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A robust numerical method for saturated-unsaturated flow is developed which 
uses a monotone discretization and variable substitution. This method is 
compared to a conventional formulation and to a two phase (active air phase) 
model. On some published test examples of infiltration into dry media, the 
variable substitution method shows an order of magnitude improvement (in terms 
of nonlinear iterations) compared to the conventional pressure based method. 
One, two and three dimensional computations using both finite element and finite 
volume discretizations are presented. 
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1 INTRODUCTION 

Analysis of waste cover ‘designs” and evaluation of low 
level nuclear waste disposal facilities25’29 requires 
solution of unsaturated-saturated flow models. Since 
there is a great deal of uncertainty regarding the physical 
parameters in these models, Monte Carlo methods are 
often used to obtain expected and worst case estimates 
of infiltration through these waste sites. This means that 
simulations must be carried out many times for each 
design in order to obtain a statistically reasonable sample 
size. In certain cases, full three dimensional models are 
required to fully capture the site geometry. Conse- 
quently, the basic flow model must be very efficient and 
robust. 

In order to minimize infiltration, many waste sites 
have been situated in arid regions. As a result, these sites 
have large unsaturated zones, which are initially very 
dry. The various capping technologies currently under 

evaluationI utilize capillary or clay barriers to divert 
moisture away from the buried waste. Other designs29 
use a combination of capillary barriers and low 
permeability barriers. Multiple capillary barriers have also 
been proposed.37 This means that simulations of these 
sites must be able to handle highly heterogeneous systems. 

It is well known that numerical simulation of water 
infiltration into dry soils is a very difficult numerical 
problem when the usual constant air phase pressure 
assumption is invoked.5~‘9~23~28~30~36~38 For practical 
purposes, it is desirable to be able to model flow in 
both the saturated and unsaturated zones, which rules 
out a pure water content based formulation. 

A head or pressure based method can be used for both 
saturated and unsaturated flow, but under dry initial 
conditions, the capillary pressure curve is an extremely 
nonlinear function. This causes convergence difficulties 
for the nonlinear iteration unless very small timesteps 
are used.7,23,36 The timesteps required for convergence 
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may be orders of magnitude smaller than is required for 
reasonable time discretization errors.30,36 

Recently, a comparative study of various saturated- 
unsaturated flow simulators was carried using a two 
dimensional test problem.36 This problem was inspired 
by the Las Cruces Trench field experiment. It was noted 
that numerical simulation of this experiment proved 
to be very difficult. Existing simulators required an 
inordinate number of Newton iterations and/or time- 
steps. The model for the field experiment was abstracted 
to produce a simple data set which still captured the 
numerical difficulties.36 All of the standard simulators 
used a very large number of nonlinear iterations to solve 
this problem. However, rather surprisingly, use of a true 
two phase (non-constant air phase pressure) flow model 
for this problem proved to be very efficient.36 

The objective of this article is to develop a robust and 
general purpose method for simulating saturated- 
unsaturated flow using the constant air phase pressure 
approximation. Desirable characteristics of a robust 
numerical method include the following: 

The discretization should be mass conservative 
regardless of timestep or mesh size. The importance 
of mass conservation has been noted in Celia et cd5 
The technique for solving the nonlinear discrete 
equations should be efficient for very dry conditions. 
For regions where the water saturation is unity, the 
formulation should be as efficient as a standard 
method. 
Heterogeneous media having variable permeability 
and capillary pressure, and discontinuous absolute 
permeabilities, should be handled in a natural and 
efficient manner. In particular, heterogeneities should 
cause no new discontinuities (as a result of the 
numerical formulation) in the equation coefficients. 
The discretization should be monotone. The impor- 
tance of monotonicity was emphasized in Celia et al.’ 
and Forsyth.“>” 

In the remainder of this paper, we will present a 
numerical formulation which satisfies these criteria for 
robustness. Numerical results will be presented for the 
two dimensional test problem36 and other published 
problems which are considered to be examples of 
difficult test cases.23 Computational simulations will 
also be carried out for some three dimensional examples. 
The two dimensional computations will be compared to 
simulations which use a true two phase (non-constant 
air phase pressure) formulation. Test examples having 
up to 50 000 nodes will be shown. All computations were 
carried out on workstations using either finite element or 
finite volume spatial discretizations. 

2 FORMULATION 

To avoid repetition, the formulation will be given for 
a two phase (active air phase) model of saturated- 

(3) 

unsaturated flow. The constant air phase pressure 
approximation is a special case of this formulation. 

The two phases considered here are water (w) and air 
(a). Conservation of phase 1 then implies 

; (W!Pl) = V * (rnVd + 41 (1) 

where the velocity of each phase I is given by 

VI = -K. XI(VPI - p[gVD) (2) 

and where 

S, = saturation of phase 1 
P, = pressure of phase I 
p, = mass density of phase I 
K = absolute permeability tensor 
XI = k,llpi 
p1 = viscosity of phase I 
krl = relative permeability of phase 1 
D = depth 
g = gravitational acceleration 

q, = source/sink term for phase 1 

The phase pressures are related by the capillary pressure 
P caw 

PO = Pw + Pcm~(~w) (4) 

For true two phase formulations (non-constant air 
phase pressure) we have 

s,. + s, = 1 (5) 
The phase densities and porosity are given by 

PN’ = PWO(1 + CWXPW - PJ) 

Pa = PooPalPao (6) 

4 = $o(l +G?l(Pw - Pwo)) 

where pwo, pa0 are the densities at pressures PNO and POo, 
c,, is the water phase compressibility, c, is the 
compressibility of the porous media, and 4. is the 
porosity of the medium at P,. = P,,o. 

