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Abstract. Gas flow in porous media differs from liquid flow because of the large gas compressibility
and pressure-dependent effective permeability. The latter effect, named after Klinkenberg, may
have significant impact on gas flow behavior, especially in low permeability media, but it has been
ignored in most of the previous studies because of the mathematical difficulty in handling the
additional nonlinear term in the gas flow governing equation. This paper presents a set of new
analytical solutions developed for analyzing steady-state and transient gas flow through porous
mediaincluding Klinkenberg effects. The analytical solutions are obtained using a new form of gas
flow governing equation that incorporates the Klinkenberg effect. Additional analytical solutions for
one-, two- and three-dimensional gas flow in porous media could be readily derived by the following
solution procedures in this paper. Furthermore, the validity of the conventional assumption used for
linearizing the gas flow equation has been examined. A generally applicable procedure has been
developed for accurate evaluation of the analytical solutions which use a linearized diffusivity for
transient gas flow. As application examples, the new analytical solutions have been used to verify
numerical solutions, and to design new laboratory and field testing techniques to determine the
Klinkenberg parameters. The proposed laboratory analysis method is also used to analyze data
from steady-state flow tests of three core plugs from The Geysers geothermal field. We show that
this new approach and the traditional method of Klinkenberg yield similar results of Klinkenberg
constants for the laboratory tests; however, the new method allows one to analyze data from both
transient and steady-state tests in various flow geometries.

Key words: gas flow, Klinkenberg effect, Klinkenberg constant, pneumatic analysis, unsaturated-
zone flow, air venting, air permeability tests.

Notation

Roman Letters

a lumped parameter in (3.5),
A cross-section area, m2,

b Klinkenberg coefficient, Pa,
d depth to well screen top, m,
g - gravity vector, m/s”,

h formation thickness, m,

H lumped parameter in (3.5),
K lumped parameter in (3.5),

ka averaged gas permeability, m?,

kg effective gas permeability, m?,

koo absolute permeability, m?,

kioo Klinkenberg permeability of low permeability layer in r-direction, m?,
kz.00 Klinkenberg permeability of low permeability layer in z-direction, m?,

kL, Klinkenberg permeability of low permeability layer, m?,



118 YU-SHU WU ET AL,

l depth to well screen bottom, m,

L length of linear flow systems, or thickness of unsaturated zone, m,
L thickness of low permeability layer, m,

M, molecular weight of gas,

P gas pressure, Pa,

Py gas pressure at inlet boundaries of linear flow systems, Pa,

Py gas pressure function (2.2), Pa,

P initial gas pressure, Pa,

Py gas pressure at outlet boundaries of linear flow systems, Pa,

Py, wellbore gas pressure, Pa,

P averaged (constant) gas pressure, Pa,

B, averaged gas pressure function (= P + b), Pa,

Gm gas mass injection or pumping flux, kg/(s.m?),

q7 volumetric gas injection flux, m3/(s.m?), measured at outlet pressure,

Om, Om,3, Om2  gas mass injection or pumping rate, kg/s,
r radial distance, m,

R universal gas constant,
Ty wellbore radius, m,

T temperature, °C,

t time, s,

v Darcy’s velocity, m/s,
X linear distance, m,

z vertical distance, m.
Greek Letters

o gas diffusivity (2.3),
B compressibility factor,
¢ porosity,

o) gas pressure function, defined in (3.3), Pa2,
An defined in (3.6),

i viscosity, Pas,

0 gas density, kg/m°,
Subscripts

g gas,

i initial,

L outletatx = L,

m mass,

0 inlet at x = 0,

\ well.

1. Introduction

Gas flow in porous media has recently received considerable attention because of its
importance in the areas of pneumatic test analysis, contaminant transport and reme-
diation in the unsaturated zone, and vadose zone hydrogeology. Quantitative analysis
of gas flow and gas-phase transport is critical to these environmental protection and
restoration projects. Therefore, analytical solutions and numerical models have been
used extensively in these studies and applications.
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One focus of current research in the fields of unsaturated-zone hydrology and
soil physics is to develop economically feasible remediation schemes to clean up
contamination in shallow aquifers. Typical contaminants in unsaturated zones are
volatile organic chemicals (VOCs) and non-aqueous phase liquids (NAPLs) which
have been spilled from leaking storage tanks or pipelines. Once these contaminants
enter the subsurface, itis very difficult to remove them because of strong capillary and
chemical forces between these contaminants and the soil particles, which is compli-
cated by the heterogeneous nature of soils. Among currently used in situ remediation
techniques, soil-vapor extraction and air sparging have proven to be very efficient and
cost-effective methods for the removal of VOCs or NAPLs from unsaturated soils.
The successful application of these techniques depends on a thorough understanding
of gas flow dynamics and site conditions. As a result, many analytical solutions
(Johnson et al., 1990; McWhorter, 1990; Baehr and Hult, 1991; Shan ef al., 1992;
Baehr and Joss, 1995, and Shan, 1995) and numerical models (Weeks, 1978: Wilson
et al., 1987; Baehr et al., 1989; Mendoza and Frind, 19990; Pruess 1991; Falta er al.,
1992; Huyakom er al., 1994; Panday e1 al., 1995) have been developed for analyzing
gas flow in the unsaturated zone.

