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Abstract

The partial differential equations which model multiphase subsurface flow are, in general, of
mixed parabolic—hyperbolic type. A consistent and unified approach for handling a wide variety
of boundary conditions under all flow conditions is presented. This method is conceptually simple,
and numerically efficient. Test computations are presented which demonstrate this method for
saturated—unsaturated models, and well as true three-phase simulations. Among the boundary
conditions discussed are: seepage face conditions for three-phase problems and multi-node
constant-rate pumping wells.

1. Introduction

Simulation of subsurface contamination and remediation involving non-aqueous-phase
contaminants (NAPL) requires solution of multiphase flow models (Abriola and Pinder,
1985; Forsyth, 1988; Faust et al., 1989; Kaluarachchi and Parker, 1989; Forsyth, 1991;
Falta et al., 1992; Sleep and Sykes, 1993; Panday et al, 1995). Since the partial
differential equations which describe multiphase subsurface flow are of mixed hyper-
bolic—parabolic type, it is not possible, in general, to specify the numerical boundary
conditions without reference to the current state of the system. For example, it is
possible to specify the composition of injected fluids. However, it is not possible to
specify the composition of fluids which are leaving the computational domain.
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In the case of single-phase, saturated, subsurface flow, a constant-pressure (or head)
boundary condition is straightforward to specify for a numerical model. However, this is
not the case for multiphase flow. This is easy to see if we consider the physical
mechanism involved in specifying a constant pressure. Physically, in order to force a
constant pressure at a given point, fluid must be injected or removed to keep the
pressure constant. In the multiphase case, it is necessary to specify which phase pressure
is being held constant. In general, more than one phase pressure cannot be specified. If
two or more phase pressures are specified, then (due to capillary pressure relations) this
amounts to specifying a pressure and a phase saturation. This is normally not mathemati-
cally correct. If a single-phase pressure is held constant, then it is necessary to specify
what fluids are to be injected or removed in order to satisfy this condition. For example,
consider a seepage face. Either water or air can be removed, but only air can be injected,
in order to maintain the gas-phase pressure at atmospheric.

Constant-rate wells which are screened over several discrete nodes pose yet another
problem. In this case, typically only the total liquid rate into the well (if on production)
is specified. The allocation of rates to each node must be determined by the model. In
the case of horizontal wells, backflow is possible and may have to be taken into account.

Since the flow rate near injection /production wells is large, it is especially important
to treat these terms in a fully implicit, fully coupled manner. If these terms are explicit,
or lagged an iteration, this will result in poor numerical performance.

In saturated—unsaturated models, it is necessary to determine the liquid level in the
wellbore for any well pumping at a constant rate. We will demonstrate how this can be
modelled in a conceptually simple manner.

The objective of this paper is to present a consistent, unified approach to handling all
these types of boundary conditions. For ease of exposition, we concentrate on multi-
phase flow with no mass transfer between phases. We also assume that each phase
consists of a single chemical component. The approach used here can be easily extended
to the full compositional formulation. The numerical method allows for straightforward
implementation and new types of boundary conditions are easily handled. Several
different methods for modelling constant-rate wells are discussed. Numerical examples
are presented for various boundary conditions. In particular, we are able to use a very
straightforward method to model the complex behavior of multiphase flow near a
seepage face.

2. Formulation

We consider multiphase flow with no mass transfer between the phases, and each
phase is assumed to be composed of a single component. In the special case of
two-phase air—water flow with constant air pressure, this reduces to the usual passive
air-phase (saturated—unsaturated) flow model.

The three phases considered here are water (w), air (a) and nonaqueous (n).
Conservation of phase [ then implies:

d
'67(¢S/P1): ‘V'(P1V1)+P14; (1)
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where the velocity of each phase / is given by
Vi= —K-A(VP —p,gVD) (2)

and where S, = saturation of phase /; P, = pressure of phase /; p, = mass density of
phase /; K = absolute permeability tensor; A, = k,,/u, is the mobility; p, = viscosity of
phase /; k., = relative permeability of phase /; D = depth; g = gravitational accelera-
tion; g, = source /sink term for phase / due to wells.

We also have the usual capillary pressure and phase saturation constraints (Forsyth,
1991; Wu et al., 1994).

3. Discretization

A Galerkin finite-element method is used to discretize the equations (Eq. 1). An
influence coefficient technique is employed to handle the non-linearities in the flow
terms (Huyakorn et al., 1984). The time discretization is carried out with a backward
Euler method, and mass lumping is used for the mass accumulation term. Further details
about this method can be found in Forsyth (1991, 1993), Forsyth and Shao (1991), and
Letniowski and Forsyth (1991).

Let N; be the usual Lagrange polynomial C° basis functions, where:

1 at node ¢
Ni= {0 at all other nodes (3)
ZN, =1 everywhere in the solution domain (3b)
J

For convenience, we define yy, = P, — p,gD. Then, P,, , and S, are approximated by,
respectively:

P = ZPIJ'NJ' (4a)
J

¢1=Z(/’lej=Z(P1,‘—P1,'ng)Nj (4b)
j J

SI=ZSIj1vj (4c)
J

If N denotes the time level, then the final discrete equations for phase /= w, a, n are:

N+ ‘/1 N+ / +
{[d’sl Pl - [ &S, Pl],{v}_ = Z ( pl)‘l)(:{j+ll/2)7ij((vl’lljy+l =y I)

At JEW;

()" Vi [NCpV)" hds(5)
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where
V.= | Ndv 6a
= (62)
111y+ = 1?”‘ - Plﬁjil/z gD, (6b)
Prij+1/2= (pi+ pl,j)/2 (6¢)

and the y,; are given by
y,j=—j;VN,--K-Vdeu (7

Here 7, is the set of neighbour nodes of node 7 such that vy,; are nonzero.
In Eq. 5, the term:

JNCo v ads (8)

represents the flux into the domain due to specified flux (or pressure) boundary
conditions. (Recall that a specified pressure can always be enforced by injecting or
producing mass into a node.)