3 DISCRETIZATION 

A Galerkin finite element method is used to discretize 
the eqns, (1). An influence coefficient technique is 
employed to handle the non-linearities in the flow 
terms.21 The time discretization is carried out with a 
backward Euler method, and mass lumping is used for 
the mass accumulation term. Further details about this 
method can be found in’0~11316~27 

If Ni are the usual Lagrange polynomial Co basis 
functions where 

Ni = 1 at node i 

= 0 at all other nodes 
(7) 

c Nj = 1 everywhere in the solution domain 
j 
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and we define $, = Pl - p,gD, then P,, T+!J~, and S, are 
approximated by 

Pl= C P/jNj 
j 

= & Cplj - Pljgpi)Nj 
i 

(8) 

S/ = C S,jNj 

If N denotes the time level, then the discrete equations 
for phase I = w, a are 

+ 
.I 

Ni(pl Vl)Nfl. fi (1s 
s 

where 

Vi= Nidv 
.I 21 

N+l &+’ = P,, - Pfl;fiilpgDi (10) 

Pl,ij+1/2 = (Pl,i + Pl,j)i2 

and the +/ii are given by 

rij = - VNi * K * VA5 dv (11) 

Here vi is the set of neighbour nodes of node i such that 
rij are non-zero. 

In equation (9), the term 

f 
Ni(PIVl)Ntl *fi ds 

s (12) 

represents the flux into the domain due to specified flux 
(or pressure) boundary conditions (s in eqn (9) is 
the surface of the computational domain). A specified 
pressure can always be enforced by injecting or 
producing mass into a node.11,13,16,33 

Since this term simply represents mass inflow or 
outflow, we can lump this boundary flux in with the flux 
due to wells to get a composite source/sink term11’13’16’33 

Q~’ = (qri)N’l Vi + 
f 

~ N~(P,V,)~” ‘rids (13) 

Therefore, the final discrete equations are 

= C (PI&)[,~~/2)Tij (#+’ - &+I) + (Qr)N+’ (14) 

Note that in eqn (10) there is a possible problem for 

the definition of pl, ij+1/2, which appears in the gravity 
term, if a phase is not present in either node i or node j 
(this should not be confused with the term pl which 
multiplies the mobility term in eqn (14)). If phase I is 
present in only one node, say node i, then in this case 
pl,ij+1/2 = p/,i. If phase 1 is not present in either node, 
then pl, ij+1/2 is irrelevant since these terms are multiplied 
by a zero relative permeability. 

There are various possibilities for the term (plXl)(ij+l/2) 
in eqn (14). Two weightings that will be used in this 
work are central (cent) and upstream (ups) 

(PIxl)ups(i,j) = (Plh)N+’ if %j($+' - #+‘) < 0 

= (PrX[)iN+l if Yij(?#+’ - T+!Jr’) > 0 

(P/xl)cenl(i,j) = ((Plh)N+l + (PlXl)jN”)/2 (15) 

Other possibilities include using an appropriate average 
of the values of Xl at the centroids of any elements which 
contribute to yij.21 Equation (15) amounts to using a 
one point quadrature method to evaluate the nonlinear 
term in the integral. For true two phase (non-constant 
air phase pressure) problems, upstream weighting can be 
shown to converge to the physically correct solution.32 
As demonstrated in Ref. 3, central weighting may cause 
convergence to incorrect solutions in multi-phase 
flow situations. Consequently, only upstream weighting 
will be used for active air phase computations. If the 
constant air phase pressure approximation is invoked, 
both central and upstream weighting will be used in this 
work. 

Note that the discrete eqns (14) has the same form 
regardless of the dimensionality of the system or the 
type of basis function used. In fact, eqns (14) are also 
valid if a finite volume discretization is used.8>g In this 
case, the Vi are the actual geometric volumes associated 
with the node, and yij is the interfacial area divided by 
the distance between nodes i and j. 

Of course, for a finite volume method, rij 2 0. This 
need not be the case for a finite element method.1”16’27 
If rij < 0, then this can result in locally nonphysical 
discrete flow, which may cause poor convergence of 
the nonlinear iteration. ’ 1327 Requiring that rij 2 0 for a 
finite element method puts a constraint on the type of 
basis function and the node placement.11’27 

Since rij = %i it follows immediately from eqn (14) 
that this discretization is mass conservative. 

4 MONOTONICITY CONSIDERATIONS 

The importance of a monotone discretization has been 
pointed out by.5>11,‘2 In the following, the definition of 
monotonicity is briefly reviewed and the implications of 
this requirement are considered. Only the discrete 
problem is considered for the constant air pressure 
approximation. In this case, the monotonicity analysis 
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can be carried out for the full nonlinear equations, and discretization of eqn (14) (with the passive air phase 
for any dimension. assumption) satisfies the following conditions 

If the air pressure is assumed to be constant, this 
eliminates the air conservation equation from the system 
of two eqns, (l), leaving only the water conservation 
equation. For definiteness, assume that the independent 
variables in the discrete algebraic system (14) are the 
water phase pressures P,i. The nodal water saturation 
S,i is obtained by inverting eqn (4) 

(a) aPoWIW+ < 0 
(b) ‘yii > 0 (see eqn (11)) (20) 
(c) upstream weighting is used (eqn (15)) 

then the discretization (14) is unconditionally monotone 
regardless of timestep At or mesh size Ax. This implies 
that non-physical oscillations in the solution cannot 
occur, no matter how large the mesh size or timestep.15 
Of course, accuracy considerations may put an upper 
limit on timestep or mesh sizes. However, in Ref. 15, an 
example is given where the non-monotone discretiza- 
tions produce non-physical solutions even for very small 
mesh sizes. These non-physical oscillations are absent 
from monotone discretizations. If central weighting (or 
any other linear combination of mobilities which 
includes non-upstream nodes) is used, then the dis- 
cretization is monotone only for sufficiently small Ax.15 
Note that (a) in (20) is satisfied for any physically 
reasonable capillary pressure function. 

