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Abstract 

A three-dimensional, three-phase numerical model is presented for simulating the movement 
of non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is 
designed for practical applica:ion to a wide variety of contamination and remediation scenarios 
involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation 
is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The 
formulation is then extended to handle fractured systems using the dual-porosity and discrete- 
fracture modeling approaches The model accommodates a wide variety of boundary con- 
ditions, including withdrawal and injection well conditions which are treated rigorously using 
fully implicit schemes. The three-phase formulation collapses to its simpler forms when air- 
phase dynamics are neglected, capillary effects are neglected, or two-phase air-liquid, liquid- 
liquid systems with one or two active phases are considered. A Galerkin procedure with 
upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment 
of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes 
leading to finite-difference, finite-element and hybrid spatial approximations in three dimen- 
sions are incorporated in the formulation. Selection of primary variables and evaluation of the 
terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The 
various nodal lattice options, and their significance to the computational time and memory 
requirements with regards to the block-Orthomin ~ solution scheme are noted. Aggressive 
time-stepping schemes and under-relaxation formulas implemented in the code further 
alleviate the computational burden. 

1. Introduction 

The widespread contamination of natural subsurface systems by petroleum hydro- 
carbons and immiscible industrial chei~ica!s poses scfic, u~ znvironmental and health 
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hazards worldwide. Understanding the behavior and quantifying the migration and 
fate of these non-aqueous-phase liquids (NAPL's) in the subsurface is crucial in 
mitigating or remediating the pollution problem and in managing the groundwater 
resources. The simultaneous movement of water, NAPL and air (or vapor) can be 
mathematically represented by the multiphase mass-balance equations, introduced by 
the petroleum industry in the early 1960's (Collins, 1961) to evaluate oil recovery 
techniques. The mathematical models that evolved range in complexity from two- and 
three-phase to compositional simulators with complex boundary and well conditions 
to assess secondary and tertiary recovery processes. A review of these equations, the 
various levels of detail required for certain investigations, and the degrees of simpli- 
fications achieved by making practical working assumptions are provided by Panday 
and Corapcioglu (1989). 

The multiphase flow equations have been adopted by several researchers, for 
evaluating NAPL contamination and remediations scenarios. A wide range of for- 
mulations have been presented that vary in complexity of the simulated physical 
process and dimensionality. Saturated-zone, two-phase models have been presented 
by Huyakorn and Pinder (1978), Schwiile (1981), and Hochmuth and Sunada (1985). 
Three-ph~e models for assessing saturated-unsaturated zone contamination by 
NAPL have been presented by Faust et al. (1989), Kaluarachchi and Parker (1989) 
and Forsyth (1991), and models that include interphase mass transfer have been 
reported by Abriola and Pinder (1985), Corapcioglu and Baehr (1987), Panday 
(1989), Forsyth and Shao (1991), and Falta et al. (1992). Since investigations of 
NAPL contamination behavior are recent and limited (Schiegg and Schwille, 1991), 
most of these models make use of the three-phase relative permeability and capillary 
retention relations developed for oil reservoirs. It still needs to be determined which 
relation (if any) best represents the various aquifer materials. The flow models of 
Faust (1985), Kaluarachchi and Parker (1989), and Forsyth (1991) simplify the 
problem by treating the air phase as passive, thus solving only the water and 
NAPL mass-balance equations to reduce the computational effort. However, air- 
phase dynamics could become significant in certain situations involving, for 
example, air venting or sparging activities. The. model of Panday (1989) is a vertical 
one-dimensional (l-D) compositional model which includes non-isothermal effects 
and the effects of freezing and thawing on the flow and transport of contaminants. 
Their model is practical to use only in the unsaturated zone where the I-D vertical 
flow and transport assumptions are usually valid. The model of Forsyth and Shao 
(1991) is a comprehensive compositional simulator in which all phases are active with 
contaminant partitioning between phases. The numerical formulations are robust and 
efficient but the model always carries the extra computational burden of the com- 
positional calculations and variable switching. Finally, none of these models consider 
fracture flow. 

Modeling the flow of multiple fluid phases in fractured media using the dual- 
porosity approach has been discussed by Bear and Braester (1972), and Braester 
(1972). Torsaeter et al. (1987), and Kazemi and Gilman (1993) summarized the 
recent advances in quantifying and modeling multiphase flow in fractured media. 
Properties were evaluated for a water-wet chalk reservoir for imbibition oil recovery 



P.S. Huyakorn et al. / Journal of  Contaminant Hydrology 16 (1994) 109-130 ! 11 

processes, and porosity was noted to be the best correlating parameter. The model 
results were most sensitive to the capillary pressure relationships, and the geometric 
factors for the matrix blocks of the dual-porosity medium. Braester (1972) and Coats 
(1989) presented formulations that include permeabilities of the porous matrix in 
assessing the flow of the fluids. Coats (1989) described finite-difference schemes 
used to obtain stable, efficient and accurate solutions. Wu and Pruess (1988) pre- 
sented a dual-porosity integrated finite-difference model that further subdivides the 
porous matrix block domain. Coats (1989) observed little need for such subdivision, 
considering the other error sources and calibration matching performed in reservoir 
simulators. Huyakorn et al. (1983) provided a scheme for reducing the computational 
requirement of finite-element matrix discretization in dual-porosity simulators. 
Discrete-fracture systems have been detailed by Gilman and Kazemi (1983), and L.K. 
Thomas et al. (1983). However, such studies are limited due to the difficulties in 
characterizing the geometry and multiphase flow processes in individual fractures. 

