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Flow and displacement of non-Newtonian fluids in porous media occurs in many
subsurface systems, related to underground natural resource recovery and storage
projects, as well as environmental remediation schemes. A thorough understanding of
non-Newtonian fluid flow through porous media is of fundamental importance in these
engineering applications. Considerable progress has been made in our understanding
of single-phase porcus flow behavior of non-Newtonian fluids through many
quantitative and experimental studies over the past few decades. However, very
little research can be found in the literature regarding multi-phase non-Newtonian
fluid flow or numerical modeling approaches for such analyses.

For non-Newtonian fluid flow through porous media, the governing equations
become nonlinear, even under single-phase flow conditions, because effective
viscosity for the non-Newtonian fluid is a highly nonlinear function of the shear
rate, or the pore velccity. The solution for such problems can in general only be
obtained by numerical methods.

We have developed a three-dimensional, fully implicit, integral finite difference
simulator for single- and multi-phase flow of non-Newtonian fluids in porous/fractured
media. The methodology, architecture and numerical scheme of the model are based
on a general multi-phase, multi-component fluid and heat flow simulator-—~TOUGH2.
Several rheological models for power-law and Bingham non-Newtonian fluids have
been incorporated into the model. In addition, the model predictions on single- and
multi-phase flow of the power-law and Bingham fluids have been verified against the
analytical solutions available for these problems, and in all the cases the numerical
simulations are in good agreement with the analytical solutions. In this presentation,
we will discuss the numerical scheme used in the treatment of non-Newtonian
properties, and several benchmark problems for model verification.

In an effort to demonstrate the three-dimensional modeling capability of the model, a
three-dimensional, two-phase flow example is also presented to examine the model results
using laboratory and simulation results existing for the three-dimensional problem with
Newtonian fluid flow. © 1998 Elsevier Science Limited. All rights reserved.

Keywords: non-Newtonian fluid flow, reservoir simulation, power-law fluid, Bingham
fluid, multi-phase flow.
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1 INTRODUCTION

Flow and displacement of non-Newtonian fluids through
porous media occurs in many subsurface systems and has
found applications in underground natural resource
recovery and storage projects, as well as environmental
remediation schemes, Previous studies on the flow of fluids
through porous media were limited for the most part to
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Newtonian fluids!™. Since the 1950s, studies of non-
Newtonian fluid flow through porous media have received
a great deal of attention because of its important industrial
applications, in petroleum industry, groundwater and
environmental problems*®. Considerable progress has
been made in our understanding of single-phase porous
flow behavior of non-Newtonian fluids through many
quantitative and experimental studies in the past few
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decades. However, little research can be found in the liter-
ature regarding multi-phase non-Newtonian fluid flow or
numerical modeling approaches for such analyses.

Many studies on the flow of non-Newtonian fluids in
porous media have been conducted in chemical engineering,
rheology and petroleum engineering since the early 1960s.
Because of the complexity of pore geometries in a porous
medium, a macroscope continuum flux law has to be used to
obtain meaningful insight into the physics of non-
Newtonian flow in porous media. Some equivalent or
apparent viscosities for non-Newtonian fluids are required
in the Darcy equation. Therefore many experimental and
theoretical investigations have been conducted to determine
rheological models, or correlations of apparent viscosities
with flow properties for a given non-Nzwtonian fluid as well
as a given porous material. The viscosity of a non-
Newtonian fluid depends upon the shear rate, or the velocity
gradient. However, it is practically impossible to determine
the distribution of the shear rate in a microscopic sense
within a porous medium, and the rheological models
developed in fluid mechanics for non-Newtonian fluids can-
not be applied directly to porous meclia. As a result, many
laboratory studies were undertaken in an attempt to relate
the rheological properties of a non-Newtonian fluid to the
pore flow velocity of the fluid or the imposed pressure drop
in a real core or in a packed porous medium®*®,

