A New Semi-Analytical Method for Numerical Simulation of Fluid and Heat Flow in Fractured Reservoirs
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ABSTRACT

meability and flow in many petroleum, gas, and geothermal reser-
rs are dominated by fractures. Despite major advances in recent
rs, mathematical modeling of fiuid and heat flow in fractured reser-
rs remains a difficult problem. Porous medium approximations
ve been shown to be inadequate for many flow processes in frac-
ed systems, while double- or multiple-porosity techniques may

/olve excessive amounts of numerical work or large discretization

Or'S.

We have developed a new method for modeling fluid and heat flow

fractured reservoirs which is an extension of a technique developed

. Vinsome and Westerveld (1980), for calculating heat exchange
tween permeable layers and impermeable semi-infinite confining
ds during thermally enhanced oil recovery. Our method combines a
ite-difference description of global flow in the fractures with an
alytical representation of interporosity flow by means of trial func-
yns for fluid pressures and temperatures in the matrix blocks. The
ial functions contain adjustable parameters which are calculated for
ich time step in a fully coupled way based on matrix block shapes
1d dimensions, utilizing simple mass and energy conservation princi-
les. '

We have incorporated the semi-analytical technique into our
eneral-purpose multiphase simulator MULKOM. The method was
erified by comparison with exact analytical solutions for fluid and
eat exchange with individual matrix blocks. Applications were made
y geothermal well test and production-injection problems with inter-
orosity fluid and heat flow. The calculations show excellent agree-
nent with numerical simulations using the method of ‘‘multiple
nteracting continua’ (MINC), with no noticeable increase in comput-
ng work compared to porous medium calculations.

INTRODUCTION

Following pioneering work by Barenblatt et al. (1960) and Warren and
Root (1963), many advances have been made in the mathematical
modeling of flow in fractured porous media. In the double-porosity
approach, global flow in the medium is considered to occur only
through the network of interconnected fractures, while rock matrix and
fractures may exchange fluid and heat locally (*“interporosity flow™").
The generalization of permitting global flow through both fractures
and matrix blocks has also been made (Miller and Allman, 1986; Dean
and Lo, 1986). This more general method has been referred to as
“‘dual permeability;’’ it can deal with multiphase flow systems in
which the global flow geometry may be rather different for different
phases because of capillary effects (wetting phase flowing preferen-
tially through the blocks, non-wetting phase preferentially through the
fractures; Wang and Narasimhan, 1985). There is an extensive litera-
ture describing numerical and analytical approaches to flow in frac-
tured reservoirs. The problems treated include well testing (see the
review by Gringarten, 1982), flow in fractured aquifers (Closmann,
1975; Duguid and Lee, 197T:), waterflooding of oil reservoirs
(Kazemi et al., 1976; de Swaan, 1978; Menouar and Knapp, 1980),
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multicomponent flow (Yamamoto et al., 1971; Gilman and Kazemi,
1983; Barker, 1985), non-isothermal flow in geothermal Teservoirs
(Moench, 1978; O'Sullivan and Pruess, 1980; Pruess and Narasimhan,
1982, 1985; Clemo, 1985; Miller and Allman, 1986; O’Sullivan,
1987), and steamflooding of hydrocarbon reservoirs (Geshelin et al.,
1981).

Many workers have made the approximation of treating the
interflow between matrix and fractures as quasi-steady, with inter-
porosity flow rate being proportional to the difference between aver-
age pressures in matrix and fractures. This approximation is usually
satisfactory for isothermal single-phase flow. However, for problems
involving heat exchange between matrix and fractures, and for multi-
phase flows with strong phase mobility effects, transient flow condi-
tions in the blocks can persist for very long time periods (decades).
Under these conditions it is necessary to represent the flow inside the
blocks and at the block-fracture interface in considerable spatial detail.
‘Closmann (1975) and Duguid and Lee (1977) used analytical tech-
niques borrowed from the theory of heat conduction (Carslaw and
Jaeger, 1959) to solve for flow with constant diffusivity in the blocks
in the form of infinite series expansions. Pruess and Narasimhan
(1982, 1985) developed a ‘‘muitiple interacting continua’’ technique
(“MINC;"* see Figure 1), in which transient flow in the blocks and
between blocks and fractures is described entirely by numerical
methods, using appropriate subgridding of the blocks. The MINC
approach is very flexible, and is applicable to nonisothermal multi-
phase flows. Because of the subgridding in the blocks, it increases the
computational work by typically a factor of five in comparison to sin-
gle porous medium models.