P, = constant 

SWi = min (1.0, Pcik(Pa - Pwi)) 
(16) 

Consequently, the discrete algebraic eqns (14) with the 
constraint equation (16) can be considered to be a set of 
discrete implicit algebraic equations specified at each 
node i, which can be written in the form 

h(P$+‘, Ps, P$+‘) = 0 j E vi Vi (17) 

For the purposes of monotonicity analysis, the variables 
PF PF” are regarded as independent.12 We then WI? W, 
require that 

apN+’ 
WI 

aP$ > O 

apN+’ 
““>o 
apN+’ - w 

(18) 

for every node i. 
An intuitive explanation of this requirement is 

that a positive perturbation of the pressures at P,$ or 
P$+’ should produce a positive change in Pz' . If 
positive perturbations of PC, P,$+’ produce a negative 
perturbation of P,i N+l, then this is physically absurd. 

Mathematically, the requirement (18) ensures that no 
new non-physical local maxima or minima can appear in 
the discrete solution P,$+’ (i.e. nonphysical oscillations 
cannot occur). Note that new local maxima can occur at 
the nodes on the edge of the grid, or near heterogeneities 
(consider infiltration into a dry soil encountering an 
impermeable zone), but these local maxima are physi- 
cally correct. A more precise statement of this condition 
is given in Forsyth and Kropinski” and Kropinski.26 

Consequently, it is a straightforward, although 
algebraically tedious, matter to apply conditions (18) 
to the discrete system (14) bearing in mind the 
constraint (16). 

Provided very mild restrictions are placed on the 
vertical dimension of the computational domain,‘5126 
then the results of this analysis can be summarized as 
follows.15>26 Let 

Ax = yj: (II% - XjII) (19) 

where xi is the location vector of node i. If the 

As mentioned in [7], the discretization will not be 
monotone, in general, if a consistent mass matrix 
is used. If higher order timestepping methods are 
employed, the discretization will also be non-monotone 
for large At. If the mobility term X, is evaluated 
explicitly, as in Kirkland et 01.~~ then the discretization 
is monotone only for sufficiently small (At/Ax). 

The choice of whether to use central or upstream 
weighting clearly depends on the grid size. For fine grids 
(see Refs 15 and 26 for a precise specification), central 
weighting will be monotone. However, for coarse 
grids, it may be preferable to have slightly diffused, but 
monotone solution, as opposed to a solution which is 
oscillatory. 

Note that the definition of the upstream point (eqn 
(15)) is based purely on mathematical monotonicity 
conditions, not physical reasoning. In simple cases, this 
definition of upstream weighting agrees with physical 
intuition. For more complex grids (unstructured 
triangular or tetrahedral elements), various authors 
have proposed methods for upstream type weight- 
ings.20 However it is not clear if these definitions of 
upstream weighting are monotone. In contrast, the 
definition (15) is monotone (provided conditions (a)-(b) 
in (20) are satisfied) for complex grids. 

5 VARIABLE SUBSTITUTION 

Numerical experience seems to suggest that use of a 
water content (or equivalently saturation) based form of 
Richards’ equation has good convergence properties in 
terms of nonlinear iterations19’23 compared to a pressure 
based method. Of course, the saturation based equation 
cannot be used in the saturated zone. This problem can 
be circumvented by defining a new variable which is 
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essentially the saturation in the unsaturated zone, and 
is the pressure in the saturated zone.23 In Ref. 23, the 
equations are actually rewritten in terms of this new 
variable, which introduces some complications for 
heterogeneous systems. The technique used in Ref. 23 
is also partially explicit, and so is not monotone unless 
At/Ax is sufficiently small. Mass balance errors are also 
introduced at the transition between the saturated and 
unsaturated zones. 

In this work, full Newton iteration will be used to 
solve the discrete eqn (14) everywhere. In the case of the 
constant air phase pressure approximation, we simply 
use a different primary variable in different regions 
(recall that the primary variables are those variables 
which are regarded as independent when constructing 
the Jacobian). The primary variable at any given node 
may be switched after every Newton iteration using the 
following method. 

IF (Swi 2 tolf) then 
Use P,i as primary variable at node i 

ELSEIF (S,i < tdb) then 
Use S,i as primary variable for node i (21) 

ELSE 
Do not change primary variable for this node 

ENDIF 

Variable substitution is commonly used in multi- 
phase, multicomponent flow to ensure that the Jacobian 
is nonsingular when phases appear and disappear due to 
mass transfer between ph~ases.8-10’13’16~17’33 In this work, 
we are simply using variable substitution to aid the 
convergence of the Newton iteration. Consequently, 
there is a great deal of freedom in the selection of the 
switching parameters tol,, and tolf. The only necessary 
requirement is that 

tozf < 1 (22) 

Note that in general torf # tolb. This will be discussed 
further in subsequent sections. 

We emphasize that the same discrete equations are 
being solved everywhere. Only the primary variable for 
the Newton iteration is being switched. This approach is 
designed to produce rapid convergence in both the 
unsaturated and saturated zones for all initial and 
transient conditions. 