The systematic investigation of gas flow in porous media was pioneered in the
petroleum industry for the development of natural gas reservoirs (Muskat, 1946). The
use of gas flow models has been a standard technique in the petroleum industry for
estimating gas permeability and other reservoir parameters in natural gas production
(Dake, 1978; and Ikoku, 1984). There exists a considerable amount of studies on
theory and application of isothermal fiow of gases through porous media in the
petroleum literature. The earliest attempt to solve gas flow problems used the method
of successions of steady states proposed by Muskat (1946). Approximate analytical
solutions (Katz et al., 1959) were then obtained by linearizing the flow equation for an
ideal gas to yield a diffusion-type equation. Such solutions were found to be of limited
general use because of the assumption introduced to simplify the gas properties and
the flow equation. The reasons are that, in general, gas flow in deep pressurized gas
reservoirs does not follow the ideal gas law, and the variations of pressure around
gas production wells are too large to use constant properties. It was not until the mid
sixties that more reliable mathematical solutions were developed using a numerical
method (Russell e al., 1966) and introducing a real gas pseudo-pressure function
{Al-Hussainy er al., 1966).

In recent years, hydrologists and soil scientists have applied similar techniques
to conduct soil characterization studies by pneumatic testing of air flow proper-
ties. Pneumatic test analysis has become an important methodology in determining
formation properties of two-phase unsaturated-zone flow in a proposed repository
of high-level radionuclear waste (Ahlers e al., 1995). Because the ideal gas law
is a better approximation to the near surface air flow than in deep gas reservoirs
and also the pressure changes in the unsaturated zone are generally small, the simple
linearization using an ambient, averaged gas pressure in evaluating the gas diffusivity
term in the flow equation may be suitable for many unsaturated-zone applications.
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While the numerical models developed can be used to perform rigorous modeling
studies of gas flow under complex conditions, analytical solutions continue to provide
a simple tool to determine gas flow properties. Despite the progress made so far in
our understanding of porous medium gas flow, one important aspect, the Klinkenberg
effect (Klinkenberg, 1941), has been ignored in most studies. Even though efforts
have been made to estimate errors introduced by neglecting the Klinkenberg effect
(Baehr and Hult, 1991), only a few studies address this phenomenon explicitly. Gas
flows in porous media differently from liquid; first, because gas is highly compress-
ible, and second, because of the Klinkenberg effect. The Klinkenberg effect may
have significant impact on gas flow behavior, especially in low permeability media.
Some recent laboratory studies (Reda, 1987; Persoff and Hulen, 1996) concluded
that the Klinkenberg effect is important in the low permeability formations studied
and cannot be ignored.

According to Klinkenberg (1941), effective gas permeability at a finite pressure
is given by

b
ke = koo (1+;5), (1.1)

where ko 18 the absolute, gas-phase permeability under very large gas-phase pressure
at which condition the Klinkenberg effects are negligible; and & is the Klinkenberg
factor, dependent on the pore structure of the medium and temperature for a given
gas.

Physically, Klinkenberg effects are significant in any situation where the mean
free path of gas molecules in porous media approaches the pore dimension, i.e.
when significant molecular collisions are with the pore wall rather than with other
gas molecules. Gas permeability is then enhanced by ‘slip flow’. Therefore, it has
been expected that Klinkenberg effect is the greatest in fine-grained, lower perme-

ability porous media. Jones (1972) found that b generally decreases with increasing
permeability according to

b oc k0, (1.2)
based on a study using 100 cores ranging in permeability from 0.01 to 1000 md.
Typical values of b may be estimated as listed in Table I.

This paper presents a set of analytical solutions developed to analyze steady-
state and transient gas flow through porous media with Klinkenberg effects. A new
variable (pressure function) is used to simplify the gas flow governing differential
equation with the Klinkenberg effect. In term of the new variable, the gas flow
equation has the same form as that without including the Klinkenberg effect under the
same linearization assumption. As a result, many one-, two- and three-dimensional
gas flow solutions can be readily derived by analogy to non-Klinkenberg gas fiow,
slightly compressible single-phase liquid flow or heat conduction problems.

As examples of application, the analytical solutions have been used to verify
the numerical solutions for simulating Klinkenberg effects and to provide linear
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Table I. Typical values of
the Klinkenberg factor, b

kg (m?) b (Pa)

10712 3.95 x 10
1015 475 x 10*
10718 7.60 x 10°

correlations according to which laboratory data can be plotted to determine the values
of ke and b. To demonstrate the application of the proposed laboratory technique
to determining the Klinkenberg parameters, steady-state, single-phase gas flow tesis
have been conducted using three core plugs of Graywacke from well NEGU-17 of
The Geysers geothermal field in California. The gas permeability measurements are
analyzed using the proposed method, and consistent results have been obtained for
Klinkenberg coefficients, as compared with the traditional method.