In this paper we develop a new approach for dealing with transient
interporosity flow. Conceptually, the semi-analytical technique
developed bere is similar to the MINC-method, but it obviates the
need for subgridding of matrix blocks. Thereby flow in fractured
porous media can be simulated with no noticeable increase in compu-
tational work compared to simple porous medium models; further-
more, space discretization errors in the description of matrix flow are
avoided. The method is an adaptation of a technique developed by
Vinsome and Westerveld (1980) for describing heat exchange with
impermeable confining beds in thermally enhanced oil recovery. The
basic idea is to describe fluid and beat exchange between matrix
blocks and fractures by semi-analytical means, using simple trial func-
tions for temperature and pressure distributions in the matrix blocks.
In a previous paper (Pruess and Wu, 1988) we presented a numerical
simulation technique that incorporates a semi-analytical treatment of
heat exchange with impermeable blocks; this is extended bere to cou-
pled fluid and heat exchange with matrix blocks of finite permeability.

THE METHOD OF VINSOME AND WESTERVELD

An important aspect of thermal oil recovery schemes is the transfer of
heat by conduction from the reservoir to adjacent strata of low per-
meability. In steam and hot waterfloods this represents a heat loss
which may have significant effects on process economics. In steam
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soak operations (huff-and-puff) heat lost to cap and base rock during
injection can be partially conducted back to the reservoir during the
production cycle, providing beneficial effects. The heat exchange with
jmpermeable strata can be large and must be included in numerical
simulations of thermal recovery. At early times the conductive tem-
perature profile has rather steep gradients near the surface of the con-
ductive zone, while at late time it extends to large distance from the
boundary. A reasonably accurate representation of heat conduction by
numerical methods (e.g. finite differences) therefore requires many
grid blocks and can greatly increase the computational work.

A number of semi-analytical and variational approaches have been
developed which permit modeling of conductive heat exchange with
impermeable strata without requiring these strata fo be explicitly
included in the domain of a finite difference model (Weinstein, 1972,
1974; Chase and O'Dell, 1973; Vinsome and Westerveld, 1980). Of
these the method of Vinsome and Westerveld is the most attractive
due to its elegance and simplicity. Observing that the process of heat
conduction tends to dampen out temperature variations, Vinsome and
Westerveld suggested that cap- and base-rock temperatures would

vary smoothly even for strong and rapid temperature changes at the
" poundary of the conductive zone. Arguing that heat conduction per-
pendicular to the conductive boundary is more important than paraliel
to it, they proposed to represent the temperature profile in a conductive
layer by means of a simple trial function, as follows:

Txt) = Ty= (Tg- T+ Px + Qx)e™Ds 1)

Here x is the distance from the boundary, Tj is initial temperature in
cap- or base-rock (assumed uniform), Ty is the time-varying tempera-
ture at cap- or base-rock boundary, P and Q are time-varying fit-
parameters, and Dq is the penetration depth for heat conduction,
defined by

@)

where x = kyp/pC is the thermal diffusivity, ky, the thermal conductivity,
p the density of the medinm, and C the specific heat. In connection
with a finite-difference simulation of non-isothermal flow, each grid
block in the top and bottom layers of the computational grid will have
an associated temperature profile in the adjacent impermeable rock as
given by Equation (1). The coefficients p and q will be different for
each grid block; they are determined concurrenily with the flow simu-
lation from simple physical principles, namely: (1) temperature at the
conductive boundary obeys the beat conduction equation for the
impermeable stratum, and (2) the rate of change in total cap- or base-
sock heat content is equal to the heat flux at the boundary. Vinsome
and Westerveld presented test calculations which showed that their
method was able to accurately represent monotonic as well as non-
monotonic temperature profiles. We incorporated their technique into
our MULKOM simulator (Pruess, 1983b, 1988) and verified that it
gave accurate results (Pruess and Bodvarsson, 1984).