Since this term simply represents mass inflow or outflow, we can lump this boundary
flux in with the flux due to wells to get a composite source /sink term:

N P AN+ 1 / A
an = Cpua)"” V,+le( Plvz)hﬂ'”ds )

Therefore the final discrete equations are:

{[d)Sl Pl]{wl - [¢5, p[]lN}E = E ( pl/\l)(\z/;r]l/Z)’Yij(wl?—H — Mt ]) + g
JEn;
(10)

There are various possibilities for the term (p,;A;); ;1,5 in Eq. 10. We will use
upstream weighting (ups) in this work.

N=+1

(pl)‘l)i if 3’.’,’(¢’/}Hl_ IA;V+’)<O
(P{Al)j'w] if ‘Yij(lp];hL]_ 111'V+l)>0

For true two-phase (non-constant air-phase pressure) problems, upstream weighting can
be shown to converge to the physically correct solution (Sammon, 1988). As demon-
strated in Aziz and Settari (1979), central weighting may cause convergence to incorrect
solutions in multiphase flow situations. Further discussion of the effects of upstream,
fully implicit weighting methods for multi-phase flow is given in Unger et al. (1996).

Note that the discrete equations (10) have the same form regardless of the dimension-
ality of the system or the type of basis function used. In fact, Eqs. 5 are also valid if a
finite volume discretization is used (Falta et al., 1989, 1992). In this case, the V,’s are
the actual geometric volumes associated with the node, and y;; is the inter-facial area

( pl)‘l)ups(i.j) =

(11)
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divided by the distance between nodes i and j. The surface integral (8) can simply be
regarded as the total mass flow into a finite volume on the edge of the computational
domain. In the finite-element case, the surface integral can be interpreted as the total
mass flow into a node on the edge of the domain. The area associated with node i is
simply:

A= [Nds (12)

Since the discrete equations have the same form for finite-element or finite-volume
discretizations, the method we will describe for handling the boundary conditions can be
used with either type of discretization.

4. Single-node wells

We first describe the method for modelling wells which are screened over a single
computational node.

Suppose we have a constant-pressure production well at node i. In the following we
will drop the superscript (N + 1) for notational convenience; it will be assumed that all
boundary condition terms are evaluated fully implicitly. It is reasonable to assume that
the capillary pressure is zero in the wellbore, so that the sink terms have the form (where

P, is the specified pressure):

;= WP,A,; p, min[0,( P, — P;;)] ()

The term WP, is the productivity index. If the mesh spacing in the direction
perpendicular to the wellbore is large compared to the actual wellbore radius, then WP,
can be determined by assuming that the flow is radial near the wellbore. The methods
used in Peaceman (1983, 1990), Collins et al. (1992), Fung et al. (1992), and Forsyth
(1994) can then be used to determine the expression for WP. Assume that the
discretization grid is composed of brick elements, with the wellbore being along one of
the brick axes. If the permeability tensor is diagonal,

k., 0 0
k=0 % o0 (14)
0 0 &,

and, we suppose that the wellbore is along the x-axis of the brick element, then:

2wk’ h, Z Yij
WPl= JEM; (15)
Y, y,; Yog(ri/r,) — 27k’ h,

JEm;
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where r, is the actual wellbore radius; x; and y; are the x- and y-coordinates,
respectively, of node j; ; are those neighbour nodes of node i which are not along the
wellbore direction; and « and B are neighbours of node i along the wellbore. The
above expression is a three-dimensional generalization of the expressions given in Fung
et al. (1992). For further details, the reader is referred to Peaceman (1983, 1990), and
Fung et al. (1992). If the well is screened over a length less than 4, is Eq. 15, then WP,

should be reduced by the factor:

(actual screened length)
; (16)

i

Note that we have forced mass outflow for all phases in Eq. 13, i.e. we do not allow
any inflow for a single-node production well. Also, in Eq. 13, the pressure drop term for
each phase uses the phase pressure. If the node spacing is large compared to the
wellbore radius, then it is common in petroleum engineering to assume the same
pressure drop for all phases. It has been shown in (Aziz and Settari, 1979) that for
petroleum engineering applications, this results in a negligible error in most cases.
However, this may not be the case in near-surface flow situations.

Suppose that we wish to model a well which produces at a constant liquid rate Q.
Of course, it is not always physically possible to produce liquids. For example, water
and NAPL may be at residual saturations. Therefore, it is usual to specify a constant
liquid rate subject to a minimum well pressure P

smin*

In this case, the mass production of each phase is given by Eq. 13, with P, given by:

P = Oy + WP,(Ay; puiPyi T Agi poi Pui)
WP(Ay; pui+ Asy Poi)

P, = max( Py, F) (17b)

(17a)

It is usual to inject a single phase only. For example, a constant-pressure water
injector would have the form:

G = WPA(S, = 1) p,(P) max[0.( P, - P,,)] (18)

Note that the mobility A, and the density are evaluated at the assumed upstream
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conditions in the wellbore. If a constant-rate water injector Q,, with a maximum well

pressure P, .. is specified then Eq. 18 is used with P, given by:
Q.
P = +P . 19a
T PR PR R ()

5. Multinode wells

There are three methods for handling multinode wells. Undoubtedly the most
accurate method involves discretizing the wellbore.