2. Gas Flow Equation with Klinkenberg Effects

If a subsurface system is isothermal, the ideal gas law applies, and gravity effects are

negligible, then gas flow in porous media is described by a mass balance equation
(see Appendix A),

V- (VF) = é— iy 2.1)
where we use a new variable (Collins et al., 1953), the pressure function:

Po=P+b (2.2)
and o is a gas diffusivity, defined as a function of gas pressure,

koo Pb
_ 23
o & (2.3)

Equation (2.1) is identical to the gas flow governing equation which does not include
the Klinkenberg effects with P}, being replaced by P.

In addition to Klinkenberg effects, porous media gas flow may be affected by
turbulent or inertial effects (Tek er al., 1962; Dranchuk et al., 1968, 1969; Katz er
al., 1990; Lee et al., 1987). However, significant turbulent flow usually occurs in
formations with high permeability. By using Equation (1.2), the correlation of the
turbulence factor given by Tek er al. (1962), and a modified Forchheimer equation, it
can be shown that effects of turbulent flow can in general be ignored when Klinken-

berg effects are significant. Therefore, turbulent effects on gas flow are not included
in the following solutions and analyzes.
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3. Analytical Solutions

The gas flow Equation (2.1) is a nonlinear partial differential equation with respect
to P} because of the diffusivity term e, (2.3), which is a function of pressure. In
general, the gas flow governing Equation (2.1) needs to be solved by a numerical
method. However, it is possible to obtain certain analytical solutions as proven in the
following flow conditions.

3.1. STEADY-STATE SOLUTIONS

Under steady-state flow conditions, Equation (2.1) becomes linear and many ana-
lytical solutions can be directly derived using solutions from corresponding slightly
compressible fluid flow or heat conduction problems. Two examples are given in this
section to demonstrate solution procedures. The first solution is needed in Section 5
for application, and the second has applicability to a field problem.

3.1.1. Linear Flow

Under one-dimensional, linear, horizontal and steady-state flow conditions, Equation
(2.1) can be simplified as

A (’i:oﬂp_‘*'l’_) 35) =0. 3.1

ox I ax

The boundary conditions are: at the inlet (x = 0), a constant mass injection rate ¢y,

er unit cross-sectional area is imposed, and at the outlet (x = L), the gas pressure
is kept constant. Then, a steady-state solution can be written as follows:

Px)=—b+ \/iﬂ + P24 2P + 2L — x)/ koo 8. (3.2)

3.1.2. Two-Dimensional (r-z) Axisymmetric Flow

The second example will demonstrate how to derive a new analytical solution with
Klinkenberg effects using existing non-Klinkenberg gas flow solutions. The 2-D
(radial and vertical), steady-state flow problem was described in detail by Baehr and

1NN T

Joss (1995). When Klinkenberg effects are inciuded, the fiow equation becomes

GRIoS 10 92
+ kr.oo - ——

kr oo — =0, 3.3
ar? P R (3-3)

k. 0o

where @ = (P +b)2, and k; oo and k. o, are the Klinkenberg permeabilities in - and
z- directions, respectively, which are different for an anisotropic system.

The problem concerns airflow to or from a partially penetrating well in an unsat-
urated zone that is separated from the atmosphere by a low-permeability, horizontal
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layer on the top. At the interface (z = 0) between the unsaturated zone and the top
low-permeability layer, the continuity in pressure and mass flux requires
0d K
kivo — = =2(® — Opyy) for r>ry, z=0, (3.4)
0z L

where @gem = (Pum +b)?, k., and L’ are the Klinkenberg permeability and thickness
of the top low-permeability layer. The other boundary conditions are the same as de-
scribed by Baehr and Joss (1995), except that the boundary conditions are expressed
in terms of ®. Then, a steady-state solution for this problem can be derived for gas
pressure distribution in the r-z system using the solution of Baehr and Joss (1995) as

D@, z) = Dy + K {‘Z o cos[i’(—%;{z:l K, (%)} : (3.5)

n=1

where
. 2HuOnal _ (k,..oc,\“2 g - D)
7k oo(l — d)ry B’ ks oo ' (ks ooL')’
and
. = sinfA,(L —d)/L] — sin[A, (L — 1)/L]

}\7—1 [{1 ()\nrw/aL)(H + Sil'l2 )\n)

Here functions K and K are the zero-order and first-order modified Bessel functions
of the second kind, respectively, and A,,(n = 1, 2, 3, ... ) are the roots of the equation:

H
tan(d,) = —.