6 JACOBIAN CONSTRUCTION 

At first sight the variable substitution method described 
above might appear to be difficult to implement. 
However, variable substitution is very straightforward 
to implement if the Jac:obian is constructed numeri- 
cally.” Consider the discrete eqns (14) with constraints 
(16) for a constant air phase pressure model. In this case, 
there is only one primary variable per node. Let Xi be 

the primary variable associated with node i (Xi can be 
either Pwi or S,i as determined by (21)). Let 

A(Xi) = 4&i Pwi 2 
flow(q~ xi>ji = hvxw)~~1/2)~ij($$+1 - $2”) 

Q(xi> = (Qw)Y” (23) 
Then, determine Xi such that the residual of the discrete 
equations is zero. In other words 

ri = -(AN+l - AN) + C flowji + Qi 

=o Vi (24) 

Utilizing the fact that the discretization (14) is 
conservative which means that 

flOWij = -flOWji (25) 

and that flOWij is only a function of Xi, Xj, then the 
Jacobian Jij can then be constructed using the following 
algorithm. The notation Xi refers to the current value (at 
this iteration) of the solution for XiNfl. 

FOR i= l,..., 
sum := 0 
FORjEni 

Jii := flOW (Xj, Xi)ji 

sum := sum + flOW (Xj, Xi)ji 

ENDFOR 
sum := sum - (A(Xi) - A(XiN)) + Q(Xi) 
Jii := sum 
ri:=SLllIl 

sum := 0 
FORjEqi 

(26) 

Jji := (4; - flOW (Xj, Xi + f))/E 

sum :=sum + flOW (Xjl Xi + E)ji 

ENDFOR 
sum:= sum - (A(Xi + E) - A(Xi‘v)) + Q(Xi + E) 
Jii := (sum - Jii)/c 

ENDFOR 

where E is a suitably determined numerical shift factor. 
Of course if E is chosen too small, then roundoff 
errors will result, while if E is too large, then this will be a 
poor approximation to the Jacobian. Assuming that the 
primary variables are O(l), then a useful rule of thumb 
is to select the shift factor 6 to be the square root of 
the unit roundoff. For example, if double precision 
arithmetic is used, with the unit roundoff being about 
10-12, then E = lop6 would be a reasonable choice. We 
have experimented with various values of E over several 
years, and we have always observed quadratic conver- 
gence for the Newton iteration (as convergence is 
approached) for the above choice for 6. 

Some of the correlations typically used31 for relative 
permeabilities and capillary pressures have infinite 
derivatives as S, tends to the residual value or to 
unity. In this case, the correlation is replaced by a linear 
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interpolant for saturation values near these troublesome 
points. The derivatives now become large but finite. For 
example, whenever S, > 1 - cl, a linear interpolant is 
used. The value of cl is selected to be an order of 
magnitude smaller than the saturation convergence 
tolerance. Experiments with smaller values of f1 did 
not change the solution to within the convergence 
tolerance. 

Note that if upstream weighting is used, then it is 
important to base the upstream decision (15) on the 
unincremented values (Xi), not the incremented values 
(Xi + E) of the primary variables. 

The above algorithm constructs the Jacobian by 
columns. Consequently, the residual and the entire 
Jacobian can be constructed in a cost equivalent to two 
residual evaluations. Note that this is true regardless of 
the dimensionality or number of nonzeros in the 
Jacobian. For clarity, the above algorithm is written as 
if Jii was stored in full form. Of course, in practice, Jij is 
stored in packed form. 

In the case of multiphase flow with np phases, the 
residual and the Jacobian can be computed numerically 
at a cost of np + 1 residual evaluations. 

7 MATRIX SOLUTION AND TIMESTEPPING 

The non-symmetric Jacobian matrix is solved using an 
iterative method based on a reduced system, level (1) 
incomplete factorization,4’6’35 with CGSTAB accelera- 
tion.7 A standard adaptive timestepping method is used 
to control the timestep size.34 

8 TEST PROBLEMS 

All capillary pressures and relative permeabilities are 
assumed to be of the van Genuchten31 form 

P caw = y ((Q-‘/Y _ 1)1/P 

su’ - &r 
sw = 1 - s,, (27) 

The relative permeabilities are given by 

k,, = (s,)“2{1 - [l - (s,)1’y]‘}2 

k,, = ($)1’2{1 - (&,)“y}2y 

s, = 1 - s, 

(28) 

In order to ensure that the air phase pressure 
remained approximately constant for the full two 
phase flow formulations, additional constant pressure 
air boundaries (seepage points) were imposed on the 
upper surfaces of the computational domains. The 

Table 1. Material properties for Problem 1 (Bandeller TUB) 

K, = KY (m’) d S WI a: (l/cm) P 
2.95 x lo-l3 0.33 0.0 0.0143 1.506 

location of these constant pressure nodes is given for 
each test problem. In the following examples, water and 
porous media compressibilities are assumed zero, i.e. 
(see eqn (6)). 

c -0 m- 

c, = 0 
(29) 

8.1 Problem 1 

The first example is a one dimensional problem used to 
validate the HYDRUS code,24 involving infiltration in a 
large caisson. This example is not particularly difficult, 
since the initial conditions are not very dry. However, 
this problem is included (and comparison with the 
HYDRUS code), to justify the use of full Newton 
iteration, as opposed to the Picard scheme used in 
HYDRUS. The experimental study was conducted at 
Los Alamos National Laboratory.‘>2 Table 1 gives the 
material properties used in this simulation. These 
properties are those of Bandelier Tuff. Figure 1 shows 
the computational domain for this one dimensional 