5.1. Discrete wellbore

Suppose we have a set of nodes i€w which are the nodes in the original
computational domain along the length of the wellbore. For each node i € w we add a
new node j€w' which is physically within the wellbore. This new node j can be
imagined to be at the same physical location as the node i on the original grid. Each
new node has its own pressure and saturation values distinct from the adjacent grid
node. The volume of nodes j € w' is the actual volume of the discrete length of the
wellbore. Since nodes j € w' are in the wellbore, we assume laminar one-dimensional
fluid flow between nodes in w'. Since laminar, multiphase flow has the same form as
Darcy flow, the discrete equations connecting nodes in w' have the same form as Egs. 5.
It is only necessary to make some modifications to the expressions for the density and
absolute permeabilities (Collins et al., 1992). The capillary pressure is assumed to be
zero and the relative permeabilities are linear functions for nodes in w'.

It then remains to determine the flow into node j (a wellbore node) from node i (its
nearest grid node). If we assume that the flow is radial near the wellbore, then we can
use the Eq. 15 for the productivity index, so that flow of phase / from node i to node j
(flow,;,) is given by:

ﬂow[ijZWPi()‘lpl)ij+l/2(Pli_Plj) (20)

Then, we assume that the pump is located at a node k € w'. At node k, we use the
usual single-node sink and source expressions such as Eqgs. 13 and 18, respectively.
Fluid then flows from the grid nodes into the wellbore, and then into the sink node, and
out of the computational domain.

Note that no assumptions are made concerning the direction of flow at each grid node
i €w. This means that backflow can occur at various points along the wellbore.
However, the total flow as specified at the pump node in the wellbore has the correct
sign. Backflow can actually occur for horizontal wells, and for vertical wells if the
absolute permeability contrast between layers is very high.

Since all these additional equations have the same form as the original discrete
equations (5), it is actually very straightforward to modify an existing code to handle
multinode wells in this manner.
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Of course, since the wellbore node has a very small volume, if the flow rates are
large, this may cause some difficulty for the Newton iteration in multiphase flow
problems. This can be alleviated by increasing the volume of the wellbore nodes by
102-10°. This has the effect of adding a pseudo wellbore storage effect, which dampens
out oscillations in the Newton iteration. Unless one is interested in very small-scale
transient behaviour, this pseudo wellbore storage has almost no effect on the computed
solution (Forsyth, 1994).

In the case of saturated—unsaturated flow (passive air-phase approximation), we
cannot, of course, set the capillary pressure to zero in the wellbore. However, if we use

an air—water capillary pressure function P,,, of the form:

P..=a(l-S5)) (21)

where @ = 107° kPa, then for practical purposes, the capillary pressure is almost zero,
but the non-zero slope in Eq. 21 allows the usual passive air-phase equations to be used.
If the wellbore intercepts the water table, then the wellbore nodes will be fully saturated
below the water level in the wellbore. At a node height corresponding to the water level,
the wellbore node saturation will be at some value between zero and one, and all nodes
above this point will have zero water saturation. This simulates the correct behaviour of
a near-surface well.

5.2. Single-node wellbore

For problems where it can be assumed that the fluid composition in the wellbore is
sensibly constant along the length of the wellbore (i.e. horizontal wells, vertical wells
below the water table, injection wells, vapour extractors in the vadose zone), it is
unnecessary to discretize the wellbore. Instead, a single virtual node is used to represent
the wellbore. As for the Discrete Wellbore model, we assume a set of nodes i €w
which are nodes in the original grid along the length of the wellbore. The wellbore is
represented by a single new node j, having the volume of the screened length of the
well. The pump is located at a given depth D, in the well. For any node i € w, flow
from node i to the single well node j is given by:

flow;; = WP,( A, Pl)ij+|/2(Pu - P, Pfg(D,' - Dp)) (22)

where p; is the density of the fluid mixture in the wellbore. Note that the gravity term
must be included in Eq. 22 since the grid nodes i and pump location may be at different
depths. A source /sink expression of the form [(18),(13)] is added to the mass-balance
expression for the virtual node j to force the correct total rate of fluid injection /produc-
tion from the well. Since there is no flow being simulated within the wellbore, the
numerical problem is not as stiff as for the Discrete Wellbore model. This model does
permit backflow.

5.3. No Backflow model

If it can safely be assumed that no backflowing layers will occur, then the Single-Node
model can be simplified further. Instead of introducing an additional node, having node
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pressures, saturations and a finite volume, for each multinode well, we add an additional
unknown P,. Flow from a grid node i € w into the well (a production well is assumed
here) is given by:

flow,;, = WP,(A, p,), min[O,{P,i — P, —pg(D;— Dp)}] (23)

The well pressure P, is determined by an additional constraint equation. For example,
if the total water rate Q,, is specified, then the additional constraint equation is:

Q[w = Z ﬂowwis (24)
i1Ew

Max /min pressure constraints can be added to this equation in a similar manner as in
Eqs. 17 and 19. This technique is probably the most common method used in the
petroleum industry. However, the solution may not always be physically correct, since
any potentially backflowing layers have their flow set to zero. Nevertheless, the correct
total fluid injection/production rates are always satisfied exactly (if the max/min
pressure constraints are not violated).