The subject of transient flow and displacement of non-
Newtonian fluids in porous media is relatively new to many
applications, starting from the late 1960s’. Pressure transient
theory of flow of non-Newtonian power-law fluids in porous
media was developed by Odeh and Yang8 and Ikoku and
Ramey’. Since then the new well test analysis techniques
of non-Newtonian flow have been improved for interpreting
pressure data observed during injectivity and falloff tests in
reservoirs. The numerical modeling methods were also used
for simulating power-law fluid flow by McDonald'?, Gencer
and Ikoku'', and Vongvuthipornchai and Raghavan'?'?,

Despite considerable advances over the past three decades
in our understanding of single-phase porous medium flow
behavior of non-Newtonian fluids through many quantitative
and experimental studies, very little research has been con-
ducted regarding multi-phase non-Newtonian fluid flow or
numerical modeling approaches developed for such analyses.
In some of our previous studies of nop-Newtonian fluid flow,
we developed a Buckley-Leverett'*-type analytical solution
for two-phase immiscible flow of non-Newtonian fluids in
porous media>'>'®, and applications of this solution have
revealed many features of displacement of power-law and
Bingham fluids. We also performed several numerical studies
for simulating flow of single- and multi-phase non-Newto-
nian fluids in porous media™>!"'8,

This paper presents a three-dimensional, fully implicit,
integral finite difference simulator developed for simulating
single- and multi-phase flow of non-Newtonian fluids in
porous/fractured media. The methodology, architecture
and numerical scheme of the model are based on a general
multi-phase, multi-component fluid and heat flow simulator,

TOUGH2". Several commonly used rheological models for
power-law and Bingham non-Newtonian fluids have been
incorporated into the model. In addition, the model predic-
tions on single- and multi-phase flow of power-law and Bing-
ham fluids have been verified against the analytical solutions
available for these problems. In all the cases, the numerical
simulations are in good agreement with the analytical solu-
tions. A three-dimensional, five-spot, two-phase flow simula-
tion example is also presented to examine the model results
using laboratory and simulation results existing in the litera-
ture for Newtonian fluid displacement?®-%2,

In this paper, we will present the numerical scheme used,
the treatment of non-Newtonian properties and several
benchmark problems for model verification.

2 MATHEMATICAL FORMULATION
2.1 Governing equations

The multiphase system is assumed to be isothermal and
composed of three mass components, or three phases: air,
water and a nonaqueous phase liquid (NAPL). The three
components are assumed to be present only in their asso-
ciated phases, i.e. mass transfer between phases for the
components by equilibrium phase partitioning is ignored.
Therefore, the present formulation is similar to ‘dead oil’
immiscible flow model. Two of the liquids, water and
NAPL, can be considered as non-Newtonian fluids, while
the gas phase is treated as a Newtonian fluid. In an iso-
thermal system containing three mass components, three
mass balance equations are needed to fully describe the
system. The following summary of the governing flow
equations follows Pruess'®?>?*2> and Wu®. The balance
equations for component or phase 8 (8 = w, water; a, air;
n, NAPL) are written in integral form for an arbitrary flow
region V, with surface area I'; as follows,

g; VfMB an = JWF@n dI‘,, + Jquﬁ an 1)
Here Mg is the mass of component 8 (3 = w, a, n) per unit
porous medium volume; Fjg is the mass flux of component
8 into V¢; n is the inward unit normal vector; and gg is the
rate of mass generation of component 3 per unit volume.

The mass accumulation terms for water, air and NAPL
(8 = w, a, n) in eqn (1) are defined as

My=63 Ssps )
5

Here ¢ is the porosity; Sg is the saturation (pore volume
fraction) occupied by phase 3; and pg is the 8 phase density.

The mass flux terms are given by a multiphase extension
of Darcy"s law,

k,
BPB(VPs — psg) 3)
(7]

Here k is the absolute permeability; k.s is the relative
permeability to phase B; ug is the 8 phase dynamic

FB= —k
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viscosity, which for non-Newtonian fluids will be a
generally non-linear function of flow rate; P is the fluid
pressure in phase 3; and g is the gravitational acceleration
vector.