This paper presents the flow formulation and numerical solution techniques of a 
comprehensive model for simulating the subsurface migration of NAPL con- 
taminants. The three-dimensional (3-t~), three-phase formulation for simultaneous 
flow of water, NAPL and vapor in a porous medium is first derived. The general 
formulation can readily degenerate to simpler forms when certain assumptions per- 
taining to the dynamics of certain phases are introduced. This flexibility is necessary 
for speeding up simulations of simpler problems, or for quick pilot studies of complex 
systems. Robust and efficient discretization and nonlinear solution schemes, and 
practical boundary and well conditions are included in the formulation which render 
the model applicable to a wide variety of field situations. The numerical schemes are 
further extended to accommodate fracture flow using the dual-porosity and the 
discrete-fracture conceptual approaches. A comprehensive robust and efficient 
model enables practical application for site studies on minicomputers and work- 
stations, from preliminary investigations, calibration and sensitivity analyses, to 
predictive simulations and remedial investigations. 

2. Porous medium flow formulation 

2.1. Governing and supplementary equations 

Consider a general situation of isothermal flow of water (w), NAPL (n) and vapor 
or gas (g) through a porous medium. The governing equations may be written in the 
form (Corapcioglu and Baehr, 1987): 

O~e] 0 
i) kuTe = (¢p tSe )  _ / l ~ e  ' 

Oxi -ff~xj J Ot 
g = w,n,g (l) 

where xi (i = 1, 2, 3) are Cartesian coordinates; t is time; kq is the intrinsic per- 
meability tensor; re is the mobility of the t? phase (T, = krepe/#,, in which kr, = relative 
permeability, Pe = fluid density, and #~ =dynamic viscosity); ¢~ is the fluid potential 
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defined such that its gradient V'I'e = Vpt + 7eVz, in which Pt = phase pressure, 
g = gravitational acceleration, 7e is Peg and corresponds to the specific weight of 
phase e, and z = elevation above the datum plane; 0 is the medium porosity; St is 
saturation of the ~ phase; and Me is the rate of mass injection or withdrawal of fluid 
phase/? per unit volume of the porous medium. 

The flow equations (1) need to be supplemented by the following constitutive 
relations (Forsyth, 1991): 

Sw "l" Sn "4" Sg = l (2) 

Pg =Pn +O~Pcgn(Ss) + (l -c~)[Pcgw(Sw)- Pcnw(Sw = l)] (3) 

Pn =Pw + c~pcnw(Sw)+ (I - c~)Pcnw(S w = 1) (4) 

(Sa) 

po.  = p..w (5b) 

== Pcgn (sg) (5c) 

krw = krw(Sw) (6a) 

= k. (Sw, Sg) (6b) 

k,g = krg(Sg) (6c) 

where Pcgw, Pcnw and Pcgn are capillary pressure functions for the three fluid pairs (gas- 
water!,, (NAPL-water) and (gas-NAPL), respectively; and c~ is the fluid interface 
transition parameter defined as a = rain(l, Sn/S~) with ~ being the NAPL threshold 
saturation above which air-water interfaces cease to exist within all pores of a 
representative elementary volume (REV). 

As recently pointed out by Forsyth (1991), this definition of c~ (instead of a = I) 
ensures that pg - Pw = Pcgw (and not pg - Pw - Pcgn + Pcnw) when Sn is zero in a zone 
where NAPL is absent and only water and gas (air) coexist. In addition, it models the 
transition of an REV from only air-water interfaces to only air-oi l-water  interfaces 
linearly, due to lack of characterization of interface transition behavior in various 
soils. However, the critical saturation ~n is usually assumed to be small, and hence the 
effect of the linear assumption is also small. This transition is required, however, to 
avoid mis-representing the state of pristine portions of the domain. 

To provide flexibility, relative permeability and capillary pressure data may be 
provided in functional or tabular forms. Note that the assumption of non-hysteretic 
constitutive relations are invoked. With the functional option, the Brooks and Corey 
(1966) or the van Genuchten (1980) extended relative permeability functions for the 
three-phase fluid system are used. Capillary pressure functions adopted correspond to 
the scaled functions presented by Lenhard and Parker (1987). With the tabular 
option, the NAPL relative permeability may be calculated using the first or second 
method of Stone (1970, 1973). We recognize that additional research is needed to 
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ascertain which of the various methods for calculating the three-phase relative 
permeabilities is the most reliable for groundwater contamination scenarios. 

In addition to the above constitutive relations, the equations of state are needed to 
determine the fluid densities and medium porosity as functions of pressures. These 
supplementary equations are given as follows: 

Pw -- PO[ l +/~w(Pw- Patm)] (7a) 

Pn --  pOn[l + f ln(Pn --Patm)] (7b) 

pg -- ~gpg "- pOpg/Pat m (7c) 

= ~0[1 - k / ~ s ( P -  Patm)] (7d) 

where pt ° (/? = w, n,g) are the densities of water and NAPL at reference pressure 
(Patm); Be (£ = w,n,g) are the fluid compressibilities; 4 ° is the referenced porosity; 
Bs is the soil matrix compressibility; and ~ is a weighted average of Pc (g = w, n, g). 
Note for an ideal gas Bg = Mg/RT, where Mg is the gas molecular weight, R is the 
universal gas constant, and T is absolute temperature. The compressibilities of the 
liquid phases are small compared to the gas-phase compressibility, and may be 
neglected in the formulation. 