(3.6)
1

3.2. TRANSIENT SOLUTIONS

Equation (2.1) may be linearized using the conventional approach for transient gas
flow analysis, i.e. set

koo Py keoP
o = oo b ay L0 b’ (37)
o oL

where P, = P-+b,isa function of average gas pressure, P, and is treated as a constant.
With the approximation of (3.7), Equation (2.1) becomes linear with respect to P2,
and many analytical solutions can be obtained by analogy with heat conduction

problems (Carslaw and Jaeger, 1959) or slightly compressible flow problems, as
demonstraied in the following.
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3.2.1. Flow in an Infinite Radial System with a Constant Line Source

For horizontal radial flow towards a well, approximated as a line source/sink, in

an infinite, uniform, and horizontal formation, the gas fiow Equation (2.1) may be
expressed in terms of P72,

18 ( aaf) 1 9P?
— r— = —— e——

= 3.8
r or ar o ot (38)
with the uniform initial condition:
Pl =(P+b?=P2 fort=0, >0, (3.9)
where P; is a constant gas pressure of the formation.
The well boundary condition proposed are as a line source/sink well:
wkeohrB 8 P?
L (3.10)
r—0 “ ar
where On, is a constant mass pumping or injection rate.
At the large distance from the well, the pressure is kept constant, i.e.
P} = (Pi+b)* =P} for r — co. (3.11)

With the linearization to the diffusivity «, (3.7), the problem of Equations (3.8)—
(3.11) for the line source/sink case is identical to the Theis solution (Theis, 1935) in
terms of PZ. Then, the solution can be written directly as

-2
P2(r,1) = P} — 5—’5?]9’“7-5?51 <—’——) . (3.12)
Tkooh

3.2.2. Flow in an Infinite Radial System with a Constant Wellbore Pressire

For the case of flow under the constant wellbore pressure (P,,) in an infinite radial
system, the wellbore boundary condition becomes

P} = (P, + D)’ = P, fort>0, r=r,. (3.13)

Equations (3.8), (3.9), (3.11) and (3.13) for this case are identical to the heat con-
duction problem (Carslaw and Jaeger, 1959, p. 335) in terms of sz. The solution for

pressure is

— p2

2(P3, = Pp)
X

bw
T

e 5 Jour)yYo(ury) — Jo(ury)Yo(ur) du
X exp(—au’t) = 5 —, (3.14)
0 Jo(ury) + Yy (ury) u

Pi(rt) = P2, —

where Jp and Yj are the Bessel functions of order O of the first and second kind,
respectively.
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4. Evaluation of Analytical Solutions

The steady-state solutions derived above are exact solutions, and can be directly
applied to analyzing gas flow under steady-state flow conditions. However, the
transient solutions of gas flow provided in Section 3 are approximate solutions
because they assume a constant gas diffusivity, Equation (3.7), to linearize the gas
flow Equation (2.1). Such solutions, though widely used in the analysis of transient
gas flow in unsaturated zones (Weeks, 1978; and Shan, 1995), need to be further
investigated for the validity of the linearization assumption and for the conditions
under which these solutions apply. In the petroleum literature, it has been found that
in many situations, the linearization assumption is inappropriate when applied to the
flow of a real gas in reservoirs (Dake, 1978; Tkoku, 1984; Al-Hussainy erf al., 1966;
and Russell er al., 1966). This may be due to the high pressure in a gas reservoir.
When applied to the near surface air flow analysis, the same linearization procedure
may give reasonable accuracy for gas flow in unsaturated zones due to small (a
few percent) surface atmospheric pressure changes (Kidder, 1957). Nevertheless, the
applicability of such a linearization approximation to any particular problem should
be critically examined.

The applicability of the linearized gas flow solutions to different situations de-
pends mainly on how well an averaged formation pressure can be used to obtain
a representative gas diffusivity term in (3.7) in the pressure disturbed zone. The
conventional treatment, when Klinkenberg effects are ignored, is

P~P, 4.1

where P, is the initial, constant gas pressure of the system. This scheme may provide
reasonable accuracy for certain pneumatic analysis (Shan, 1992) when the overall
pressure changes or perturbations are small relative to initial pressure values of
the system. However, using (4.1) to evaluate the diffusivity will introduce a large
error when gas pressure changes are significant, such as in air sparging opera-
tions. We propose to use a history-dependent, averaged pressure within the pressure
changed (disturbed) domain instead of a constant diffusivity, evaluated using (4.1).
The history-dependent averaged pressure is defined as:

_ A P;
P~ Z ity 4.2)
2oAj

where Aj is a controlled area at the geometric center of which the pressure was P;
at the immediate previous time when the solution was calculated. The summation,
S A j» » 18 done over all A; where pressure increases (or decreases) occurred at
the previous time value. P; is always evaluated analytically at point j, based on the
previous estimated, constant diffusivity.

The reasoning for the proposed scheme is that the diffusivity of (3.7) may be
better approximated when using an averaged, history-dependent pressure of (4.2).
Otherwise, if (4.1) is used throughout in the solution in evaluating the diffusivity
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term, it remains constant. This may introduce significant errors to the solution, in
particular, at late times when pressures and their distributions in the system are very
different from the initial condition.