2.2 Supplementary relations

The mass transport governing eqn (1) needs to be supple-
mented with constitutive equations, which express all the
parameters as functions of a set of primary thermodynamic
variables of interest (P4, Sg). The following relationships
will be used to complete the statement of multiple phase
flow of non-Newtonian and Newtonian fluids through
porous media.

In addition to the three governing equations of eqn (1),
there are supplementary equations given by

Swt+Sg+S,=1 4)
The aqueous and gas phase pressures are related by
Pw =Pg - chw(Sw) &)

where P, is the gas—water capillary pressure in a three-
phase system, which is assumed to be a function of water
saturation only. The NAPL phase pressure is related to the
gas phase pressure by

Py =Pg _chn(Swa Sn) (6)

where P, is the gas—NAPL capillary pressure in a three-
phase system, which is a function of two phase saturations.
For most geologic materials, the wettability order is (1) the
aqueous phase, (2) the NAPL phase, and (3) the gas phase.
The gas—water capillary pressure is usually stronger (more
negative) than the gas—-NAPL capillary pressure. The
NAPL-water capillary pressure, in a three phase system, is

Pcnw=chw_chn=(Pn—Pw) (N
The relative permeabilities are assumed to be functions of

fluid saturations only and not to be affected by non-New-
tonian behavior, described by

km =km(Sw’ Sg) 9)
kg = kegl(Se) (10)

Here, the second liquid phase, NAPL, is assumed to be the
intermediate wetting phase; its relative permeability
depends on both wetting and nonwetting phase saturations.

Equations of state of the densities for Newtonian and non-
Newtonian fluids are

Pﬁ=p/3(Pﬁ) (n

as functions of the individual phase pressures. For the gas
phase, the ideal gas law is used.

Viscosities for Newtonian fluids are treated as constants,
and for a non-Newtonian fluid, phase (8 == n or w), the
apparent viscosity may be expressed as a function of

saturation and potential gradient”:
pg = ug(Sg, Vg) (12)
where V@ = VP;s — pgg.

2.3 Numerical discretization

The numerical technique presented in this work is the
‘integral finite difference’ method®?®, The numerical
scheme implementation is based on the ‘MULKOM/
TOUGH2’ family of multi-phase, multi-component
codes'”'*? The mass balance equations for each phase
are expressed in terms of the integral finite difference
equations, which are fully implicit to provide stability and
time-step tolerance in highly nonlinear problems. Thermo-
dynamic properties are represented by averages over
explicitly defined finite subdomains, while fluxes of mass
across surface segments are evaluated by finite difference
approximations. All mass balance difference equations are
solved simultaneously, using the Newton—Raphson
iteration procedure.

The capillary pressures and relative permeabilities are
treated as functions of saturation, and can be specified
differently for different flow regions. The rheological
properties for non-Newtonian viscosity require special treat-
ments and depend on the rheological models used. Several
common viscosity functions have been implemented in the
code, such as the power-law and Bingham models.

The continuum expression [eqn (1)] is discretized in
space using the ‘integral finite difference’ scheme, resulting
in a set of first-order ordinary differential equations in time
for element (grid block) €,

dMﬁf:

1
ar V;ZmAfmF B.em 9, ¢ (13)

Here Fg g, is the average value of the (inward) normal
component of mass flux over the surface segment Ag,
between volume elements V; and V,,. It is expressed in
terms of averages over parameters for elements Vy and V,,:

krfspfs] [Pﬁ,f ~Pgm
uﬂ tm Dfm

Fg om= —kem [ — Pg, tm8em

(14)

where the subscripts (£m) denote a suitable averaging
between neighboring grid blocks (interpolation, harmonic
weighting, upstream weighting); Dy, is the distance
between the nodal points € and m; and g, is the compo-
nent of gravitational acceleration in the direction from m to
£. Time is discretized as a first-order difference, and the
flux and sink and source terms on the right-hand side of eqn
(13) are evaluated at the new time level, =1 A to
obtain the numerical stability needed for an efficient calcu-
lation of multi-phase flow. This treatment of flux terms is
known as ‘fully implicit’, because the fluxes are expressed
in terms of the unknown thermodynamic parameters at time
level t**!, so that these unknowns are only implicitly
defined in the resulting equations. The time discretization
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results in the following set of coupled nonlinear, algebraic
equations:

Ro'e =M3%' — Mg,
At K41 k+1
~ T D enFs i+ Velap. '} =0 15)

where we have introduced residual R to denote the
difference between accumulation and flow terms.