Infiltration 20 cm/d 

= 0.303 I=0 I , 60( 

pw = pat, 

b-300 cm-H 

Fig. 1. Domain for Test Problem 1. 

c 

cm 
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k-225 cm+ 

Zone 3 y/ 

400 

Right 
Boundary E 00 

/ 
Bottom Boundary 

d”““‘fld/“““‘Yd”““‘d”““” 
0 

20 
Horizontal &tance (cm) 

00 800 

Fig. 2. Domain for Test Problem 2. 

example, which is a caisson 6m long and 3 m in 
diameter. A node spacing of 5 cm (120 nodes) was 
used in the z direction. The water saturation was initially 
S, = 0.303 everywhere. The model was run for 7.16 
days. 

8.2 Problem 2 

The second test example is the problem which was 
developed to compare the performance of numerical 
simulators for the very dry initial conditions.36 The 
computational domain is shown in Fig. 2. All 
boundaries are no flow, except for the zone of 
infiltration as shown in Fig. 2 (2cm/day). Table 2 
shows the material properties for Problem 2. Note 
that Zones 3 and 4 differ only in the absolute 
permeabilities. For the full two phase formulations, a 
constant air pressure boundary condition was imposed 
at the top right hand corner. 

A 90 x 21 finite volume grid was used for this 
problem (1890 nodes). Problem 2 uses an initial 
condition of P, = 28.0 kPa (or in terms of head, 
hi = -734cm-water). Water infiltration occurs for 30 
days. 

8.3 Problem 3 

This problem is the same as Problem 2, except that the 
initial absolute water pressure is P, = -880.665 kPa (in 
terms of head hi = - 10 000 cm-water). Problem 3 can be 

Table 2. Material properties for Problem 2 

Zone K, = K,, (m’) $ s w, a (l/cm) P 
1 9.33 x lo-l2 0.3680 0.2771 0.0334 1.982 
2 5.55 x 10-r* 0*3510 0.2806 0.0363 1.632 
3 4.898 x lo-‘* 0.3250 0.2643 0.0345 1.573 
4 4.898 x lo-” 0.3250 0.2643 0.0345 1.573 

Sand 

+100+ 
w 400 . 
- 500 >I 

Horizontal Distance (cm) 

Fig. 3. Domain for Test Problem 4. 

expected to be more difficult than Problem 2 since the 
initial water saturation will be smaller, which will cause 
sharp moving fronts. 

8.4 Problem 4 

This example is Test Problem 2 in Ref. 23. The 
computational domain is shown in Fig. 3. A 100 x 60 
(6000 nodes) finite volume grid was used for this 
problem, no advantage was taken of the obvious 
symmetry. This problem models one day of water 
injection. The material properties for this problem are 
given in Table 3. All boundaries are no flow except 
where the infiltration is shown in Fig. 3. The initial 
pressure was P, = -4800 kPa. For the full two phase 
formulation, constant air pressure boundary conditions 
were imposed on the top left and top right corners of the 
domain. 

Note that this problem was designed so that water 
initially infiltrates into a dry soil, but then encounters a 
clay barrier which causes formation of a perched water 
table. Many nodes become saturated with water, so that 
this problem is a good test of the formulation’s ability to 
handle both very dry conditions, and then to make the 
transition to a saturated state. 

8.5 Problem 5 

This problem is a three dimensional version of Problem 
3. A 46 x 46 x 21 (44436 nodes) tetrahedral finite 
element discretization was employed. A cross section 
of the problem domain is shown in Fig. 4. Note that an 
additional impermeable zone has been added below the 
water injection. 

Table 3. Material Properties for Problem 4 

Material K, = KY (m2) 4 S w, a (l/cm) P 
Clay 1.546 x lo-r3 0.4686 0.2262 0.0104 1.3954 
Sand 6.385 x 10-r* 0.3658 0.07818 0.0280 2.239 
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200 cm 

-no flow 

i 1 
P 800 cm -i 

Fig. 4. Cross section for Test Problem 5. 

All boundaries are no flow except where the 
infiltration is indicated (2 cm/day). The infiltration 
occurs over the surface area 

z = 6.5m 0.0 5 x 5 2.25m 0.0 5 y I2.25m 

(30) 

The material properties are the same as in Table 2, 
except for Zone 5 (see Table 4). 

The problem domain is 

0 < x I8.0m 

0 5 y 5 8.0m (31) 

0 5 z < 6.5m 

The various zones are 

Zone 1 O*Om I x < 8.0m; O*Om <y I8.0m; 
6.1 m 5 z < 6.5m 

Zone 2 O.Om < x 5 8.0m; O.Om I y 5 8.0m; 
5.6m < z < 6.1 m 

Zone 4 l.Om 5 x < 3.0m; l.Om 5 y < 3.0m; 

4.0m I z I5.0m 

Zone 5 O.Om 5 x I: 3.0m; O.Om 6 y 5 3+0m; 
2.0m 5 z <‘2.85m; 2.73m < x 5 3.0m; 

O.Om 5 y I3.0m; 2.85m 5 z < 4.0m; 

2.73m 5 y < 3.0m; O.Om 2 x 5 3.0m; 

2985m < z < 4.0m 

Zone 3 everywhere else 

(32) 
The initial pressure was -880.67 kPa everywhere. 