HEAT EXCHANGE WITH BLOCKS OF IMPERMEABLE ROCK

The method of Vinsome and Westerveld treats heat exchange between
a surface with time varying temperature and a semi-infinite conductive
half-space. It can be easily adapted to the problem of heat exchange
between impermeable rock matrix blocks and fluids flowing in frac-
tures or porous materials around these blocks. The required
modifications involve the equation of heat conduction and the calcula-
tion of total heat content in the blocks, both of which differ from those
for a semi-infinite medium.

Following concepts developed in the method of ‘‘multiple interact-
ing continua'’ or CMINC'* (see Figure 1) we approximate heat flow in
impermeable blocks of rock as being one-dimensional, with tempera-
tures in the blocks depending only on the distance x from the nearest
block surface (i.e. from the nearest fracture; Pruess and Narasimhan,
1982, 1985). We use the concept of *‘proximity function’’ (Pruess and
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Karasaki, 1982) to describe one-dimensional flow in blocks of arbi-
trary shape, as well as flow in stochastic assemblages of matrix blocks
which are encountered in fractured reservoirs. For matrix blocks of
volume Vy having a volume V(x) within a distance X from the frac-
tures (i.e., from the block surfaces), the proximity function is defined
as:

PROX(X) = \s") 3)

The interface area for flow in the matrix blocks at distance X from the
surface is

PROX
dx

AE)= %v; =Vgd (4

Considering a heat balance for a volume element dV = A(x) dx, we

obtain the following equation for one-dimensional heat conduction in
the blocks:

9T _ 9T 0T dinA
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Choosing the same form Equation (1) for the temperature profile in the
blocks as was used by Vinsome and Westerveld for the semi-infinite
solid, the condition that Equation (5) must be satisfied at the surface of
the blocks gives )

+ dinA AT
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Here we have replaced the time derivative by a first-order forward
finite difference, as required for incorporating the method into our
numerical simulator MULKOM. Tf and Ty are temperatures in the
fracture at the beginning and end of the time step At, respectively. AT
is an abbreviation for Ty - T;. For a semi-infinite solid the derivative
term involving A(x) vanishes, so that Equation (6) then reduces to the
form given by Vinsome and Westerveld, Energy conservation in the
blocks is expressed as follows.

d = aT
e v[ pCTAV = ~ky =

A(x=0) N )
0

With a slight rearrangement of terms, and using Equation (4), the
integral on the left hand side becomes

L2

1= [ [x0-T A)

A(0)

dx (8a)

The integration extends to L/2, which for fracture spacing L is the
largest distance from the block surfaces. Inserting Equation (1), this
integral can be written as

Kt)=PQ +YP + AT (8b)

The coefficients B, Y and  represent a weighting, by integration, of the
x-dependent terms % exp(-x/Dg) (@ = 0, 1, 2) with the function
A(X)/A(D) characterizing the matrix block shapes. Even for irregular
blocks and stochastic assemblages, the proximity function and its
derivative A(x) can be written as polynomials in X (Pruess and
Karasaki, 1982), so that the integral in Equation (8) can be evaluated
by elementary means. Evaluating the spatial derivative from Equation
(1) the finite difference version of Equation (7) becomes

KAt (TA)IQ- — P) =I(t+AD) = I(1) 9

Equations (6) and (9) (with the definition Equation 8) represent twWo
linear equations for the two unknown time-dependent parameters P
and Q. Solution of these is trivial once the coefficients B, 7, and & in

vt A e b 1 Qaries. Vol 1, No. 2




quallon (ob) Nave been ovlaned. ine neat nnux frrom the blocks (o the
actures is calculated as in Vinsome/Westerveld by