2.2. Discretization 

The 3-D flow domain is discretized using a grid consisting of hexahedral brick 
elements. The governing equations (l) are approximated using the Galerkin pro- 
cedure with modifications to incorporate upstream weighting of phase mobilities 
and storage matrix lumping. Time integration is performed using a fully implicit 
finite-difference scheme. This leads to a system of nonlinear algebraic equations of 
the form: 

B// 
+ - - _ O. 

£ = w , n , g ;  I = l , 2 , . . . , n  (8) 
where I and J are nodal subscripts ranging from l to n with n being the number nodes 
in the grid; superscript t + At denotes the current time; At is the time increment; ,4~j 
and Bu are the fluid transmissivity and diagonalized storage coefficient matrices, 
respectively; and Ma is the integrated nodal flu~ Nete that for the sake of con-. 
venience, the indicial summation notation has been adopted. 

J 
(9) 

Eq. 8 can be written at the element level. For linear rectangular brick elements with 
nodal subscripts I and J ranging from 1 to 8, the element matrices can be readily 
evaluated without the spatial numerical integration using the influence coefficient 
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technique (Huyakorn et al., 1986) based on counterclockwise node numbering con- 
vention. Further, the previous influence coefficient algorithm designed to generate 
only the standard Galerkin 27-point finite-element nodal connectivities has been 
enhanced. With the new upstream Galerkin scheme, the transmissivity matrix is 
more efficiently evaluated by using the following formula: 

a ,¢u = 4..,) (lO) 
JErll 

where ~! is the set of connecting neighboring nodes of I such that A~z is non-zero; r?j is 
the upstream value of the bphase mobility for the discrete flow between nodes Iand J; 
and 7u the transmissivity coefficient for the flow between nodes i and J. 

Assuming that the principal components of the permeability tensor k# correspond 
to kxx, kyy and kzz, the 7u coefficients can be calculated from: 

"71~ = rxxA~[J + TyyAYtj + T:zAZtJ (l l) 

(mH) 
Txx= ~ kxx (12a) 

where 

LH 

/ L m \  . 
(12c) 

with L, m and H being the element dimensions in the x-, y- and z-directions, 
respectively; and A~, A~j and A[z are the influence coefficients, in the case where 
an orthogonal curvilinear grid is used, L, m and H become the average dimensions of 
the distorted element, along the local axes x', y' and z', respectively. 

The influence coefficients have been determined such that the global discretized 
flow equations at node I correspond to 27-point finite-element approximation, 
7-point finite-difference approximation, or I l-point hybrid (combined finite-element/ 
finite-difference) approximation. Negative transmissivity conditions, which may be 
encountered with the finite-element approximations, are eliminated using a procedure 
similar to that of Coats and Modine (1983). 

The diagonalized storage matrix element Bn is given by: 

B n = LmH/8  (13) 

The upstream 3-D spatial discretization scheme described above is intended to super- 
sede the popular early upstream 2-D weighted residual (UWR) finite-element scheme 
based on the asymmetric weighting functions given by Huyakorn and Pinder (1978). 
The major shortcoming of such a finite-element scheme is that it is prone to numerical 
difficulties due to the existence of negative transmissivity terms in the discretized 
equations for certain combinations of element aspect and material anisotropy 
ratios. This condition arises for rectangular prism elements due to a reduction of 
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the transmissivity terms from the principal axes to provide the diagonal flux term in 
the influence coefficient matrices, and hence, is not alleviated by upstream weighting. 
The adverse impact of negative transmissivity conditions on two-dimensional (2-D) 
numerical results has been demonstrated by Forsyth (1991) for selected cases simu- 
lated using triangular elements. In some instances, where the negative transmissivity 
effects are dominant, the converged numerical solutions are grossly inaccurate or 
physically impossible as is shown by an example in the companion paper (Panday 
et al., 1994 in this issue). 

2.3. Nonlinear treatment by Newton-Raphson procedure 

The nonlinearity of Eq. 8 is handled using a residual-based, Newton-Raphson 
iterative technique. To obtain optimal behavior of the numerical solution in terms 
of convergence and mass balance, the primary variables must be carefully selected. 
For the three-phase flow situation, we select pg, Sn and S s as the primary variables. 
The rationale for the mixed selection of one pressure and two saturations is the fact 
that the resulting model formulation is superior to formulations that utilize pressures 
or water height-equivalent pressure heads as the primary variables. The latter may be 
prone to serious mass-balance errors and nonlinear convergence difficulties when 
applied to severely nonlinear field problems. The mixed formulation used in our 
proposed multiphase model yields converged numerical results with negligible 
mass-balance error (on the order of ~< :l:0.01%). 