Table 4. Material Properties for Problem 5 

Zone KX = K, (m2) 4 S Wr a (l/cm) P 
5 1.0 x lo-l4 0.3250 0.2643 0.0345 1.573 

r 1)w cnl 

Fig. 5. Cross section for Test Problem 6. 

8.6 Problem 6 

This problem is essentially the same as Problem 5, 
except that initially the water table is at z = 200cm 
(see Fig. 5), and both hydrostatic and seepage face 
conditions are imposed at one end of the domain (see 
Fig. 5). In the unsaturated zone, the initial absolute 
water pressure is P, = 28.01 kPa. More precisely, the 
initial conditions are 

P, = 28.01 kPa 2.0m < = < 6.5m 

P, = lOOkPa O.Om 5 z 5 2.0m 
(33) 

All boundaries are the same as for Problem 5, except 
that the plane x = 6.5m has 

P,, = 100 kPa z = 2.0m 

= hydrostatic O.Om I z < 2.0m (34) 
Seepage face 2.0m 5 z 2 6.5m 

9 RESULTS 

For the variable substitution (constant air phase 
pressure) and the two phase (non-constant air phase 
pressure) formulations, very aggressive timestep 
selector targets34 were used: 0.40 for the saturation, and 
4000 kPa for the pressure. Various tests were carried out 
with smaller timesteps. Saturation contour plots of the 
small timestep results at the end of the simulation time 
compared to plots with the aggressive timestep strategy 
were virtually identical. Consequently, results will be 
reported only for the aggressive timestep strategy. 

For the constant air phase formulation, using only the 
pressure as a primary variable, an aggressive time- 
stepping strategy performed very poorly due to con- 
vergence failures of the Newton iteration. For each test 
problem, it was necessary to tune the timestep selector 
parameters by trial and error. Results will be reported 
for the best choice of timestep parameters. 

If tolf = to& in eqn (21), this sometimes caused the 
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Newton iteration to oscillate between the two states 
with different primary variables. This problem was 
eliminated if torf # tolb. The parameters that were used 
in the work were 

tolf = 0.99 

to& = 0.89 
(35) 

Since a mass conservative formulation is used in all 
cases, the material balance error is simply a function of 
the convergence tolerance. Material balance errors in all 
cases were less than 5 x 10p5. In the following, variable 
substitution refers to the method of eqn (21) using the 
constant air phase approximation. If the same set of 
equations are solved using P, as a primary variable, this 
method will be referred to as P, primary variable, while 
two phase indicates that the true two phase equations 
are solved (non-constant air phase pressure). For the 
two phase runs, P, and 3, were selected as the primary 
variables. 

Since a variety of different machines were used at 
different sites, we give the normalized CPU time if 
available. The two phase (non-constant air phase 
pressure) runs were carried out using the MAGNAS 
code22 on a different machine from any other runs, so 
CPU times are not meaningful. 

9.1 Results for Problem 1 

Figure 6(a) shows the water saturation contours at 
various times. The results for both central and upstream 
weighting (using the constant air phase approximation) 
are compared with the HYDRUS simulation. This 
problem was solved using both central and upstream 
weighting, using variable substitution and P, primary 
variable. As can be seen in Fig. 6(a), all methods are in 
close agreement with the HYDRUS mass conservative, 
centrally weighted, resudts.24 The difference between 
central and upstream weighting is very small. In fact, 
the difference between central and upstream weighting 
is much less than the difference between using a 
mass conservative and a non-mass conservative 
formulation (both with central weighting) as described 
in Kool and van Genuchten.24 However, the more 
interesting results are in Table 5. 

The heading nonlinear iterations in Table 5 refers to 
the total number of Picard iterations for HYDRUS, and 
the total number of Newton iterations for the present 
model. Even accounting for the fact that construction of 
the Jacobian is more expensive than the construction of 
the Picard iteration matrix (at worst, using method (21), 
a factor of two), we can see that the Hydrus run is easily 
10 times more expensive than the present method 
(using variable substitution). The initial conditions for 
this problem are not particularly dry, so the difference 
between using variable substitution and P, primary 
variable is not that pronounced. Nevertheless, in all 

Water Saturation 
o”p 0.12 0.14 0.16 0.p li” 

loo- 

-200 - 
E : 0 - 

-300 - 

600 L 

- NYGRUS. CENTRM WElCHllNG 
.I- PRESENT NOGEL. UPSTRENd WFXNTING 
. . . . . PRESENT NOGEL. CENlWl WIEHTlNG 

Fig. 6(a). Saturation contours, Problem 1. 

- Upstream 
. - - Central 

0.05 0.15 0.25 0.35 

Water Content 
Fig. 6(b). Comparison of predicted and observed water content 

during drainage. 

cases, the variable substitution requires fewer Newton 
iterations than the corresponding P, primary variable 
runs. The next examples will show a much greater 
efficiency for variable substitution. The second part of 
this test problem involves simulation of the caisson 
drainage (by gravity), following complete saturation. All 
the conditions and parameters are the same as before, 
except that the top surface is treated as a zero flux 
boundary. Drainage was simulated for a period of 100 
days, and the predicted water content at 1,4, 20 and 100 

Table 5. Results for Problem 1 

Method Weighting Nonlinear Normalized 
iterations CPU time 

Variable substitution” upstream 178 1.0 
Variable substitution0 central 273 1.46 
P, primary variableb upstream 251 1.28 
P, primary variable6 central 362 1.79 
HYDRUS central 4886 c 

a Constant air phase pressure using variable substitution. 
b Constant air phase pressure, P, primary variable. 
’ Computation carried out on different architecture. 
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Fig. 7. Saturation contours, Problem 2. - - - One phase, Fig. 8. Saturation contours, Problem 3. - - - One phase, 
upstream weighting; - - - - one phase, central weighting; ~ upstream weighting; - - - - one phase, central weighting; ~ 

two phase, upstream weighting. two phase, upstream weighting. 

days is given in Fig. 6(b). The experimentally observed24 
values of water content versus time are also shown. The 
numerical predictions are in good agreement with the 
experiment. 