= 9T __, (AT _
ug= ky o |~ kn(DQ p) ; (10

alculation of the time-dependent coefficients P and Q from Equa-
ons (6) and (9), and of heat exchange between the permeable and the
onductive domains from Equation (10), has to be done at each time
ep separately for all grid blocks which contain purely conductive
aterial. It is possible to apply the conductive exchange calculation
nly for certain grid blocks, while others may be treated as homogene-
us porous media, or as fractured media with permeable matrix using

ie MINC method. The temperature T (x = 0, t) at the surface of the

onductive domain is identified with the temperature in the permeable
ortion (fractures) of the grid block. In a fully implicit scheme this
mperature is evaluated at the new time level t + At, and the heat
xchange calculation is done in a fully coupled manner as part of the
erative process to solve the fluid and heat flow equations in the
ermeable domain.

To incorporate the above scheme into a numerical simulator we par-
tion grid block volumes into a permeable and a purely conductive
art:

vu = Vn,per + Vn.cond (1 1)

luid and heat flow in the permeable portions V.. of the grid blocks
- handled by numerical simulation. Heat transferred by conduction
om the impermeable portion Vy g is represented by including
quation (10), properly scaled for the total block surface area in Vy, as
source term into the heat balance equation for V;,

EVALUATION

Ve have implemented the method described in the foregoing section
ito our general purpose simulator MULKOM, and have performed
everal tests and comparisons. For simplicity this was done for matrix
locks of cubic shape. For cubes the proximity function can be
irectly obtained from the definition Equation (3); it is given by

6x _ 1227 | Bx3
L L2 L3

per

PROX(x) =

- (12)

his leads to a particularly simple form for the expression A(x)/A(0)
ppearing in the integral Equation (8), namely,

2 .
A®) |, 2x
A {1 L] (13)

1 order to evaluate the accuracy of the semi-analytical approximation
e have studied a problem for which exact analytical solutions are
vailable, namely, heat exchange with a cube of initially uniform tem-
erature, which at time t = 0 is subjected to a step change in tempera-
ire at the surface. The parameters of the problem are given in Table

The heat flow rate at the surface of the cube was computed as func-
on of time using the following four approaches: (1) numerical
valuation of the exact three-dimensional Fourier series solution
Carslaw and Jaeger, 1959); (2) a one-dimensional approximation to
eat flow in a cube, for which the exact solution is identical to heat
ow in a sphere (Carslaw and Jaeger, 1959); (3) the semi-analytical
olution as developed above, incorporated into the MULKOM simula-
o1; and (4) method of multiple interacting continua (‘‘MINC'’; Pruess
nd Narasimhan, 1985). Results from the different approaches are
iven in tabular form (Tables 2 and 3), because they agree so closely
s to be almost indistinguishable when plotted as rate versus time on
vg-log paper.

The ‘‘exact 3-D’’ and the “‘exact 1-D"’ results are virtually identi-

al, with the exception of very early and very late times, which have -
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iittle significance for overall heat transfer. Heat flow rates calculated
in the semi-analytical approximation agree very well with the exact
results, being typically 1 - 2% larger. Cumulative heat transfer in the
semi-analytical approximation is underpredicted by typically 10% at
most times, but it approaches the correct asymptotic value of 5.3 x 108
J at late times. It may appear inconsistent that heat flow rates in the
semi-analytical approximation are slightly on the high side at all times
while cumulative heat transfer is somewhat low. This effect is caused
by the relatively coarse time stepping in the numerical simulations. In
the semi-analytical approach the heat flow rate is constant during each
time step; moreover, in our fully implicit scheme it is equal to the heat
flow rate at the end of the time step. Because heat flow rates are
monotonically declining this leads to some underprediction of cumula-
tive heat transfer. The accuracy of the semi-analytical calculation
could be improved by taking smaller time steps (we used 4 time steps
per log-cycle), or by using a mid-point weighting in time (Crank-
Nicolson equation; Peaceman, 1977) rather than a fully implicit treat-
ment. However, in practical problems one is seldom interested in
accurate answers over many orders of magnitude in time, so that time
steps do not need to grow as fast as in our test case, and better time
truncation accuracy will be attainable.