A brief description of the Newton-Raphson scheme used in the present model is 
given below [see Huyakorn and Pinder (1983) for further details]. Let R~ (t = w, n, g) 
denotes the residual left-hand side of Eq. 8, which can be expressed in the form: 

Rel(PghSnl, Sgl) = 0 for I =  1,2,. . .  ,n (14) 

Application of the Newton-Raphson procedure to Eq. 14 yields: 

ORelA OR£1 ASnj.-[ A S g j " - - ( R ~ )  k (15) 

where k is the iteration level and, for each primary variable X (X = Pg, Sn or Sg), the 
increment value is defined as AX = X k+l - X k. 

Using the indicial notation and performing algebraic manipulation, a highly effi- 
cient scheme for a term-by-term evaluation of the Jacobian matrix can be derived. 
The elements of the resulting Jacobian matrix are obtained as follows: 

og? s;, 
- A~  +--~[/~rwPwSwn]6u (16a) 

= + (16b) Opgj [ TnpnSnl]tSIJ 

s;, ORg = (1 +/~ggZj)Agj +--~  
Opgj 

+ (16c) 
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oR'I oak opo~,,. ~ 
os---~ = OwL asrd Av[L osrd ~ pw6U (16d) 

oRI OAIL OPc~,. B;~ 
CgSnj --- epaL OSnj Ar~L ~ +-~ #n6U (16e) 

OR~ = 0 (160 
OSra 

oR)'= oA~'L AwOPo~L B;~ o (16g) 

OR~ A" 0 IL A ~ OPcs.z 
Os~, = ~ " ~  as~ - " as~, (16h) 

aR,~ aA,~,. B. 
(16i) 

where B;! = O0Bn, #re =/3e +/3s, ~cgwt = P #  - PwL, Pcsnl = PgL - PnL (L = a 
dummy nodal subscript), and 6u is the Kronecker delta. 

In constructing the Jacobian matrix for the numerical flow model, two additional 
options may be provided, which consider the three-phase fluid system with a passive 
gas phase, and the two-phase liquid system of water and NAPL, respectively. Both 
options only deal with the flow equations for water and NAPL. The first option is 
referred to as a "pseudo three-phase formulation" and the second option is just a 
regular two-phase formulation for flow in the saturated zone. The primary variables 
selected for each option are Pn and Sn. The Jacobian matrix elements can be derived in 
a similar manner to the most general fully three-phase formulation. Further 
degeneration of the two optional formulations can readily be obtained for other 
simpler cases involving water-air  flow or water or vapor flow only. For certain 
practical situations (e.g., air sparging or vapor extraction), the passive-liquid-phase 
formulation may be used to provide an efficient analysis of the variably saturated flow 
problem. 

2.4. Incorporation of initial and boundary conditions 

The initial conditions required to start a transient simulation are introduced by 
specifying the values of the primary variables at all nodes. These initial values may be 
derived from the information about the initial state of the system. In some instances, 
the initial conditions for a current simulation correspond to the final results of a 
previous simulation. 

Boundary conditions for the multiphase flow equations may be specified in terms of 
nodal values of fluid pressures and mass fluxes. Prescribed flux conditions are treated 
simply by adding the specified nodal flux values to the right-hand side of the 
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corresponding nodal equations. Prescribed pressure conditions of Pet =,b; are 
incorporated into the matrix system by first considering a no-flow condition at 
node I then using a source/sink term, A~, to inject or produce the correct amount 
of fluid so that Ptt approaches the prescribed value p (Forsyth, 1988). Physically, A~ 
may be regarded as the mass flux of phase ~ through a skin layer of porous material 
adjacent to the boundary portion covered by node L 

The above scheme for treating pressure boundary conditions is chosen in 
preference of the more straightforward matrix manipulation scheme used in the 
mixed formulation (Pw, Sn) of the pseudo three-phase models of Faust (1985) and 
Faust et al. (1.c;89). In the latter scheme, the first-type condition at node I is satisfied 
simply be setti~lg the diagonal term of the corresponding model equation to I and the 
off-diagonal t,~:rms to 0, and setting the fight-hand side to the prescribed value. The 
major shol ~coming of such a scheme is that certain practical boundary conditions 
involving nodal unknowns that are non-primary variables cannot be handled. For 
instance, if Pw and Sn are the primary variables, then the boundary conditions p 
cannot be directly imposed. 

After the boundary conditions have been incorporated into the matrix system, the 
water-phase nodal equations are replaced by the phase-summed nodal equations 
obtained by summing the contributions of all phases. This is done to ensure non- 
zero diagonal coefficients of the pressure unknowns. Because of the fact that we 
associate the pressure variable, pg, with the water flow governing equation, zero 
diagonal terms may occur in a zone of residual water saturation for cases where 
the compressibility factor ~rw is assumed to be zero (see Eq. 16a). 

2.5. Treatment of well conditions 

Withdrawal and injection wells may be used in the remediation of soil and ground- 
water contamination problems, and need to be incorporated in the numerical solution 
of the governing equations. It should be noted that two simplifying assumptions are 
commonly employed in the treatment of well boundary conditions. The first 
assumption concerns the allocation of the total well flow rate to the individual well 
nodes. Via this assumption, the allocation is performed in proportion to the trans- 
missivity values at the nodes. Such an approximauon may be inaccurate for cases 
involving partially penetrating wells or multi-screen wells in layered formations. The 
second assumption concerns the evaluation of nodal fluid flux of a particular phase. 
Via this assumption, the nodal 
mobility of the phase. For the 
fluid phases must be identical 

flux evaluation is made on the basis of fractional 
assumption to be valid, the nodal pressures of all 
(i.e. Pwi = Pnl= PgI)- This will not be the case if 

capillary effects are appreciable near the well. 
We consider two cases involving withdrawal wells operating under prescribed total 

rate of production and prescribed bottom pressure conditions, respectively. Treat- 
ment procedures developed for the withdrawal wells can be readily adapted to the 
corresponding cases of injection wells. The schemes presented below are rigorous 
schemes that do not require the two simplifying assumptions "ust mentioned. 
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/ qT 
2 r  B 

P I !  