5.4. Mobility Allocation model

Historically, this method was used in the petroleum industry before general sparse
solvers for the Jacobian matrix were available. This method assumes that the pressure
drop between a node adjacent to the wellbore and the wellbore is a constant along the
wellbore. For example, suppose nodes i€ w are the grid nodes along the screened
length of the wellbore, and that the total volumetric liquid production rate Q, is
specified. Then (I = w, n):

WP: AIiniq
Z WP}(/\W/ + /\nj)

JEW

41 = Pii (25)

This scheme is easy to implement, but may result in physically incorrect solutions,
especially for heterogeneous systems.

6. Nonwell boundary conditions

In order to model constant-pressure nodes, seepage faces, and so on, we continue
with the philosophy of simulating all boundary conditions using mass source /sink
terms. For example, suppose we wish to model a constant water pressure (P,,)
boundary at node i, due to a large aquifer. In this case we add the following
source /sink term to node i

q;;= WP A, p; min[O,( Py, — Pli)] (I=g.n) (26a)
Q\M‘ = WPII)‘\H pwi mm[O,( wa - Pwl)]
+ WP:‘,)‘W(SW = l)p»\(wa) max[O,( wa - Pwi)] (26b)
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Note that we allow any phase to flow out of node i, but only water to flow into node
i. We have made the assumption that any phase which flows into the aquifer is
immediately dispersed. This is essentially the best model (for a node adjacent to an
aquifer) that can be developed without adding nodes in the aquifer.The factor WP/ in
Eq. 26 does not have any physical significance. It must be selected large enough so that
the converged solution for P, is very close to the specified psessure P,,. It cannot of
course be exactly equal to P,,, but can be made as close as desired by increasing WP;.
However, if WP/ is too large, this can cause problems for the Newton iteration. Based
on our numerical experience, we have found that if

WP, = WP, * LARGE (LARGE = 10°-10%) (27)
where WP, is given by Eq. 15, then the node pressure P,;= P, to 3—4 figures. If

W
LARGE > 107, then there is no observable difference in the solution (i.e. rates, nodal
pressures, saturations), but usually the number of Newton iterations increases.
Although at first sight is not obvious why the solution should be insensitive to the

precise value of LARGE after a certain point, this can be explained as follows, although
P,,— P, as LARGE — = (28)
the product of:
WPA,; pyi( Puv — Pui) (29)

approaches a finite limit.

An interesting special case occurs near a seepage boundary. We model a seepage face
by assuming that air can flow in and out of the computational domain, so that the air
pressure P, = P, = 100 kPa. Water and nonaqueous phases can only flow out. So, at
any node i along a seepage face, the source/sink terms are:

q;, = WPIA,; py; min[0,( Py, — P)]  (1=w. n) (30a)
Gai = WPI',Aai Pai mln[o’( Pub - qu)]
+WP1,)\4(S‘1= 1)pa( Pab)maX[(O’( Pab _Puf)] (30b)

Egs. 30 can be explained as follows: we can imagine that there is a pseudo node ( p)
adjacent to the seepage face node located outside the domain. This node is not in a
porous medium, so that P, =P, =P, = P,. The air phase is free to move from node
i to node p, and vice versa. However, we can imagine that any water or nonaqueous
phase which enters the pseudo node is immediately removed (i.e. the liquid phases seep
down the seepage face under the influence of gravity). Consequently, no water or
nonaqueous phase can flow from node p to node i. We then take the limit as the
distance between node i and node p goes to zero.

At a given liquid saturation with nonzero liquid—gas capillary pressure, and assuming
a mobile air phase, then the air-phase pressure at node i will be virtually equal to P, .
Due to capillary pressure effects, no liquid will flow out, until the air saturation is
reduced to its residual value (which is typically zero). At this point, if the nonaqueous-
phase saturation is such as to give a mobile nonaqueous phase and a nonzero water—
nonaqueous phase capillary pressure, then only the nonaqueous phase will flow out,
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until the nonaqueous-phase saturation is reduced to near the residual value. This
phenomenon is called the outlet effect (Settari, 1973; Aziz and Settari, 1979). Note that
as the nonaqueous phase approaches the residual value, it can no longer be assumed that
the pressure in the nonaqueous phase is exactly equal to atmospheric pressure (due to
the very small relative permeability as residual nonaqueous-phase saturation is ap-
proached). In fact, it is possible to have simultaneous outflow of both phases. We will
give some computational examples which illustrate this point.

7. Solution of the algebraic equations

Typically, the discrete nonlinear algebraic equations are solved using a full Newton,
fully coupled approach. If a numerical method for constructing the Jacobian is used
(Forsyth et al., 1995), then it is a straightforward matter to ensure that the Jacobian
contains all the required derivatives. Even if a structured grid is used, the Jacobian
matrix will not, in general, have a banded structure. This is because the presence of a
constant-rate well, screened over several nodes, will result in ron-neighbour connec-
tions appearing in the Jacobian. This does not pose any difficulties for the matrix
solution if modern sparse techniques are used. We typically use an incomplete LU
factorization (ILU) (D’ Azevedo et al., 1992) with CGSTAB acceleration (van der Vorst,
1992).

However, it was sometimes suggested (in the petroleum literature) that the non-
neighbour terms in the Jacobian could be dropped from the Jacobian (i.e. lagged one
iteration). This would make the Jacobian matrix easier to construct, and allow the use of
band solvers. For example, if the No Backflow model is used (see Section 5.3), then this
method effectively lags the evaluation of P, one iteration, i.e. all derivatives with
respect to P, are ignored. This same idea can also be used for modelling other boundary
conditions (i.e. seepage faces). We will refer to this approach as Partial Jacobian, since
some of the Jacobian entries have been ignored.