Heat flow rates calculated in the MINC approach, using 50 subcon-
tinua of equal volume, differ by as much as 10 - 20% from the exact
values. For rates that change with time by many orders of magnitude
this is not at all a bad approximation. In terms of cumulative heat
transfer the MINC approximation does extremely well (Table 3). After
a brief period with significant space discretization effects at very early
times, the MINC results agree with the exact solution to better than
1%.

It is perhaps surprising that the semi-analytical approximation per-
forms so well for heat exchange with a cube, using the exact same
functional form Equation (1) for the temperature profile as was used
by Vinsome and Westerveld for a semi-infinite half-space. Note that
Equation (1) does not allow to rigorously enforce the symmetry
requirement that the temperature gradient should vanish at the cube
center, (0T/0% )=/, = 0. We tried addition of a cubic term to Equation
(1), that would provide an additional free parameter with which to
enforce the temperature gradient constraint at L/2. This gave less
accurate results. More detailed inspection showed that strict enforce-
ment of the gradient constraint at the block center altered the shape of
the temperature profile all the way to the block surface. It appears that
it is most important to have a good representation of the profile near
the surface, while the region near the center is less significant, because
of the small fraction of block volume and heat content there.

FIVE-SPOT

We have applied the semi-analytical heat exchange approach to a
two-dimensional five-spot production/injection problem similar to that
previously studied by Pruess (1983a). Problem parameters are given in
Table 4.

The grid used in the numerical simulations represents 1/8 of a five-
spot; it has six rows and eleven columns for a total of thirty-six
volume elements (see Figure 2). We assume three sets of equidistant,
plane, parallel fractures at right angles, so that the impermeable matrix
blocks are cubes. Calculations were done for two different fracture
spacings. In addition to using the semi-analytical approach we also
performed simulations with the MINC method, and with a uniform
porous medium model (with same total void space, ie., porosity of
1%). The MINC approach uses five subcontinua, with volume frac-
tions of .02, .08, .20, .35, and .35. Results are given in Figure 3 and in
Table 5.

Figure 3 shows temperature profiles along the line connecting a pro-
ducer and an injector after 36.5 years, corresponding to injection of
approximately 12.2 pore volumes. For both fracture spacings the
agreement between the semi-analytical and the MINC simulations is
excellent. The D = 50 m results are indistinguishable from the porous
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medium calculation, while at the larger fracture spacing of D = 250 m
the thermal sweep is less complete and lower temperatures are
obtained. Predicted total heat transfer from the impermeable rocks to
the fluids agrees to better than 1% between the semi-analytical and
MINC approaches at most times (see Table 5). The semi-analytical
approach required the same amount of computing time as the porous
medium case, while the MINC calculation was approximately five
times slower. ’

PERMEABLE MATRIX BLOCKS

The isothermal flow of single-phase fluid with small and constant
compressibility is governed by the same diffusion equation as is heat
conduction, so the treatment developed above is immediately applica-
ble for this case. New issues arise in non-isothermal flow, because
viscosity H, hence pressure diffusivity A=k/¢cy, and fluid density p
depend strongly and in non-linear fashion on temperature. This
dependence introduces 2 coupling between the pressure and tempera-

ture fields in the matrix blocks which we treat in a highly simplified-

way. Our approximations are based on physical arguments, and are
justified by comparison with test calculations that use a fully-coupled
numerical approach (see below). In complete analogy to Equation (1),
we write the fluid pressure in the matrix blocks as