I . . . .  -I ,L . . . . .  , ,  I 

Fig. 1. Wellbore configuration and boundary condition [2 = (w, n, a); Pno = bottom hole pressure; rs = 
wellbase radius]. Note: ne = (Aks, AyI , / I t )  I/2. 

2.6. Prescribed total production rate 

Consider the general situation depicted in Fig. I where a well is withdrawing fluids 
from several grid blocks and the total volumetric production rate is specified as QT. 
The total volumetric production rate as contributed by the nodes along the well screen 
is given by: 

ns 

O.T = ~--~ qT! (17) 
/---l 

where qTl is the total volumetric fluid flux at node I; and ns is the number of nodes on 
the well screen. 

The total fluid flux at node l is  the sum of contributions from all fluid phases. Thus: 

qT! : ~ qe, (18) 

where qu is the ~-phase fluid flux at node L Note that -/~tae1=Ma "^°' where pe ° is the 
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reference density of phase ~. The control volume associated with node I is depicted in 
Fig. 1 Within this volume, the flow of each phase is assumed to be in a quasi-steady 
state and the average phase pressure is Pet. To facilitate an analytical solution of the 
local grid-block well flow problem, we introduce a concentric circle of radius re. The 
analytical solution domain is thus bounded by rB ~< r ~< re. Formulas for determining 
re can be found in several references (Pritchett and Garg, 1980; Peaceman, 1983; 
Abou-Kassem and Aziz, 1985). At the well boundary, r = rB and Pe = Pal (the well- 
bore pressure at node/ ) .  Using the radial flo ~¢ analytical solution given by Dake 
(1978, p.146) qu may be expressed as: 

qa GnlAel(Pe! -- Pat) (19) 

where Au is a mobility factor for phase ~ at node I; and Gat is the wellbore index for 
node L These coefficients are defined as follows: 

krel 
Ael -" ~e Be---ii ( 20a ) 

21rkAZ1 
GB, = ln(r=/rn) + SF - f (20b) 

where Be is the formation volume factor for phase ~; rn is the wellbore radius; f is a 
constant set equal to 0.75 for transient flow solution; A Z / i s  the thickness of the 
control volume surrounding node I; and SF is a skin factor of the well (SF is usually 
set =0). The formation factor for phase ~ is a dimensionless quantity reflecting the 
volume that a unit volume of fluid phase £ occupies under reservoir conditions (see 
G.W. Thomas, 1982, pp. 38 and 39). Note that Pat can be evaluated in terms of the 
bottom hole pressure Pao by using the hydrostatic assumption as follows: 

PB/ = Pao - pg(Z/ - Zo) (21a) 

and 
Ms 

+ + - z)] 

I=1 e (21b) 
P B O  - -  n, 

~ GBtAet 
/=1 e 

where ~ is an average density of the column of fluid mixture in the wellbore. 
A fully implicit treatment of the production term of nodal equation for fluid phase £ 

is obtained by evaluating A q a  as follows: 

Oqe/ Oqa ASn/+ Oqa ASgl + Oqe/ 
Aqet = Op---~ Apgt -t OSnt ~ ~ Apa/ (22) 

Next, we need to eliminate Apat from Eq. 22. This is achieved by making use of Eqs. 
17 and 18 to obtain: 

Ms 

/--1 £ 

(23) 
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which upon combining with Eq. 22 gives: 

~=l n, [Oqe, Oqu ASnl Oqt, AS# 
~e OPsI = 

(24) 
Noting from Eqs. 21 that ApB I is independent of I (i.e. ApBI = ApBo), we obtain: 

,z, [Oqa Apg; Oqu Oqa ASgl] 
l=l t 

ApB; = "' Oqe; (25) 

 0PB, 
The gradients of qe! may be directly evaluated from Eq. 19 as follows: 

Oqll 
"- --GBI,~V (26a) 

~PB! 

8qu = Opel 
Op a GBvXU Opgl (26b) 

Oqe-'--L = Gal(Pa - Pal) OAel 
OS.l OS.1 

0PH 
+ GaIAa OSni (2e) 

-O-q:-L = GBI( Pa - PBJ) OAu Opel 
OA'g~ O-~gt + GBIAa OSs1 (26d) 

In summary, the treatment of the well boundary conditions at node I involves the 
following calculation for each iteration: 

(1) Evaluation of qe*t using Eqs. 19-21a and the nodal values from the previous 
iteration, and addition of qekt to the residual. 

(2) Evaluation of Aqu using Eqs. 22, 25 and 26a-26d. 
(3) Incorporation of the terms resulting from the Aqts evaluation into the Jacobian 

matrix, and solution of the resulting matrix equation. 
.k+ I (4) Evaluation of APal using Eq. 25, and addition of APal to pknl tO obtain val • 

(5) Updating the well bottom hole pressure p~ l  using Eq. 2lb. 
A constraint may be imposed on the calculated value of the well bottom hole 

pressure to ensure that it does not fall below the minimum practically allowable 
value for the well to maintain the prescribed production rate. If this constraint is 
violated the well may be switched from prescribed flow rate to prescribed bottom hole 
pressure condition. 