In general, we will always use a fully coupled, full Newton method. For some of the
numerical examples, we will give some results using the Partial Jacobian method, in
order to illustrate the advantages of a full Newton approach.

8. Numerical examples

There are clearly too many different cases of source/sink terms as outlined in
Sections 4-6 to give an example of each case. We will give some representative
examples to illustrate the flexibility and generality of our approach, and discuss some
interesting special cases at length.

8.1. Saturated—unsaturated flow

Saturated—unsaturated flow is, of course, a special case of multi-phase flow, and all
the methods described in Sections 4—6 can be used in this case as well.
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Fig. 1. Top view of the three-dimensional layered waste cover design, clay layer.

Fig. 1 shows the top view of the clay cap for a three-dimensional layered waste cover
design. This shape is similar to that used in Meyer (1993) in the context of a capillary
barrier waste cover. A cross-section of the pyramid shape (as indicated in Fig. 1) is
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Fig. 2. Cross-section of three-dimensional waste cover.
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Table 1

Material properties

Zone K,=K,=K, ¢ Swr et B
(m?) (cm™')

Loam 0.17-10~ " 0.452 0.0752 0.043 1.246

Sand 0.67-107!" 0.345 0.046 0.0634 1.53

Clay 3.0-10713 0.475 0.223 0.0304 1.187

shown in Fig. 2. The surface of the design was flat, and the pyramid shape was used for
the sand and clay layers. We will assume that the constitutive properties are of the van
Genuchten (1980) form:

Pu8T = \- /8
Pay == [(5,)7 1] (31)
o
where P_, is the air—water capillary pressure; and
- S, -8,
Sp=—T"7—
] - SWI’
y=1-p"

The relative permeabilities are given by:

ke =(§W)”2[1 -{1- (EW)I”}Y]2 (32)

The material properties are given in Table 1.

The idea of this waste cover design is to deflect infiltration away from the waste
buried in the sand. Water will be deflected by the clay barrier and be diverted downslope
to the trench, and then be removed by a drain. Properties for the loam, clay and sand
layers were obtained from Meyer (1993). Note that the permeability of the clay barrier is
approximately thirty times larger than the U.S. Environmental Protection Agency (EPA)
recommendation. However, in Hakonson et al. (1993) it was found to be quite difficult
to install a clay barrier with this low permeability. In fact, a clay loam-bentonite
mixture was used (Hakonson et al., 1993). The actual permeability of the installed cap
was ~30-107"* m? (30- 107" cm s~ ).

The initial water table for this problem was at 10 m below the surface. This water
table was maintained at the edge of the domain by specifying a constant pressure water
boundary at the depth of 10 m. Infiltration was assumed to be 15 cm yr~! uniformly
along the top surface. Note from Fig. 2 that the drain is similar to the design used in
Meyer (1993), where the sand layer is continued below the clay layer, and a drain is
inserted as shown. The drain is modelled by seepage nodes.

In order to keep the waste dry, a pumping well is located at the center of the pyramid
(see Fig. 1). This well is screened from a depth of 13.5 m to a depth of 16.5 m, with the
pump being located at 16.5 m. This well is modelled using the Discrete Wellbore model.
The well produces at 40 m* day ™', with the constraint that the minimum pressure at the
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Table 2
Fraction of total cumulative infiltration crossing the lower clay-sand barrier
Permeability of the Fraction crossing the
clay barrier lower clay—sand interface
(m?)
30-107'¢ 0.094

9.1071# 0.024

3-107'¢ 0.004

pump node cannot fall below 100 kPa (i.e. the pump is not permitted to become dry).
The volume of the wellbore nodes was considered to be the actual wellbore volume
(10-cm radius wellbore), with the wellbore permeability set at 1-10~'® m?. Increasing
the wellbore permeability had no effect on the results.

Due to symmetry, only one quarter of the waste cover was simulated. A grid of 31 X
31 X 39 bricks was used, which were divided into tetrahedra as described in Letniowski
and Forsyth (1991) (40,960 nodes). The spacing of the bricks in the x—y-direction was
uniform at 1.333 m, while the spacing in the vertical direction was highly variable, with
1-cm spacing used near the upper clay—sand interface. This initial conditions for this
problem were: water table at a depth of 10 m, and initial pressure of — 1000 kPa above
the water table. The simulation was run for 30 yr.

The interesting statistic is the fraction of the total cumulative infiltrating water which
crosses the lower clay—sand interface after the entire 30-yr simulation period. Table 2
shows the fraction of infiltration crossing the barrier for various values of the clay
permeability. It is clear that the performance of the barriers is very sensitive to the
permeability of the clay barrier. As mentioned above, it may be difficult in practice to
achieve the recommended permeability if 1-107'® m?.

Fig. 3 shows the saturation contours in the sand layers immediately above and below
the clay barrier, for the case with the clay permeability being 30-10~'® m?. Fig. 3
clearly shows the buildup of water saturation above the clay cap, and the much smaller
saturation values in the sand layer below the clay cap.

This example demonstrates that a reasonably complicated problem with a variety of
boundary conditions can be easily modelled using the approach described in this work.

8.2. Five-spot two-phase problem

This example is a well-known test case for which laboratory and numerical simula-
tion results are known (Gaucher and Lindley, 1960; Coats et al., 1967; Wu et al., 1994).
The computational domain consists of a one-quarter five spot, with constant-rate water
injectors and constant liquid rate producers, as shown in Fig. 4.