9.2 Results for Problem 2 

Figure 7 shows the saturation contours for Problem 2 
(at 30 days) obtained using a full two phase model, and 
a constant air phase approximation (labeled one phase 
in Fig. 7) with both central and upstream weighting. All 
methods are in fairly close agreement. The most 
noticeable difference occurs for the SW = 0.4 contour 
along the bottom edge. It is interesting to observe that 
the S, = 0.4 contour for the upstream weighted 
(constant air phase pressure) is slightly ahead of the 
same contour for the centrally weighted (constant air 
phase pressure) along the bottom edge. This might be 
expected due to the diffusive nature of upstream 
weighting. However, the centrally weighted (constant 
air phase pressure) S, = 0.4 contour is slightly ahead of 
the two phase (upstream weighted) S, = 0.4 contour. 
Note that nonlinear two phase shocks are self- 
sharpening, so that upstream weighting for two phase 
(non-constant air phase pressure) does not appear to be 

overly diffusive.14 Table 6 gives the computational 
statistics for this problem. In this case, the P, primary 
variable method is between six and eight times slower 
than using variable substitution. This increase in 
computational cost is a direct result in the large 
increase in the number of Newton iterations required 
for the P,, primary variable methods. Observe that the 
number of Newton iterations for the full two phase 
formulation is comparable with the number of Newton 
iterations for the variable substitution technique. Of 
course, the cost of each Newton iteration for the two 
phase method is greater than the cost of a Newton 
iteration with a constant air phase approximation. 

9.3 Results for Problem 3 

Figure 8 shows the saturation contours for Problem 3, 
using all three methods. Again, all three methods 
produce similar results. The S, = 0.3 contour for the 
upstream weighted (constant air phase pressure, labeled 
one phase in Fig. 8) is slightly diffused compared to the 
centrally weighted S, = 0.3 contour (constant air phase 
pressure). However, the upstream weighted two phase 
(non-constant air phase pressure) S, = 0.3 contour 
again appears to be slightly less diffused than the 

0 200 400 600 600 

1 
i 

600 

1 

Method 

Table 6. Results for Problem 2 

Weighting Nonlinear 
iterations 

Inner 
iterations 

Normalized 
CPU time 

Variable substitutiona upstream 31 
Variable substitution’ central 29 
P, primary variableb upstream 207 
P, primary variableb central 267 
Two phase’ upstream 31 

a Constant air phase pressure using variable substitution. 
b Constant air phase pressure, P, primary variable. 
‘Two phase active air phase. 
d Computation carried out on different architecture. 

137 1.0 
141 1.02 
725 6.2 
827 
113 

8$t3 
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Method 

Variable substitution’ 
Variable substitution’ 
P, primary variableb 
P, primary variabl$ Two phaseC 

Table 7. Results for Problem 3 

Weighting Nonlinear Inner Normalized 
iterations iterations CPU time 

upstream 50 244 1.0 
central 48 259 I.04 
upstream 450 1428 7.08 
central 512 1802 upstream 67 175 87 

a,b,cld See footnote to Table 6. 

centrally weighted constant air phase pressure compu- 
tation. The statistics for these runs are given in Table 7. 
In this case, the variable substitution methods are 
between seven and nine times faster than using the P, 
primary variable. 

Note that for both Problems 2 and 3, the variable 
substitution method always uses S, as the primary 
variable, since the water saturation is always much less 
than one. Problems 4 and 6 both have large fully 
saturated zones, and consequently are good nontrivial 
examples of variable sublstitution. 

9.4 Results for Problem 4 

Figure 9 gives the saturation contours for all three 
methods. Although the contours are quite similar at 
small saturations, the S, = 0.9 and S, = 1 .O contours 
show significant differences. The upstream and centrally 
weighted computations (constant air phase pressure, 
labeled one phase in Fig. 9) are qualitatively similar, but 
with the upstream contours shifted downward slightly 
compared to the central weighted results. However, the 
two phase contours are qualitatively different from the 
constant air phase pressure computations. Since the van 
Genuchten air relative permeability curve31 is quite flat 
near S, = 0, we can expect that the true two phase 
solution will have a rare:faction behind the shock, while 
the constant air phase -pressure solution will produce 
only a large shock.14 Table 8 summarizes the compu- 
tational statistics for this problem. Note that this 
problem has a very large infiltration rate. 

Horizontal Distance (cm) 
Fig. 9. Saturation contours, Problem 4. - - - One phase, 
upstream weighting; - - - - one phase, central weighting; ~ 

two phase, upstream weighting. 

In this case, the variable substitution method is about 
six times less costly than using P,,, as a primary variable. 

9.5 Results for Problems 5 and 6 

Figures 10 and 11 show saturation isosurfaces for the 
three dimensional test Problems 5 and 6. Note that Fig. 
11 shows a multiply connected isosurface since water 
flows up from the saturated zone and down from the 
infiltration site. Table 9 summarizes the efficiency 
considerations for these problems. Since Problem 5 has 
more nodes with dry conditions than Problem 6, the 
variable substitution method is about nine times 
more efficient than the P, primary variable technique, 
compared with a factor of only about five to six for 
Problem 6. The two phase method was not run for these 
problems due to the large CPU cost required. 