2.7. Prescribed bottom hole pressure 

In the case where PBo is specified (Pao = PBo), it follows from Eqs. 21 that: 

Pal = PBO -- Pg(ZI- Zo) (27a) 
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and 

A p B  I = 0 

Thus ~!  and Aqtl are given by: 

d l  k k GBIAeI( Pel -- J~BI) 

and 

(27b) 

(28) 

Oqt~ Oqt~ ASnr + Oqa ASg 
Aqtl = Oped Aped + ~n l  -~g (29) 

where the three partial derivatives are evaluated using Eqs. 26b, 26c and 26d, 
respectively. 

The treatment of the well boundary conditions at node I involves the following 
calculation for each iteration: 

(1) Evaluation of qekl using Eq. 28 and the nodal values from the previous iteration, 
and addition of qk to the residual. 

(2) Evaluation of Aqtl using Eqs. 29 and 26b-26d. 
(3) Incorporation of the terms resulting from the Aqa evaluation into the Jacobian 

matrix, and solution of the resulting matrix equation. 

2.8. Iterative solution and time-stepping schemes 

In a multiphase flow simulation, nonlinear iterations must be performed within 
each time step to obtain a stable numerical solution. At the beginning of the current 
time step, the converged nodal values from the previous time step are used as the 
initial estimate to compute the Jacobian matrix elements. The resulting linearized 
system of algebraic equations is solved for current nodal values of the primary 
variable Xl. Iteration is then perform following the updating of the Jacobian 
matrix. The iteration is continued until the residuals, AX/, are reduced to within 
prescribed tolerances. 

To enhance convergence of the numerical solution, we use an under-relaxation 
procedure whereby the current unknown vector X[ +! is computed from: 

XF' = X~ + fir+, AXe+, (30) 

where ~,-~r+l is an automatically computed under-relaxation factor. The value of fy+l 
is determined as follows: 

[ 0 " 2 1 ]  (31) 
fl"+l = min ]~s+il, 

subject to 

0.1 <_ Qr+l < 1 (32) 

le +! I = max [max IA ,,I, = w, n, g] (33) 
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Computational time steps for the transient flow simulation are determined using the 
following procedure: 

(1) Start the numerical solution for the first time step with a specified value of Ah. 
Perform the nonlinear Newton-Raphson iterations. If satisfactory convergence is 
obtained, then determine the subsequent computational time steps using the follow- 
ing algorithm: 

Atk+! = TMUL * Atk ~ Atmax, k _> 1 

where Atmax is the maximum allowable time step size prescribed a priori; and TMUL 
is the time step multiplier. The value of TMUL is given by: 

[ pswIsH ] 
TMUL = min L~ [AtSt[max ' 5 ; g = active phases 

IrtStlm,x = max 1~'~ - ~t l  

and the desired incremental change in saturation value over the time step (DSWISH) 
may be specified as 0.2. 

(2) If convergence of the solution is not achieved within the allowable maximum 
number of nonlinear iterations, NITMAX, then reduce the computational time step 
size according to the following scheme: 

Atk = A t k / T D I V  

where TDIV is the time step divider set equal to 2, 5 and l0 for k = l, 2 and >1 3, 
respectively. 

(3) If necessary, adjust the computational time step, A t  k, tO obtain tk+l-value that 
coincides with a target time value at which simulation output is required. 

2.9. Variable scaling and matrix solution 

In computing the Jacobian matrix and right-hand-side vector, certain variables and 
physical parameters are scaled to minimize floating-point round-off errors in the 
matrix solution. The following scaling factor is introduced: 

= Pfwg (34) 
where ~ is the specific weight of fresh water. 

The scaled quantities are defined in terms of their original counterparts as follows: 

P*e = Pff  ~ (35a) 

~ = ~t /~  (35b) 

k~ = ~,kij (35c) 

~ = ~ e  (35d) 

/~s = ~Bs (35e) 

g *  - (35f) 
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By operating in terms of the scaled quantities, the contrast in orders of magnitude of 
the real numbers are greatly reduced. 

In obtaining the numerical solution of a given flow problem, we adopt the follow- 
ing procedure: 

(1) Scale material parameters, k#, #e, #s and the gravitational constant, g, using 
Eqs. 35c, 35d, 35e and 35f, respectively. This step may be performed after the material 
properties have been read and printed. 

(2) Int.r~duce local arrays in the element matrix computation subroutine to store 
scaled values of fluid potentials, pressures and their derivatives. Use these local arrays 
(instead of their corresponding global arrays) in the evaluation of Jacobian matrix 
and right-hand-side vector. 

(3) Solve the matrix equation and use Eqs. 35a and 35b to compute the unsealed 
pressure and potential values, Pt and 'I'e. 