A three-dimensional 11 X 11 X 6 brick grid is used for this problem, with
Ax=Ay=1422 m and Az =1.22 m. The formation is treated as homogeneous and
isotropic, and the wells are fully penetrating.

Detailed data for this example are given in Coats et al. (1967) and Wu et al. (1994).
This problem was solved using the No Backflow model (Section 5.3), with both Full
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0.281744
0.180759

Below Clay Layer

Fig. 3. Saturation contours at the layer immediately above the upper clay—sand interface, and the saturation
contours at the layer immediately below the lower clay—sand interface.

Jacobian and Partial Jacobian {Section 7). For comparison, the Mobility Allocation
model (see Eq. 25) was also used.

Fig. 5 shows the cumulative oil recovery curves for all three methods. The experi-
mental results are also shown, as are the numerical results obtained by Coats et al.
(1967). Note that all three methods give similar solutions. This is because the formation

Injection Well

Qw

284.6m

Fig. 4. Domain for two-phase five-spot probiem.
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Fig. 5. Cumulative oil recovery for two-phase five-spot problem.

is homogeneous and isotropic, which is the best possible scenario for the Mobility
Allocation method.

Table 3 give the total number of nonlinear iterations required for the entire simulation
for each method. Since the overhead required for constructing and solving the Full
Jacobian (as compared to the Partial Jacobian) is very small, the CPU time is roughly
proportional to the nonlinear iteration count.

In this case, Table 3 clearly shows that the Partial Jacobian method is very poor in
terms of numerical efficiency, requiring about three times the number of nonlinear
iterations compared to the Full Jacobian technique. It is also interesting to see that the
Mobility Allocation method required more nonlinear iterations than the more rigorous
No Backflow Full Jacobian approach, even for this very simple problem.

8.3. Five-spot three-phase problem

Fig. 6 shows the domain for a layered three-dimensional problem, which consists of
an air injector (constant rate at standard conditions) and constant-rate liquid producer.
Both injectors and producers are screened over a 4-m length.

Table 3

Total nonlinear iterations for the two-phase five-spot problem

Method Nonlinear iterations
No Backflow (Full Jacobian) 382

No Backflow (Partial Jacobian) 1,123

Mobility Allocation 447
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Fig. 6. Domain for air injection problem.

173

The computational domain is 100 m X 100 m X 10 m, and is discretized using a 11
X 11 X 21 grid. Node spacing in the x- and y-directions is a constant 10 m, while in
the z-direction, the spacing is 0.5 m.
The air injector is located at x =100 m, y=100 m, 3.75 <z<7.75 m. Air is
injected at 1000 m* day ~!'. The producer is located at x=y=0.0 m, 3.75<7<7.75

m. The producer is constrained to produce a constant liquid rate of 10 m?® day .

The medium properties are expressed in terms of scaled van Genuchten (1980)
relationships for three-phase flow:

_ S-S
[ —
1-5,
_ s,
S, =
1-5,,
_ S,
5, =
1-S,,
5.=5 +5,
_ S,
Snr =
l - SWT
PCHW -
aa,,
O Pu 8
P, =

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

(33g)
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Table 4
Material properties for three-phase five-spot problem
Layer K.=K,=K. ) Swr « B
(m*) (m™")
1 2.15-107" 0.314 0.0396 6.62 1.39
2 3.95-10" "7 0.333 0.0869 3.99 1.56
3 1.43-107 "2 0.379 0.1098 3.54 3.06
4 2.44-107" 0.279 0.1026 7.24 1.60
Table 5
Fluid properties for three-phase five-spot problem
Fluid Density Viscosity Compressibility
(kg m™*) (Pas) (Pa™ ")
Water 1,000 1.0 110710
NAPL 800 0.969 110710
Air 1.177 1.98-1072 Ideal Gas law
Pu8 — N1/ 1/B
Pew =" [(1 -S,) - 1] (33h)

km,=(§w)'/2[1—{1—(S‘W)l/“’}y]2 (33i)
o 55 - G - -6 | o

ko= (5) -0 (33)

where S, is the residual water saturation; S, is the residual nonaqueous (NAPL)
saturation; o, o0,, and o, are the interfacial tensions between the NAPL, water and

air phases, respectively; and P, and P, are the NAPL—water and air-NAPL
capillary pressures, respectively. This problem has four layers, with layer properties
given in Table 4. Fluid properties are given in Table 5. Initial conditions for this
problem are generated by placing a layer of NAPL 2.5 m in height along the water table.

After the system was equilibrated, air injection and liquid production were carried out
for one year. Other boundary conditions are illustrated in Fig. 6.

This problem was solved using the No Backflow model as described in Section 5.3.
Both a fully coupled, full Newton method and a Partial Jacobian method (see Section 7)
were used. We also used the Mobility Allocation method (Section 5.4). Fig. 7 shows the
cumulative NAPL recovery for all three methods. Both Full and Partial Jacobian
methods give essentially the same solution. This is, of course, not surprising since both
methods are solving the same discrete equations, but using a different method to solve
these equations. However, in this case, the Mobility Allocation method produces quite
different results. This is not unexpected, since the assumptions made in the Mobility
Allocation method will be significantly in error for layered systems.
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Fig. 7. Cumulative NAPL recovery (%) for the three methods, five-spot air injector.