For each volume element (grid block) V, there are three
equations for the primary thermodynamic variables, P,, S,
and §,. For a flow system which is discretized into N grid
blocks, eqn (15) represents a set of 3N coupled nonlinear,
discretized algebraic equations. The unknowns are the 3N
independent primary variables x; (i = 1, 2, 3,..., 3N) which
completely define the state of the flow system at time level
**1. These equations are solved by Newton~Raphson
iteration, which is implemented as follows. An iteration
index p is introduced and the residuals at iteration
level p + 1 are expanded in terms of the primary
variables x;, at iteration level p. Retaining only terms up
to the first order, a set of 3N lincar equations for the
increments (x,,4; — X;,) is obtained:

aleﬁl k+ 1
_ZiT (ips1 —Xip) =Rgle (x;p) (16)
(2
p

All terms in the Jacobian matrix are evaluated by numerical
differentiation and eqn (16) is solved with direct methods?’
or iteratively by means of preconditioned conjugate
gradient solvers®. Iteration is contirued until the residuals
Rlé“ are reduced below a preset convergence tolerance,
usually taken as 107> X M.

3 TREATMENT OF NON-NEWTONIAN BEHAVIOR

The apparent viscosity functions for non-Newtonian fluids
in porous media depend on the pore velocity, or the potential
gradient, in a complex way*. The rheological correlations
for different non-Newtonian fluids are quite different.
Therefore, it is impossible to develop a general numerical
scheme that can be universally applied to all non-Newtonian
fluids. Instead, special treatment for a particular fluid of
interest has to be worked out. Typical relationships of
shear stress and shear rate for commonly encountered
non-Newtonian fluids in porous media are shown in Fig. 1.
For some most often used non-Newtonian fluids, such as the
power-law and Bingham plastic fluids, the numerical
treatment will be discussed here.

3.1 Power-law fluid
The power-law model? is the most widely used in describ-

ing the rheological property of shear-thinning fluids, such as
polymer and foam solutions, in porous flow. Its multiphase

1, Shear Stress

—>

Y. Shear Rate

Fig. 1. Typical shear stress and shear rate relationships for non-
Newtonian fluids.
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where subscript nn denotes a non-Newtonian fluid; » is the
power-law index; V& is flow potential gradient; and p.g is
defined as

H 3\" _
Heff = E(9+ ;) [150kkmn¢(snn - Snnir)](1 "2 (18)

where H is a consistence parameter; S,, is the non-
Newtonian, power-law fluid saturation, and S, is
irreducible saturation of the non-Newtonian phase. The
two power-law parameters, n and H, are normally obtained
from laboratory measurement and fitting data.

The power index, n, ranges between 0 and 1 for a shear
thinning fluid, and the viscosity from eqn (17) becomes
infinite as the flow potential gradient tends to zero. There-
fore, direct use of eqn (17) in the calculation will cause
numerical difficulties. Instead, a linear interpolation
scheme is used when the potential gradient is very small.
As shown in Fig. 2, the viscosity for a small value of
potential gradient is calculated by

o = 1+ ELE2(1901 - 5)) (19)
5, — 5,

for |V®| = §,, where the two interpolation parameters are
&) (~10Pam™) and &, (8,—8, = 107 Pam™'); and the
values for u; and p, may be taken as (see Fig. 2),

k (n—1)in
By = Preft ( 51) (=12 (20
Heff
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Fig. 2. Schematic of linear interpolation of viscoties of power-law
fluids with small flow potential gradients.