To demonsirate the proposed scheme for better estimation of the nonlinear dif-
fusivity term in the gas flow equations, we present the following comparison study
using a numerical model. A numerical code for multiphase flow, TOUGH?2 (Pruess,
1991), is used here to examine the approximate transient gas flow solution. The
TOUGH2 code has been verified extensively for its accuracy in simulating gas flow
in porous media (Pruess et al., 1996). Verification examples for gas flow with the
Klinkenberg effect are provided in the next section. The test problem concerns single-
phase isothermal transient gas flow in a radially infinite system with constant gasmass
injection rate through a line source.

The parameters used for this comparison study are: porosity ¢ = 0.3 perme-
ability coefficient koo = 1 x 107> m?; Klinkenberg coefficient b = 4.75 x 10 Pa:
formation temperature T = 25°C; compressibility factor 8 = 1.18 x 103 kg/Pam?;
gas viscosity 1 = 1.84 x 107 Pas; initial pressure P, = 103 Pa; and thickness of
the radial system is 1 m. The well boundary condition is: air mass injection rate
Om=1x10"and I x 10~*kg/s.

Figure 1 presents the comparisons of the pressure profiles at 1 day calculated from
the numerical (true) and analytical (approximate) solutions. At the lower injection rate
of Om,1 = 1 x 107 kg/s for the gas flow problem, the pressure increase in the system
is relatively small at 1 day, and the analytical solution using P; for P gives excellent
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4.5 |- ]
----- Constant Diffusivity E

4.0 Variable Diffusivity -

. ? Numerical Solution b
E ~— =&~ Constant Diffusivity e
& 3.5 | Variable Diffusivity -
;‘ :%0 < Numerical Soiution ]
5 3004 Q =
» N ]
£ o5fF E
o C 1
& a0l .
2.0 - ‘

o N .
1.5 & ;

1.0 - ) s 2ot TSV S §

L Qm,‘i ]

0.5 L Lt - . | L T et ]

(=]
n
£
(=]
=]
ey
(=4

Distance (m)

Figure 1. Comparison of gas pressure profiles in a radially infinite system at 1 day, calculated
using the numerical and the analytical solutions.
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with the numerical solution. However, as the injection rate increases (Om2 =1x
10™* kg/s m?), the gas pressure increases significantly. The analytical solution, with
P as the averaged system pressure (Constant Diffusivity), gives poor accuracy, as
shown in Figure 1. However under the same injection rate, the proposed scheme for
evaluating the nonlinear diffusivity (Variable Diffusivity) using a history-dependent
averaged pressure (4.2) results in excellent agreement with the numerical solution.
Constant-diffusivity solutions give larger errors with larger injection rate in all the
cases when compared with numerical solutions. Numerical tests for one-dimensional
radial and linear flow problems indicate that the new scheme always results in more

accurate solutions than the constant-diffusivity method, when compared with the
numerical solutions (Wu ef al., 1996).

5. Application

In this section, several application examples will be given for the analytical solutions
derived in Section 3. The application problems include: (1) checking the numerical
scheme; (2) laboratory determination of Klinkenberg coefficients; (3) transient well
tests; and (4) laboratory test analysis.

5.1. EXAMINATION OF NUMERICAL SCHEME

5.1.1. Steady-State Flow

This is to examine the accuracy of the TOUGH2 formulation in simulating porous
medium gas flow with the Klinkenberg effect. The problem concerns steady-state
gas flow across a linear rock column 10m long. The system contains single-phase
gas at isothermal condition, and a constant gas mass injection rate is imposed at the
inlet of the column. The outlet end of the rock column is kept at a constant pressure.
Eventually, the system will reach steady state.

The formation and Klinkenberg properties were selected from a laboratory study
of the welded tuff at Yucca Mountain (Reda, 1987). The parameters used are: porosity
¢ = 0.3; permeability koo = 5 x 107" m?; Klinkenberg coefficient b = 7.6 x
10° Pa; formation temperature T = 25°C; and compressibility factor = 1.18 x
107> kg/Pam?; gas viscosity u = 1.84 x 107> Pas. The boundary conditions are:
air mass injection rate O, = 1 x 107®kg/s; the outlet boundary pressure P =
1 x 10° Pa; and cross-area A = 1 m?.

A comparison of the pressure profile along the rock column from the TOUGH2
simulation and the exact, analytical solution (3.2) is shown in Figure 2, indicating
that the TOUGH?2 simulated pressure distribution is in excellent agreement with the
analytical solution for this problem.
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Figure 2. Comparison of the analytical and the numerical solutions for steady-state gas flow
in a finite linear system.

5.1.2. Transient Flow

This is to examine the capability of the TOUGH?2 formulation in simulating transient
gas flow with the Klinkenberg effects. The problem concerns gas injection into a
well in a large horizontal, uniform, and isothermal formation. A constant gas mass
injection rate is imposed at the well, and the initial pressure is uniform throughout
the formation.

