as commonly used for heat
conduction analysis, has been applied to study ¯uid
¯ow through permeability-dependent porous media.
The approximate analytical solutions for one-dimen-
sional linear and radial ¯ow in a semi-in®nite sys-
tem at a speci®ed injection rate are obtained by the
integral technique. The solutions provide a good ap-
proximate solution to a general non-linear govern-
ing ¯ow equation with arbitrary constitutive
correlations of permeability, porosity and ¯uid den-
sity as functions of pore pressure.

2. More suitable pressure pro®les are discussed for
obtaining integral solutions to radial ¯ow. Two
published permeability models are used to examine
the accuracy of the integral solutions by comparison
with the exact solution and the numerical simu-
lations for ¯uid ¯ow through permeability-depen-
dent porous media. Excellent agreement has been
obtained for both linear and radial ¯ow solutions.
The integral solutions obtained from this paper are
con®rmed to give accurate results for engineering
applications.

Fig. 8. Comparison of injection pressures in a linear fracture system

with and without including e�ects of permeability changes.

Fig. 9. Comparison of injection pressures in a radial fracture system

with and without including e�ects of permeability changes.
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3. The e�ects of pressure on permeability are discussed
by integral solutions for one-dimensional single-
phase, slightly compressible linear and radial ¯ow
through a horizontal fracture. The results show that
for ¯ow in fractured media, ignoring pressure depen-
dence of permeability may lead to large errors in ¯ow
behavior prediction under high-pressure operations.

4. The analytical solutions provided in this paper for
the coupled ¯uid ¯ow and rock permeability vari-
ation problem will ®nd their applications in the fol-
lowing three ®elds: (i) to obtain some physical
insight into hydraulic±mechanic coupling phenom-
ena of porous medium ¯ow; (ii) to determine some
¯uid and formation properties by well test analysis
or laboratory test methods; and (iii) to verify nu-
merical codes that include e�ects of pressure-depen-
dent ¯uid and rock properties.
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