3.2 Bingham fluid

Instead of introducing an apparent viscosity for Bingham
fluids, the following effective potential gradient approach
has been proven to be more efficient numerically. Using the
effective potential gradient as illustrated by Fig. 3, Darcy’s
law of Bingham flow'® is described by

kk
u= - Lmmgg 1)
Mb
A (VOe),
1
1
/ >
-G 0 /l G (Vd,)x

Fig. 3. Effective potential gradient for Bingham fluids, dashed
linear extension for numerical calculation of derivatives.

where p,, is the Bingham plastic viscosity coefficient and
V&, is the effective potential gradient whose scalar com-
ponent in the x-direction, flow direction, is defined as

(Vq)e)x = (V¢)x -G,
(V&) =(V®), +G,
(VQC )x = 05

if (V®),>G
if (V), < ~G
fG=(Vd)= -G

where G is the minimum potential gradient of Bingham
fluids.

4 VERIFICATION AND SIMULATION SAMPLES

Four examples are given in this section to provide verifica-
tion of the model numerical schemes. The samples problems
includes: (1) one-dimensional displacement of a Newtonian
fluid by a power-law, non-Newtonian fluid; (2) single-phase
Bingham transient flow; (3) one-dimensional displacement
of a Bingham fluid by a Newtonian fluid; and (4) a three-
dimensional, five-spot, two-phase flow simulation example
for which laboratory and simulation results are known in the
literature for Newtonian fluid displacement®®~%2. For the
first three problems, analytical solutions are available for
model benchmarking. For the fourth, three-dimensional
flow problem, the existing laboratory and numerical simula-
tion results are used to check the simulations of the proposed
model, applied to a special case of Newtonian flow. In addi-
tion a three-dimensional Bingham oil displacement is
demonstrated by the problem.

4.1 Displacement of a Newtonian fluid by a power-law
fluid

This example of interest is a one-dimensional immiscible
flow problem of two incompressible fluids, one Newtonian
and one non-Newtonian fluid, in a semi-infinite, horizontal,
homogeneous and isotropic porous medium with a unit
cross-sectional area. Capillary effects are assumed to be
negligible. Under such conditions, an analytical solution is
available through extension of the Buckley-Leverett
method'®. The problem is that a power-law fluid injected
as a displacing agent to drive an initially saturated
Newtonian liquid in a porous medium.

In order to reduce the effects of discretization in a finite
system, very fine mesh spacing (Ax = 0.0125 m) was
chosen for the first 240 elements, and then the spacing
was increased by a factor of 1.5 for the 290th element.
The properties of rock and fluids are given in Table 1, and
a comparison of the saturation profiles from the numerical
and analytical solution after 10 h of non-Newtonian fluid
injection is shown in Fig. 4. The figure shows that the
numerical results are in excellent agreement with the
analytical solution, although some smearing occurs at the
sharp front as normally seen for a Buckley—Leverett
problem.
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Table 1. Parameters for power-law fluid displacement
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Porosity

Permeability

Injection rate

Injection time

Displaced phase viscosity

Irreducible Newtonian saturation
Irreducible non-Newtonian saturation
Power-law index

Power-law coefficient

Relative permeability to non-Newtonian phase
Relative permeability to Newtonian phase
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Fig. 4. Comparison of the power-law fluid saturation profiles from the numerical and analytical solutions at ¢t = 10 h.

4.2 Transient radial flow of single-phase Bingham fluid

This is a one-dimensional transient radial flow problem of
Bingham fluid, and an analytical solution is available'® for
this comparison study. The problem concerns a pumping
test of a fully penetrating well at an infinite, homogeneous
and horizontal reservoir with constant thickness. The
reservoir is fully saturated with single-phase Bingham
liquid, such as heavy oil. The pumping starts at time = 0

Table 2. Parameters for single-phase Bingham fluid flow

Initial porosity ¢; =020

Initial fluid density pi = 9759kg m™
Initial pressure P, =10"Pa

Mass pumping rate gm = 1 kg s

Bingham coefficient py =5 X 107° Pass
Minimum pressure gradient G = 1000 Pam™’

Fluid compressibility Ci=4.557 X 1079pa~!
Formation thickness h=1m

Rock compressibility C, = 2644 X 10°Pa™’
Permeability k = 1 Darcy

Wellbore radius re = 0.1m

with constant mass pumping rate. The fluid and formation
parameters used in this test are listed in Table 2.