The work required for each method is roughly proportional to the number of
nonlinear iterations, since the overhead required for solving the full (as opposed to
partial) Jacobian is very small. Table 6 gives the total number of nonlinear iterations for
each method for the entire one year of air injection.

Table 6 indicates that the Partial Jacobian method results in significant degradation
in performance. We can also see that the Mobility Allocation method, as well as giving
erroneous solutions, requires about 60% more nonlinear iterations than the No Back-
flow, Full Jacobian Method.

8.4. Multiphase seepage face

Fig. 8 shows the computational domain for a two-dimensional cross section. Note the
seepage face boundary on the right-hand edge. This condition is modeled using the
method described in Section 6. Three grids (coarse, medium, fine) were used to simulate
this case. The finest grid is shown in Fig. 9. Relative permeability and capillary pressure
data are given in Tables 7 and 8.

Stone’s second method is used for the three-phase NAPL relative permeability
(Tables 7 and 8). The porosity ¢ was set at ¢ = 0.28, while the absolute permeability
was K =K _=1.019-10""" m?. Other fluid data are given in Table 9.

Table 6

Total nonlinear iterations tor the five-spot air injection problem

Method Nonlinear iterations
No Backflow (Full Jacobian) 511

No Backflow (Partial Jacobian) 677

Mobility Allocation 830
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Table 7
NAPL-water data for the seepage face problem
SVV kl’\&' k[n PCHW
(kPa)
0.2 0.0 0.68 9.0
0.3 0.04 0.55 54
0.4 0.1 043 39
0.5 0.18 0.31 33
0.6 0.3 0.2 3.0
0.7 0.44 0.12 2.7
0.8 0.6 0.05 24
0.9 0.8 0.0 1.5
1.0 1.0 0.0 0.0
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Table 8
NAPL-air data for the seepage face problem
Sa km krn Pcnn Peaw
(kPa) (kPa)
0.0 0.0 0.68 0.0 0.0
0.1 0.01 0.49 0.9 1.0
0.2 0.04 0.34 1.2 2.0
0.3 0.09 0.21 1.5 3.0
0.4 0.16 0.116 1.8 33
0.5 0.25 0.045 2.1 3.6
0.6 0.36 0.0009 2.4 39
0.68 0.46 0.0 3.0 45
0.8 0.64 0.0 9.0 6.6
Table 9
Fluid data for the seepage face problem
Fluid Density Viscosity
(kg/m™%) (Pas)
(at standard conditions)
Water 1,000 1.139
NAPL 800 2.0
Air 1.177 0.0198

Initially, the NAPL saturation was zero everywhere in the domain, and the model
(with no NAPL injection) was run to steady state. Then, NAPL was injected for one
year (1 m yr~') as shown in Fig. 8. NAPL injection then ceased, and the problem was
again run to steady state (~ 10 yr).

Fig. 10, Fig. 11, Fig. 12 show the NAPL saturation contours at one year for the
coarse, medium and fine grids, respectively. Note the large region where S = 0.1 (the
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Fig. 10. Coarse grid saturation contours, seepage face problem.
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Fig. 11. Medium grid saturation contours, seepage face problem.

residual value) near the seepage face. This is due to the outlet effect, which will be
discussed below.

The total water seepage flux and total NAPL seepage flux are shown in Figs. 13 and
14. Note that the water flux decreases sharply as the NAPL flux increases.

In Section 6, we argued that the source/sink terms for seepage face nodes of the
form given by Eqs. 30 will not permit liquid to flow out, until the liquid saturation is
~ 1.0. This is in fact observed in the computation.

Close examination of the source/sink terms reveals that (on the finest grid) water
only flows out from the lowest seepage face node. However, water and NAPL flow out
trom the four higher seepage face nodes. At first sight, it is difficult to understand why
two simultaneous flow of water and NAPL at the seepage face is observed.
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Fig. 12. Fine grid saturation contours, seepage face problem.
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Consider a seepage face node i which is liquid saturated, and both NAPL (S,,) and
water (S,,,) saturations are well above their respective residual values (i.e. relative
permeabilities for water and NAPL > 0). In this case, due to the form of Egs. 30,

Pn{ :Pab (343)
Pwi:Pub_Pcnw(Sw=Swi) (34b)
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Fig. 14. NAPL seepage face flux.
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Assuming that the water—NAPL capillary pressure is non zero at S, =S, ;, then:

P,—P,)>0 35
ab wi

which, from Eq. 30a implies that water cannot flow out. In this case, only NAPL can
exit the system through the seepage node.

However, if the NAPL saturation is reduced to near the residual value, ie. S, =S,
+ €, then the relative permeability of the NAPL phase will be very small, and it can no
longer be assumed that P, = P,. However, since the water relative permeability will
not be small at this water saturation, then:

Pwi:Pab (363)
Pnlzpab+Pcnw(Sw= l‘O_Snrz) (36b)

The amount of fluid leaving the seepage node should converge as the parameter
LARGE — =< in Egs. 27 and 30. Now,

(P,—P,;) =0 as WP —ox (37)
so that

WP, oy Py = Pui) (38)
approaches a finite limit. Similarly,

Soi = Sa
A, O as WP/ - » (39)

(Py—P,) 2P, (S,=1.0-5,))
so that

WP/A,; py i Py — Py) (40)

approaches a finite quantity.

Consequently, simultaneous flow of NAPL and water at a seepage node can occur
only if the capillary pressure is reduced to (nearly) the minimum possible value. This
was pointed out in Settari (1973), and this is what is observed in our simulations: both
phases flow only when the NAPL saturation is almost at the residual value.