10 DISCUSSION 

It is worthwhile at this point to summarize the results. 
For either central or upstream weighting, use of the 
standard P, primary variable method requires an order 
of magnitude more Newton iterations compared to the 
variable substitution method, if the initial conditions are 
dry. This translates into a decrease in CPU time of 
between five and nine times. For problems which are 
comparatively easy, i.e. the initial state is not very dry, 
the variable substitution method is still superior to P, 
primary variable, but only by about 30%. Of course, if 
the computational domain is entirely saturated, there is 
no difference between variable substitution and P, 
primary variable. 

If the two phase (non-constant air phase) equations 
are solved, then the number of Newton iterations 
required is comparable to the number required for the 
variable substitution method. This indicates that the two 
phase formulation of these problems results in a set of 
discrete equations which is easy to solve. In the two 
phase formulation, one phase (either water or air) must 
be mobile. Hence, the derivative of the mass accumula- 
tion term with respect to S, is large, and contributes to 
the diagonal of the Jacobian. On the other hand, if the 
constant air phase formulation is used and the water is 
nearly immobile, then the derivative of the mass 
accumulation term with respect to P, is very small, 
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Method 

Table 8. Results for Problem 4 

Weighting Nonlinear 
iterations 

Inner 
iterations 

Normalized 
CPU time 

Variable substitution’ upstream 120 544 1.0 
Variable substitution’ central 129 582 1.08 
P, primary variable’ upstream 112 1843 6.3 
P, primary variableb central 797 1964 
Two phaseC upstream 180 572 

62 

a,b~c,d See footnote to Table 6. 

and hence this term hardly contributes to the diagonal 
of the Jacobian at all. This would appear to cause great 
difficulties for the Newton iteration if the P, primary 
variable method is employed. Although the derivative of 
the mass accumulation term with respect to P, may also 
be small as S, -+ 1, in this case there must be mobile 
water upstream of this node. This will result in a 
nonzero derivative of the flow term with respect to the 
pressure, so that the diagonal of the Jacobian will not be 
small. 

Although the method used in Ref. 23 is similar in 
philosophy to the variable substitution method used 
here, there are some important differences. The variable 
substitution method used in the present work is mass 
conservative, is strictly monotone (if upstream weighting 
is used) for any timestep or mesh size, requires no special 
treatment of discontinuities in physical properties, and 
can be easily implemented in either finite element or 
finite volume codes. 

11 CONCLUSIONS 

The usual approach for solving saturated-unsaturated 
flow problems with the constant air phase pressure 

.6 

‘-5 2 
aI 

‘. 

0 
\ . “‘. “. . 

approximation uses the pressure (or head) as a primary 
variable. For infiltration into very dry soils, this method 
requires very small timesteps due to Newton iteration 
convergence problems. These timesteps are smaller 
than is required for reasonable time truncation errors. 
However, if variable substitution is used for the primary 
variable set, then the number of Newton iterations is 
reduced by an order of magnitude. On a series of test 
problems, we have demonstrated that the variable 
substitution method is between five and nine times 
faster (in terms of CPU time) than the usual pressure 
primary variable method, for dry initial conditions. 

We emphasize here that the same set of discrete 
equations are being solved, only the method being used 
to solve the non-linear algebraic equations is different. If 
a numerical method is used for Jacobian construction, it 
is a very simple matter to change existing codes so that 
variable substitution is used instead of the pressure 
primary variable alone. 

The order of magnitude improvement of variable 
substitution methods over pressure primary variable 
methods has been shown for both two and three 

Fig. 10. Saturation isosurface, Problem 5, 30 days. S, = 0.6 
isosurface. 

Fig. 11. Saturation isosurface, Problem 6, 30 days. S, = 0.5 
isosurface. 
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Method 

Table 9. Results for Problems 5 and 6 

Weighting Nonlinear Inner 
iterations iterations 

Normalized 
CPU time 

Test Problem 5 
Vatiable substitution” 
Variable substitution” 
P,,, primary variable’ 
P,,, primary variableb 

Test Problem 6 
Variable substitutiona 
Variable substitution’ 
P,,, primary variableb 
P, primary variableb 

‘lb See footnote to Table 5. 

upstream 58 236 1.0 
central 61 266 1.1 
upstream 599 1971 9.4 
central 706 2278 9.65 

upstream 39 353 1.0 
central 41 333 0.90 
upstream 308 1704 5.6 
central 328 1787 5.9 

dimensional problems, finite element and finite volume 
discretizations, and central and upstream weighting. 
Note that the discretizations used here are mass 
conservative everywhem, are strictly monotone if 
upstream weighting is used, and are monotone for 
central weighting if the mesh is sufficiently fine. 

The two phase (non-constant air phase pressure) runs 
were also in good agreement with the computations 
which used the constant air phase pressure approxi- 
mation, except for the situation where the infiltrating 
water saturation was near one. In this case, due to the 
trapping of the air phase, significant differences were 
observed between the active and passive air phase 
pressure results. 

Finally, observe that the two phase (non-constant air 
phase pressure) equations were always easy to solve 
numerically, even for very dry, heterogeneous problems. 
It is interesting to note that a straightforward numerical 
approach which solves the physically more correct two 
phase flow equations generates algebraic equations 
which cause no difficulty for Newton iteration. This 
contrasts with the supposedly simplified constant air 
phase pressure equations, which can be very difficult to 
solve unless special care is taken. 
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