The parameters used are porosity ¢ = 0.3; permeability ko = 1 x 10715 m?;
Klinkenberg coefficient b = 4.75 x 10*Pa; The air mass injection rate On =
1 x 1076 kg/s; the initial formation pressure P, = 1 x 10° Pa; the wellbore radius,
ry = 0.1 m; the formation thickness, 4 = 1 m; and 1 and 7T are the same as in the
steady-state flow case above.

A comparison of the pressure profiles along the radial direction after ten days of
injection from the TOUGH2 simulation and the analytical solution (3.12) is shown

in Figure 3. A ain, excellent agreement has been obtained for the transient flow
=] &
problem.

5.2. LABORATORY DETERMINATION OF PERMEABILITY AND KLINKENBERG
COEFFICIENT

The traditional method used in laboratory determination of the permeability and the
Klinkenberg coefficient is using a plot of averaged gas permeability k, vs. inverse
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Figure 3. Comparison of the analytical and the numerical solutions for transient gas flow in
a radial system.

average pressure, 1/ P (instead of 1/P), (Klinkenberg, 1941; Reda, 1987; Persoff
and Hulen, 1996). Flow condition is steady-state, linear flow through a linear core.
In this method, an averaged gas permeability k, is plotted against the reciprocal of
the arithmetic mean of the inlet and outlet pressures,

b
ks =kool 1 + ——mm— . 1
< i (PO+PL>/2> e

The averaged gas permeability is evaluated from pressure and flow data using a
non-Klinkenberg gas flow solution of compressible gas (Scheidegger, 1974),

- 2uLgl P

= . 52

Here the superscript v indicates that volumetric, not mass, flux, is to be evaluated at
the outlet pressure. By equivalence of the two averaged permeabilities of (5.1) and
(5.2), the two Klinkenberg constants, ks, and b, can be determined from 2 or more
data. '

The use of (Py + PL)/2 to represent P in Equation (1.1) to estimate gas per-
meability, combined with non-Klinkenberg solution (5.2) appears questionable. The
gas pressure profiles, for the case of one-dimensional, steady-state flow (Figure 2),
is not linear, and effective gas permeability will vary along the length. Using the
exact solution (3.2), we have evaluated the traditional Klinkenberg analysis, based
on Equations (5.1) and (5.2). Interestingly, we have found that the traditional method
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Is very accurate in deriving the two constants of Klinkenberg effects as long as the
ratio of, b/ P, is not extremely large.

Here, we derive an aliernative approach for determining both k., and b from
laboratory tests, based on the exact steady-state flow solutions (3.2). By evaluating
Equation (3.2) at x = 0 one obtains, after some algebraic manipulation,

Py+ P
5 )

qmitL
B(Po— Pp)

To evaluate ko, and b experimentally, a series of measurements are made in which
the outlet pressure Py is held constant while P is varied and gm 18 measured. Then
Y = gmulL/B(Py — Pv) is plotted against X = (P + P1)/2. Then koo and b are
evaluated from the slope and intercept of the plot of ¥ against X.

= bkoo + koo ( (5.3)

5.3. WELL-TEST DETERMINATION OF PERMEABILITY AND KLINKENBERG
COEFFICIENT

The transient gas flow solutions of (3.12) or (3.14) can be used to design well tests
to determine both the gas permeability, ko, and the Klinkenberg coefficient, b. Here,
we give an example to demonstrate how to use the analytical solutions from a single
well test of a constant mass rate pumping or injection with the line source solution,
(3.12). The pumping or injection testing procedure is (1) measure initial reservoir
gas pressure, F;; (2) impose a constant mass pumping or injection rate at the well;
and (3) measure several (at least two) wellbore pressures at different times (avoiding

the early time after-flow or wellbore storage effects). The Klinkenberg coefficient,
b, can be directly calculated as,

b:—-Pn_‘-Pi— Mm Ei _7-{;2;/
2 4 hke f(P, — P) 4at,

(5.4)

where the permeability, koo, is determined from the following nonlinear algebraic
equation,

P,— P + Hdm Ei(—l’\%/ﬁl-(xl‘j) _ Ei(—l’&,/40_’l‘,1) -0
" D omhkeoB | (P - P) (P, — P)

In Equations (5.4) and (5.5), P, and P; are the wellbore pressures measured at two
different times, = #, and 1 = 1;, respectively.

This method can be demonstrated to analyze the simulated well test of the exam-
ple problem in Section 5.1 (Figure 3) to determine the Klinkenberg coefficient, b,
and gas permeability, k... From the numerical simulation, the well pressure Py, =
1.05130 x 10° Paats = 8.64 x 10*s, and P, = 1.06976 x 105 Paatt = 8.64 x 105 s.
Substituting these pressure and time data into Equation (5.5), to gether with the param-
etersin Section 5.1, leaves &y, as the only unknown. The resulting nonlinear equation
can be easily solved using a bi-section method, which gives koo = 9.98 x 10710 m2,

Substituting this permeability value into (5.4) will give the Klinkenberg coefficient

(5.5)
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b = 4.77 x 10° Pa. The actual values are koo = 1.0 x 10~ m2 and b = 4.75 x 105,

and this indicates the proposed well test method is very accurate in determining these
two Klinkenberg parameters.