Fig. 5 indicates that there exists excellent agreement
between the two solution for the entire transient period.
The pressure profiles along radial distance at ¢t = 1000 s,
predicted by the two methods, are compared in Fig. 6. The
match of the numerical results with the analytical solution
has been found to be excellent from early to later times at
any radial distance.

4.3 Displacement of a Bingham fluid by a Newtonian
fluid

This is another one-dimensional immiscible displacement
problem, in which a Bingham liguid is displaced by a
Newtonian fluid, similar to the case of heavy oil production
by water flooding in petroleum industry. The problem
description is similar to the power-law fluid displacement
problem, and we also use the same analytical solution to
examine the numerical simulation results. The one-
dimensional rock column is initially saturated by a Bingham
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Fig. 5. Comparison of the wellbore pressures for the numerical and analytical solutions during pumping of a Bingham fluid.

fluid only, and then a Newtonian liquid (water) is injected at
the inlet as a displacing agent to drive the Bingham liquid.
The properties of rock and fluids are given in Table 3, and
a comparison of the saturation profiles from the numerical
and analytical solutions after 1 day of water injection is
shown in Fig. 7. Fig. 7 indicates that the numerical results
are in good agreement with the analytical solution, although
some small smearing at the sharp saturation front exists.

4.4 Three-dimensional, five-spot, two-phase problem

This example is a well-known three-dimensional flow
problem, because the laboratory results are available®,

and it has been used in the literature for benchmarking of
reservoir simulators”'?%. The problem concerns oil recovery
from a five-spot well pattern with the formation saturated
with oil (70%) and water (30%) initially. The computational
domain consists of a one-quarter five spot, and the
dimensions are shown in Fig. 8, with a constant-rate
injection well and a constant-rate pumping well at the
diagonal corners, respectively.

The fluid and formation properties are summarized in
Table 4, and the relative permeability and capillary pressure
data are given in Table 5. A three-dimensional 10 X 10 X 5
brick grid is used for this problem, with Ax = Ay = 14.22 m
and Az = 1.22 m. the formation is treated as homogeneous

1.0x10’

9.9xto*

®
o
-
e

9.7x10*

Pressure (Pa)

9.6xt0*

PRI D S GRS SO

" A " " i

9.5x10° L
0 10

30 40

Radial Distance (m)

Fig. 6. Comparison of the pressure profiles from the numerical and analytical solutions at ¢ = 1000 s during pumping of a Bingham fluid.
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Fig. 7. Comparison of the water saturation profiles from the numerical and analytical solutions at t = 1 day of Bingham fluid displacement.

and the wells are fully penetrating. Both pumping and
injection wells are treated fully iraplicitly in the code
using the no back flow, potential allocation method™.

Even though the flow domain for this problem is regular
and horizontal, the flow is actually three-dimensional
because of the gravity effects between oil and water phases.
Water tends to flow downwards when flowing towards the
pumping well, while oil tends to float to the top by the
gravity forces during moving. The three-dimensional flow
is also contributed by the nonuniform distributions of the
injected and pumped fluxes along the wellbores.

There are two simulations conducted for this problem.
The first simulation is treated oil as a Newtonian fluid, a
special case of non-Newtonian fluids, and water is always a
Newtonian fluid. The second simulation considers the oil as
a heavy oil, or a Bingham fluid with the Bingham coefficient
equal to the oil viscosity and the minimum pressure gradient
G = 10000 Pa. Otherwise, the operation conditions and the
simulation parameters are the same for the two runs. The
experimental data and the simulated results obtained from

Injection Well

2848 m

1F

Fig. 8. Domain for the two-phase five-spot problem.

the present and previous models are compared in Fig. 9.
Fig. 9 shows that the cumulative oil recovery curves are
similar. The present model for both Newtonian oil and
non-Newtonian oil cases predicts slightly higher oil
recovery over the range 0.3-0.8 pore volumes (PV) of
water injection. The discrepancy may be due to the different
rock characteristic curves used in the present and previous
models??. Fig. 9 indicates that the ‘heavy oil’ recovery rate