Note that step (1) is performed only once but steps (2) and (3) are performed for 
each iteration. For the solution of the linearized system of algebraic equations we use 
an iterative matrix solver based on an incomplete factorization with Orthomin © 
acceleration (Behie and Forsyth, 1984). The computational time and memory require- 
ments of the iterative matrix solver used is directly dependent on the choice of model 
lattice option. In three dimensions, the 27-point finite-element lattice option requires 
substantially more memory and computational effort in the matrix solution than the 
7-point finite-difference lattice option. However, the latter may be prone to grid 
orientation problem. The 1 l-point option provides a viable alternative by combining 
the salient features of finite-element and finite-difference approximations. 

3. Extension to fractured media 

Fractured formations can be conceptually represented using two approaches 
referred to as the discrete-fracture and the dual-porosity modeling approaches, 
respectively (Huyakorn et al., 1983; Pinder et al., 1993). Both approaches and their 
formulations are described below for the general situation of three-phase flow. 

3.1. Discrete-fracture modeling approach 

In the discrete-fracture modeling approach, each individual fracture is idealized as 
a pair of parallel plates. The fracture may contain only fluids or both fluids and 
granular solid materials (i.e. its internal porosity, of, may be <~ 1). The fluid 
potentials are assumed to be uniform across the fracture aperture. The governing 
equations for three-phase, planar flow of water, NAPL and air in a non-deformable 
fracture of aperture b f c a n  be written in the form: 

Ox~ [~yO we~fx~ j = b f (dpfpeSt), i,j= 1,2; ~ = w,n,g (36) 

where superscript f is used to denote the planar fracture domain; x~ (i = 1, 2) are 
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local coordinates parallel to the fracture planes, and the remaining symbols are as 
defined previously. The fracture intrinsic permeability, k f,  is defined as: 

k~j = (bf)2 6ij (37) 
12 

Multiphase constitutive relations for the fractures are needed to describe their fluid 
retention characteristics. Such relations have not yet been determined experimentally 
for NAPL contamination problems. However, several theoretical studies have been 
performed to characterize the nature of the relationships (Wang and Narasimhan, 
1985; Pruess and Tsang, 1990; Mendoza and Sudicky, 1993). 

Eq. 36 is discretized using the Galerkin finite-element procedure with a fully 
implicit time integration scheme. The fractures are represented using plane rectangu- 
lar elements if the overall flow problem is 3-D. For 2-D analyses, the fractures are 
represented by I-D line elements. For a typical fracture element, the discretized set of 
algebraic equations take the form: 

wf B~/! RV/f ~_ AiJ~wj + . ~  [A t (~fpwSw)l] = 0 (38) 

of R~ f ~- A IjCYPnj @ "~--~ [At((~f/gnSn)l] = 0 (39) 

8f [A'( fpgss) ] = o (40) f - A u , I , V  + 

where the assumption of ~[j = ~eJ has been incorporated. 
The Jacobian matrix for each of the variably saturated flow formulations can be 

derived in the same manner as that described previously for the porous medium case. 
The three-phase pressures are the primary variables at nodes that represent both 
fracture and matrix, since there is continuity of pressure (but not of phase 
saturations), across the fracture-matrix boundary. The contributions of the fracture 
elements can be directly added to the globai matrix system using the standard pro- 
cedure for matrix assembly. 

3.2. Dual-porosity approach 

In the dual-porosity modeling approach, the reservoir formation is assumed to be 
comprised of a continuous network of fractures in direct contact with porous matrix 
blocks. The fractured porous medium is represented by two completely overlapping 
continuums, one representing the fracture domain and the other representing the 
porous matrix. Primary flow in the reservoir formation is assumed to occur within 
the fractures with local exchanges of fluids between the fractures and the porous 
matrix blocks. 

The governing equations for three-phase flow in the fracture continuum may be 
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written as: 

0 [k °"1 o 
Oxi iJre-~xiJ -- Ot (dpPeSe) - "~le - F t ,  £ = w,n,g; i , j= 1,2,3 (41) 

where Ft is the rate ef  fluid mass transfer from the fracture to porous matrix domain, 
and the remaining symbols are as defined previously for the conventional porous- 
medium flow e-'cept that all quantities in Eq. 41 now refer to the fracture continuum. 
Note that ¢ in Eq. 41 now denotes the fracture (or secondary) porosity defined as the 
ratio of the volume of fractures to the bulk volume of the medium. The matrix/ 
fracture fluid exchange term, Fl, is evaluated using a quasi-steady approximation 
for inter-porosity flow (Barenblatt et al., 1960). The expression for F t is given by: 

Fe = Amkm'r~n(tbe - ~ a )  (42)  

where superscript m refers to the matrix block dome.in; and A m is a geometrical shape 
factor which depends on the matrix-block specific surface and a characteristic length 
associated with matrix/fracture flow. 

The governing equations for flow in the porous matrix blocks are given by: 

0 -Amkmr~n(~ - ~e) = ~-~ (¢mpeS~e) (43) 

where om denotes the matrix (primary) porosity. In addition to the governing 
equations, two sets of multiphase constitutive relations are needed to describe fluid 
retention characteristics of the fractures and matrix blocks. 