We emphasize once again that this effect only occurs because the NAPL saturation is
near residual. Consequently, the NAPL pressure is no longer equal to atmospheric
pressure, at a point infinitesimally inside the porous medium. More precisely, there is a
thin layer near the outlet where the NAPL saturation rapidly decreases to almost the
residual value. Although the pressure gradient is large in this layer, the mobility of the
NAPL is small.

In fact, it could be argued that the same effect will occur for liquid air flow, i.e. as
the air saturation decreases to near zero, there could be simultaneous flow of air and
liquid, since the air pressure cannot be assumed to be equal to atmospheric pressure.
However, this would mean that the air pressure inside the domain would be significantly
higher than the atmospheric pressure. Since the viscosity of the air phase is very small,
this would result in enormous gas-phase velocities. In all our tests with realistic
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remediation scenarios, we have never seen numerically significant simultaneous flow of
air and liquid from a seepage face node.

In order to verify that the solution is independent of LARGE (in Eq. 27), we carried
out several fine grid runs with different values of this parameter. Fig. 15 shows the total
cumulative NAPL produced from the seepage face from 1 to 10 yr, for various values of
LARGE. Clearly, when LARGE is sufficiently large, the cumulative NAPL converges to
a value independent of LARGE.

Another way of understanding the source/sink technique for multiphase seepage
boundary conditions is to imagine formulating the boundary conditions by using a very
fine mesh near the seepage face. For simplicity of exposition, we will assume that the
air-phase saturation is zero (S, = 0), and that a two-dimensional Cartesian grid system is
being used, with the seepage face along the z-axis. In this case, we set the water and
NAPL pressures (at the boundary) to the boundary air pressure P, . Let node i be the
node adjacent to a boundary seepage face node (in the x-direction). The NAPL and
water fluxes through the seepage node are given by:

A
q1,=E/\“P“ min[o’(Pah_Pli)] (I=w,n) (41)

where
A = (discrete flow area)
Ax = (mesh size in the x — direction)

which is simply the flux computed by using the discrete normal derivative of the
pressures. Now, imagine taking the limit as Ax — 0. If there is mobile water at the
seepage face (which is the case in our example), then the only way that Eq. 41 can yield
a finite limit for g,,; is for:

P, P, as Ax—-0 (42)
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Since the NAPL pressure tends to:
Pni_)Pah“-P (Swi) (43)

where P (S, ) is generally non zero, this means that the only way Eq. 41 can give a
finite limit for g, is for:
S.i— S,
)‘ni -0

ni

as Ax—0 (44)

Note that the NAPL pressure gradient actually tends to infinity at the seepage boundary,
but that the flux tends to a finite value.
Observe also that if in Eqs. 30 we replace:

) A
WP/ « e (45)
then Egs. 30 and 41 become formally identical. In other words, the use of:
WP/ = WP, * LARGE (LARGE — =) (46)

simulates the effect of using a very fine mesh near the boundary. Note that Figs. 13 and
14 indicate that the seepage fluxes for the medium mesh have essentially converged to
the final values.

9. Conclusions

We have presented a conceptually simple and easy to implement method for handling
various boundary conditions in multiphase subsurface flow.

Multinode, constant-rate wells can be handled with varying levels of sophistication.
The most accurate method uses a discretized wellbore to simulate flow in the wellbore.
This method predicts liquid levels in the wellbore, and can be used in backflowing
situations. If precise liquid levels in the well are not important, but backflow may occur,
then the wellbore can be replaced by a single virtual node. Finally, if backflow can be
assumed not to occur (which is probably the most common case), then a single total
flow constraint equation is added to the discrete nonlinear equations, and a unknown
wellbore pressure is added to the set of unknowns (for each distinct well).

Computational examples show that ignoring some of the terms in the Jacobian for
multinode wells can drastically increase the number of nonlinear iterations required for
convergence. In some cases, about three times as many nonlinear iterations are required
if a Partial Jacobian is used compared to a Full Jacobian where all terms are taken into
account. Since CPU time is roughly proportional to nonlinear iteration count, dropping
terms in the Jacobian is ill-advised.

A simple method borrowed from the petroleum literature based on Mobility Alloca-
tion for multinode wells has been shown to produce large errors in some situations. In
cases where the Mobility Allocation approximation produces small errors, the number of
nonlinear iterations is larger than a full Newton solution of the more rigorous wellbore
model. Consequently, there does not seem to much point in using the Mobility
Allocation method.
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In all cases, we have taken the capillary pressure into account at source/sink
locations. This contrasts with the models typically used in the petroleum industry, where
capillary pressure effects at source /sink locations are ignored. While this is a reasonable
approach for petroleum industry applications, this is generally not applicable for
near-surface flows. In particular, we have demonstrated how the source/sink method
can be used to simulate the complex behaviour which occurs for multiphase flow near a
seepage face. In this case, it is absolutely essential to take into account capillary pressure
outlet effects. The method developed in this work can be shown to be equivalent to the
result obtained by using an infinitesimally small mesh near the seepage boundary. For
interesting cases where simultancous flow of NAPL and water occurs, there is a very
thin layer near the seepage face where the NAPL saturation decreases sharply to near the
residual value. A mesh refinement study showed that the source/sink method can
predict the NAPL and water-phase fluxes even at fairly coarse grid sizes.

In all cases, a mathematically correct approach is used with the source /sink method:
fluid properties can be specified for ingoing components, fluid properties are not
specified for outgoing components.
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