Table 3. Parameters for Bingham fluid displacement

¢ = 0.20

pw = 1000 kg m>
P = 900 kgm_3
pw =1 X 1073 Pass
gy =2 X 1073 Pas

Porosity

Water density
Bingham fluid density
Water phase viscosity
Bingham coefficient

Minimum pressure gradient G =10000Pam™"
Permeability k = 1 Darcy

Injection rate g=20X%X10"m?s™"
Injection time t = 1 day

Irreducible water saturation Swic = 0.0

Irreducible non-Newtonian saturation S, = 0.2

Relative permeability to Bingham fluid kg, = (1 — 1.258,)°
Relative permeability to water phase  kn, = 1.56(S,)”

Table 4. Parameters for three-dimensional, five-spot, two-
phase flow from the experiment reported by Gaucher and
Lindleyzo

Porosity

Water density

Oil density

Water injection rate

Total liquid pumping rate

Water viscosity

Bingham coefficient or oil viscosity

¢ =020

pw = 1000 kg m~3

po = 800kg m™
Qw=193%x10"m?s™!
QL=193X10°m?s™!
pw =05 X 107 Pass

wy = 2.17 X 107* Pass

Minimum pressure gradient G = 10000 Pam™'
Residual oil saturation Sor = 0.067
Residual water saturation Ser=03

Initial oil saturation S, =0.7
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Table 5. Relative permeability and capillary pressure data used for three-dimensional, five-spot, two-phase flow, estimated by Wu et

al*?
Su ke kro P. (Pa)
0.30000 0.00000 0.81250 0.4434 x 10°
0.33164 0.00000 0.75002 0.3810 x 10°
0.36328 0.00000 0.68935 0.3295 x 10°
0.39492 0.00000 0.63055 0.2863 X 10°
0.42656 0.00000 0.57365 0.2495 x 10°
0.45820 0.00001 0.51870 0.2177 X 10°
0.48984 0.00005 0.46578 0.1901 x 10°
0.52148 0.00016 0.41492 0.1658 X 1_()5
0.55312 0.00046 0.36622 0.1443 x 10°
0.58476 0.00115 0.31973 0.1251 x 10°
0.61640 0.00261 0.27556 0.1079 x 10°
0.64804 0.00547 0.23379 0.9237 x 10*
0.67968 0.01073 0.19455 0.7828 % 10*
0.71132 0.01996 0.15797 0.6545 x 10*
0.74296 0.03545 0.12420 0.5371 x 10*
0.77460 0.06051 0.09346 0.4293 x 10*
0.80624 0.09979 0.06598 0.3300 x 10}
0.83788 0.15963 0.04212 0.2381 x 10*
0.86952 0.24860 0.02238 0.1530 x 10°
0.90116 0.37799 0.00759 0.7380 x 10°
0.93280 0.56250 0.00000 0.0000 x 10°
Table 6. Summary of computational perforrnance for the sample problems
Problem Number of Time Maximum Simulation CPU Solver
elements steps time step time (s) time (s)
size (s)
4.1 240 586 64 3.6 x 10° 567 Direct
42 401 300 Unlimited 1.5 x 10" 432 Direct
4.3 326 469 227 8.64 x 10* 444 Direct
4.4a Newtonian oil 500 76 8.64 x 10° 3.16 X 10° 479 Iterative
4.4b Bingham oil 500 74 8.64 X 10° 3.16 x 10° 490 Iterative
is 2-3% lower than that for Newtonian oil after the early
injection of 0.5 pore volumes because of the high flow
0.7 T T ] resistance of Bingham flow behavior.
] Figs 10 and 11 show the three-dimensional plots of oil
o6 - saturations at 20 years for Newtonian and Bingham oils,
< respectively. A comparison of the two oil saturation distri-
& osf ] butions on the two figures indicates a clear difference
E' ] between the two scenarios. First, the lower (green) oil
04| Experiment 7 saturation or water front is very close to the pumping
§ 4 . f . 1 h p p.
~--&-= Coatsetal : :
2 o Newlonkn Ol w.ell, and almost breakth'rough on Fig. 11 f'or the Bingham
= 03f ~—4a— Binghsm OR ] oil case. For the Newtonian oil, however, Fig. 10 shows the
© ] water front still has a certain distance to the pumping well.
g ozf 7 Primarily along the left front boundary surface of the five-
© spot domain, the oil is still intact on Fig. 11, but water has
o0t 7 already reached the surface near the pumping well for the
] case of Bingham oil, as shown in Fig. 11. Second, the cur-
0.08- e > 20 vatures of saturation contours on the top surface of the
Water Injected (PV) domain, along the diagonal direction from injection to