5.4. LABORATORY TEST ANALYSIS
5.4.1. Materials and Methods

Steady-state gas flow experiments were conducted to test the model and to evaluate
ko and b. Two rock core samples were obtained from well NEGU-17, in The Geysers
geothermal field. Three cylindrical plugs, 15 mm in diameter were taken from the
samples using a diamond core bit, and the cylinder ends were machined flat and
parallel with lengths ranging from 9 to 11 mm.

The plugs were mounted into 2 in long stainless steel tubing using Castall E-205
epoxy resin. They were then dried at 60°C for 5 days to remove all moisture. All
three sample tubes were connected to a gas inlet manifold where nitrogen gas was
applied at controlled pressures ranging from 120 to 380 kPa.

Gas exiting from the sample flowed through a 1 m long horizontally mounted
3.175mm o.d., 0.559 mm wall clear nylon tubing. To measure the gas flow rate, a
slug of dyed water was injected into the tubing before it was connected to the sample
tube, and the displacement of the slug was used to measure the gas flow rate. By
monitoring the position of the slugs in the exit tubes, we were assured that steady
state had been reached before measuring the flow rate.

Leaks that would normally be insignificant may be significant when measuring
very low gas flows. An advantage of this experimental system is that any gas leak
upstream of the sample would not cause any error, as long as the pressure is accurately
measured. The gas flow that is to be monitored is at ambient pressure, so there is no
driving force for it to leak and escape from the measurement tube. To test whether
the technique of sealing the plugs into the stainless steel sample tube prevented gas
from leaking past the sample, a dummy plug of aluminum was sealed into a stainless
steel tube the same way and flow tested; no flow was observed.

5.4.2. Results and Data Analysis

The flow rate and pressure data are summarized in Table II. These data will be
interpreted according to the traditional Klinkenberg method of (5.1) and (5.2) and to
the new model (5.3), referred as to exact Klinkenberg analysis in this paper. In both
cases, the data of Table II are used to calculate derived quantities that are plotted as
straight lines.

In the exact Klinkenberg analysis, the calculated quantities X = (Py + PL)/2
and Y = gnmul/B(Py — Pp) are summarized in Table IT and are plotted in Figure 4
for the three samples. In the traditional Kiinkenberg analysis, Figure 5 plots the data
calculated in Table I, and Table III presents the calculated values of ko and b derived
from the linear plots, as well as the correlation coefficients. The values obtained by
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Table I1. Steady-state gas flow measurements on plugs of The Geysers Greywacke from well
NEGU-17

Raw data Quantities calculated for Quantities calculated
traditional analysis for exact analysis
Sample Inlet Outlet Volume Inverse ka X = P'EPL E&—“()‘_‘_‘—LFD
dimensions pressure pressure flow rate pressure
at exit
pressure
(Pa) (Pa) (m3/s) ®a™h (m?) (Pa) ™

2.18E+05  9.88E+04 448E—11 631E-06 207E—19 1.59E+05 3.28E— 14
Sample 36 264E+05 988E+04 6.24E—-11 55IE-06 1.82E~19  1.82E+05 330E—-14
A=179E-04m> 3.05E+05 988E+04 7.88E—11 495E—06 1.66E—-19  2.02E+05 3.34E - 14
L=9.07E-~03m 340E+05 987E+04 926E—11 456E—06 1.53E—19 2.19E+05 3.35E~14
380E+05 993E+04 1.09E—10 4.17E—~06 142E—19 240E-+05 3.40E — 14
142E+05  995E--04 1.54E—11 820E—-06 265E-19 1.21E+405 3.20E-14

2.18E+05 9.88E+04 541E—11 631E—06 2.79E—19  1.59E+05 443E - 14
Sample % 264E405 988E+04 758E—11 351E—-06 247E—19  1.82E+05 4.48E — 14
A= 1.83E— 04 m? 305E+05 988E+04 9.53E~—11 495E—-06 2.24E—19 202E+05 4.53E— 14
L=104E-02m 340E+05 987E+04 1L11E-10 456E—06 205E-19 2.19E+05 4.50E - 14
380E+05  993E+04 131E-10 417E-06 191E—19 240E+05 4.58E— 14
142E+05 9.95E+04 181E—11 829E—-06  3.49E-19 1.21E+05 4.22E — 14

218E+05 9.88E+04 6.16E—11 631E-06 3.18E—19 159E+05 5.04E — 14
2.64E+05 9.88E+404 8.66E—11 551E-06 282E-19 1.82E4-05 5.12E—-14
Sample 9b 3.05E+05 988E+04 1.10E~10 495E~06 258E—19 202E+05 5.20E - 14
A =183E— 04 m? 340E+05 9.87E-404 125E—10 456E—06 231E—19 2.19E+05 5.07E-14
L=104E-02m 3.80E+-05 993E+04 1.52E—-10 4.17E—-06 2.22E—-19 240E+05 5.32E—14
142E405  995E+04 207E—11 829E—-06 3.99E—19 1.21E+05 4.82E - 14
120E+05 991E+04 1.0IE—-11 9.12E—06 4.30E—19 1.10E+ 05 4.71E~14

the two methods are close, although the traditional plot appears to have a better
correlation.