The governing equations represented by Eqs. 41 and 43 are discretized using the 
Galerkin finite-element procedure with a fully implicit time-stepping scheme. The 
discretized system of equations for flow in the fracture domain takes the form: 

R~* = R7 + rw, = 0 (44) 

R~* -- R7 + rn~ = 0 (45) 

R g* - R~ + r g~ = o 

where the expressions for R) ~, R~ 
medium case, 

__ m m ! Fet A kmreuBn( t~e t -  tb~1), 

and R g are as 

(46) 

given previously for the porous- 

e = w, n, a (47) 

where B~ is the grid bulk volume for node I; and re~ is the upstream mobility evaluated 
using the porous matrix fluid retention characteristic curves. The discretized system of 
equations for flow in the matrix block takes the form: 

Bb (48) R7 m ~ - r w ,  + - ~  [At (~mpwSmw )l] -- 0 

R~ m =__ - r , ~  + - -~  [At(q~mpn~nn )l] = 0 (49) 

B b  
RI gm =-- - r g  1 4;- - -~  [At (¢  m pgS~g )i] : -  0 (50) 



126 P.S. Huyakorn et ai. I Journal of Contaminant Hydrology 16 (1994) 109-130 

For a situation of three-phase flow, the selected primary variables are pg, Sn, Sg, p~, 
S~n and S~g. It is best to begin the Jacobian matrix evaluation by applying the 
Newton-Raphson procedure to Eqs. 48-50. The resulting matrix system may be 
written in the form: 

[~].{axmb = -[n]n{Axb- {R'm}~ (51) 

where [G]tt, [/'/In are 3 x 3 submatrices given by: 

oR) 'm 

[a]u = 

| i 

a ~  
OR~ m 

aR,i ~ 

OR~ m 

ap~ a~ 
oR, aR,  
Op~ a~, 

a R ~  

OR~ m 

oRF 

(52a) 

aRF" a ~  a a ~  

aR'p aR~ ~ a~'p 

aRF aRF 

(52b) 

{__e~}, ~ = [~]P { R " } ,  k (56) 

follows: 

{AXm}i--- - - [~I I{AX.} I -  {Rwm} k 

where 

[__n]u = [6]~t[nl. 

and 

(54) 

(55) 

In a similar manner, the Newton-Raphson procedure is applied to the residual 
equations of fracture flow (44)-(46). This yields the following global matrix 
equation: 

[0/d*] 
L--~-X ] Ij{Ax.}J = -{Re*}/k (57) 

{AXm}I AS~n I ~; {Ax} ! ASnl (53) 

Using Eq. 51 unknown vector AX I may expressed in terms of AX! as 
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where 

0~* 
-fix /d 

op~, os~, os~, 
oR~* aR~* oR~* 
aj,~, as~ as~, 
aR~" aR~" oR~* 
ap v os~ as v 

(s8) 

{ax}, = as~, ~. {K'}, R~* 
~s~, j.  ~ .  j 

and the Jacobian submatnx elements be evaluated as follows: 
for J #  L 

J. = L J. 
and for J = / ,  

oR ~*] [oR ~] [or ~] [or ~] 
J,.= L °x l .+ 

The elements of the right-hand-side vector are given by: 

{___.~,:*}k = {Re*}k + {Ft/m}k 

(59) 

(60) 

(61) 

(62) 

For each computational time step, the system of algebraic equations represented by 
Eq. 57 is solved for the nodal unknowns of the fracture domain, AXj. The determined 
values of AXj are then substituted into Eq. 56 to evaluate the nodal unknowns of the 
porous matrix domain. 

4. Summary and conclusion 

The formulation and numerical solution techniques of a comprehensive 3-D model 
for analyzing the subsurface flow of NAPL contaminants have been developed. The 
three-phase governing and supplementary equations for a general contamination or 
remediation scenario involving water, NAPL, and vapor have been discussed. The 
various boundary conditions implemented in the code include prescribed phase 
pressures and/or fluxes, total well production rate, and bottom hole pressure con- 
ditions. Fracture flows are significant for many kinds of subsurface materials, and 
these have been treated via the discrete-fracture and dual-porosity conceptual 
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approaches. Coupling of the porous matrix and fracture domains has been taken into 
account, and an efficient scheme has been presented for Jacobian evaluation and 
nonlinear solution. The numerical techniques have been derived with an emphasis 
on practical applicability of the model to various field contamination/remediation 
assessment scenarios. Orthogonal curvilinear grids consisting of distorted brick 
elements may be used to accommodate irregular soil layering or other complex 
features of the flow boundaries. The Galerkin procedure has been used to approx- 
imate the governing equations, with upstream weighting of fluid mobilities, storage 
matrix mass lumping, and fully implicit time stepping. The Newton-Raphson 
linearization with fully implicit representation of nonlinear coefficients and the 
under-relaxation updating scheme provide stable solutions for large time steps and 
severely nonlinear conditions. The mixed selection of primary variables (one pressure 
and two saturations for the three-phase problem) ensures mass-conservative 
numerical results. In view of its superior mass-balance behavior and robustness, 
such a mixed formulation is preferable to a formulation with only pressures or 
equivalent freshwater heads as the primary variables. Term-by-term evaluation of 
the Jacobian matrix prevents unwarranted computations. The general three-phase 
formulation of the present model collapses to the passive air-phase and two-phase 
formulations for efficient simulations of simpler scenarios. Finally, aggressive time- 
stepping scheme and robust block-Orthomin © solver provides efficient and accurate 
solutions to the complex equation set. A comprehensive, flexible and robust simulator 
is essential for practical investigations; from pilot studies, calibration, and sensitivity 
analyses to predictive simulations and examination of alternative remediation 
scenarios. 
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