Fig. 9. Cumulative oil recovery and comparison for Newtonian
and Bingham oil displacement for the two-phase five-spot
problem.

pumping wells, indicate that there is more dominant diag-
onal water flow for the Bingham oil than for Newtonian oil.
In addition, more oil or relative high oil saturation is left
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Fig. 10. Three-dimensional distributions of Newtonian oil at 20 years of waterflooding.

behind near the injection well for the Bingham oil case (Fig.
11), as compared with the Newtonian oil case (Fig. 10). All
of these results explain that the waterflooding efficiency is
poorer when dealing with a Bingham oil.

4.5 Summary of computational performance

Table 6 summarizes the numerical performance of the pre-
sent model for the four sample problems. All the simulations
were performed on a 100 MHz Pentium PC, and both direct
and iterative solvers were used in these calculations. The
convergence for nonlinear iterations was based on residual
reduction to 1.0 X 107 or less relative to the accumulation
terms for all the mass components at zach grid block®*. The
automatic time-stepping scheme was used with a maximum
time-step size specified for different problems. It is noted in
the table that very small maximum time step size was used
for problems 4.1 and 4.3, which is necessary to obtain suffi-
cient accuracy in dealing with the Buckley—Leverett type
displacement solving hyperbolic type equations.

5 CONCLUDING REMARKS

The primary objective of the present work was to present a
numerical method to investigate transport phenomena of

non-Newtonian fluids through porous media. Whenever
non-Newtonian fluids are involved in porous media, the
flow problem will become highly nonlinear because of the
dependence of the apparent viscosity used in the Darcy
equation on shear rate. In general a numerical method has
to be resorted to analyze non-Newtonian fluid flow in porous
media. In addition, the non-Newtonian flow behavior is
quite different for different fluids and/or for different porous
materials. Therefore it is impossible to develop a universal
numerical approach for handling all flow problems involv-
ing various non-Newtonian fluids in porous media. In this
work, major attention has been paid to developing a
methodology for power-law and Bingham plastic fluids,
since they are the most likely to be encountered in
reservoirs. However, the proposed method should also be
useful in analyzing flow problems of other types of non-
Newtonian fluids.

A fully implicit three-dimensional integral finite differ-
ence model has been developed by modifying the general
numerical codes, ‘MULKOM/TOUGH?2’, to include the
effects of non-Newtonian viscosity. This new simulator is
capable of modeling both single and multiple phase non-
Newtonian fluid flow through porous or fractured media.
The numerical model can take account of all the important
factors which affect the flow behavior of non-Newtonian
and Newtonian fluids, such as capillary pressure,
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Fig. 11. Three-dimensional distributions of Bingham oil at 20 years of waterflooding.

complicated flow domains, in homogeneous porous and
fractured media, and various well operation conditions.
Several commonly used non-Newtonian rheological models
have been incorporated in the code. The validity of the
numerical method has been confirmed by comparing the
model numerical results with analytical solutions for both
single-phase and two-phase flow problems.

A three-dimensional, two-phase flow example is also
presented to examine the model results using laboratory
and simulation results existing for the three-dimensional
problem with Newtonian fluid flow. A comparison between
Newtonian and non-Newtonian displacement for the three-
dimensional problem is discussed.
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