When two constants are to be determined from more than two measurements (i.e.
data are redundant), fitting the data to a linear equation using least squares generally
provides the best estimates of the constants. But if more than one linearization is
possible, the same data set will yield different results depending upon the lineariza-
tion chosen (see, for example, Persoff and Thomas, 1988). It is tempting to prefer
the linearization that yields the values of 2 closer to unity. However, note that in
the traditional method, the value of k, (which is plotted as the dependent variable)
calculated from (5.2) includes a factor of 1/(Py + P.) which is just double the
independent variable. This artificially inflates the value of 2.
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Table I1I. Analysis results of the laboratory tests

Traditional Exact
Sample ke (m*) b (Pa) P2 koo (m*) b (Pa) r?
36 1.66E—-20 1.81E+06 1.00E+00 1.61E—20 1.88E+06 9.88E—01
Oa 3.15E—-20 123E-+06 999E—-01 275E—20 143E+06 933E-01
9 438E—-20 9.75E+05 999E-01 4.02E—20 1.08E4+06 9.28E—-01

2 . . .
where r* is correlation coefficient.
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Figure 4. Exact Klinkenberg analysis plot for the three test samples.
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Figure 5. Traditional Klinkenberg analysis plot for the three test samples.
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6. Concluding Remarks

A general gas flow governing equation including the Klinkenberg effect has been
derived by introducing a new pressure variable. Based on this new form of gas
flow governing equation, a set of new analytical solutions has been developed for
analyzing steady-state and transient gas flow through porous media with Klinkenberg
effects. As an extension of this work, additional analytical solutions for one-, two-
and three-dimensional gas flow with the Klinkenberg effect can be readily derived.
These analytical solutions will find their applications in analyzing gas flow and
determining soil flow properties in the unsaturated zone or in laboratory tests where
the Klinkenberg effects cannot be ignored.

To determine the condition under which the linearized gas flow equation may
be applicable, a numerical method is used to examine the predictions from the
approximate analytical solutions for transient gas flow. It has been found that the
conventional linearization procedure of deriving gas flow equations, using an initial
gas pressure for the diffusivity term, will result in acceptable solutions when the over-
all pressure variations in the system are small. However, the linearization assumption
may introduce considerable errors when pressure changes are significantly different
from the ambient condition. In this case, we propose a new evaluation procedure
for the diffusivity term using a history-dependent averaged pressure with analytical
solutions, which will still give accurate solutions even under high pressure disturbed
conditions of the system.

In order to demonstrate their applications, the new analytical solutions have been
used to verify the numerical solutions of gas flow which include the Klinkenberg
effect. Several new laboratory and field testing techniques are derived, based on the
analytical solutions for determining the Klinkenberg parameters of porous medium
gas flow. These new laboratory and field test analysis methods are very easy to
implement and more accurate to use. One of the proposed laboratory methods has
been applied to laboratory testing results in determining absolute permeability and
Klinkenberg constants and to examination of the traditional Klinkenberg analysis.
The transient test analysis method is illustrated using a simulated well test result.

Appendix: Derivation of the Gas Flow Equation

Under isothermal conditions, gas flow in porous media is governed by a mass balance
equation,

0
V- (pv) = —qj%, (A.D

where p is gas density; ¢ is formation porosity, assumed to be constant; v is the
Darcy’s velocity of the gas phase, defined as

]U
v=—-2 (VP — pg), (A.2)
/,L



GAS FLOW IN POROUS MEDIA WITH KLINKENBERG EFFECTS 135

where p is gas-phase viscosity; g is gravity vector; and kg is effective gas-phase
permeability, described by Equation (1.1), including the Klinkenberg effects.

The ideal gas law is here used to describe the relation between gas density and
pressure as,

p=pP, (A.3)
where f is a compressibility factor, defined as
B = Mg/RT (A4)

with M, being the molecular weight of the gas; R the universal gas constant; and T
constant temperature.

‘When gravity effects are ignored, combining Equations (A.1)-(A.3), and (1.1)
will give

koo P
V. <——é (P + b)(VP)) = ¢p §-—— (AL5)
w ot

In terms of the new variable, P, = P + b, Equation (A.5) may be written as the form
of (2.1).
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