p(x.t) = pi = (pr— Py + 1% + 5x2) &P (14)

where D = VAU2 is the penetration depth for a pressure disturbance at
the block surface. This will be evaluated at original block tempera-
ture, because pressure penetration tends to run ahead of temperature
penetration in most cases of practical interest. Indeed, even for very
tight matrix blocks with k= 1078 m? and a large compressibility of
107 Pa™!, with a porosity of 10% and a viscosity of water at ambient
temperature of 107 Pa.s, pressure diffusivity A = 10 m¥s is an order
of magnitude larger than typical thermal diffusivities of rocks. At late
time fracture temperatures will of course penetrate all the way into the
blocks. However, at that time D >> L, so that the precise temperature
choice for evaluating D becomes immaterial. From the requirement
that the fluid flow analog of Equation (5) be satisfied at the block sur-
face, we obtain the counterpart of Equation (6)

pe—Pr _Ap 2t oo, dinA

PP Ap
k{ At ])2 D ox

-3 (15)

0

Here we have abbreviated Ap=p¢— p;. The index f on the pressure
diffusivity A; indicates that this quantity is to be evaluated at block
surface conditions (T, py). In analogy to Equation (7), mass conserva-
tion in the blocks is written as

4 (B, 9B
" vj_¢pc1\f~ k(S

A(x=0) (16)
0

where fluid mobility k(p/u); is also evaluated at the block surface.
When pressure and temperature changes are large, p in the integral in
Equation (16) could vary in highly non-linear fashion. In order to
obtain a calculationally efficient method we insist on evaluating the
integral analytically, and we therefore restrict p and ¢ to a linear
dependence, as follows:

P(Tp)=pi1— e (T =T+ o1 (- o] (172)

oTp) =0 [1 —eR (T=T) +cx (p— pi)] (17b)

Inserting this in Equation (16) and retaining only first-order terms, we
obtain the counterpart of Equation (9) for nonisothermal fluid flow as

k p Ap
(F)yA(==~-1)=¢C [J(t + At) ~- J(t)] —€ [I(t + At) — I(t)](lS)
ops w7 D

Here we have introduced the finite-difference version of the pressure

derivative term in Equation (16). J denotes an integral of the form

Equation (8a), with temperature replaced by  pressure.
c=cp+cgand £= g + &g are total compressibility and expansivity,
respectively.

Equations (15) and (18) are two coupled equations for the parame-
ters r and s of the pressure expansion function Equation (14) in the
blocks. Through the integrals I these are coupled to the temperature
distributions, with coupling strength proportional to expansivity e. In
our implementation in the MULKOM simulator we first calculate, at
each step of the Newton-Raphson iteration process, the temperature
parameters P and Q from Equations (6) and (9). These are then used
to evaluate the integral I from Equation (8a), which is substituted into
Equation (18), and subsequently the pressure parameters 1 and s are
calculated from Equations (15) and (18). The fluid flux from the
biocks to the fractures is obtained by differentiating Equation (14), as
follows:

SRy O | o2y (2R
u"k(u)f ax |, k(l»l)f(D 9] | (19
The finid exchange will also give rise to a sensible-heat term in the
heat balance equation. This term was found to be negligibly small for
single-phase water. All interporosity flow terms are calculated in
MULKOM in a fully coupled and implicit manner during the simula-
tion.

TEST CALCULATIONS

We have evaluated the accuracy of the coupled fluid and heat
exchange scheme by considering an idealized problem involving a sin-
gle matrix block surrounded by a finite-volume fracture (see Figure 4).
Initially, both domains contain single-phase water at greatly different
temperatures and pressures. The parameters for this problem as given
in Table 6 can be considered representative of conditions that may
typically be encountered in geothermal injection operations. The pro-
cess of pressure and temperature equilibration was simulated using the
semi-analytical approximation, and results were compared with
MINC-calculations employing very fine subgridding of the matrix
block.

During initial test calculations it became apparent that thermal
expansion effects on water density are so large and temperature depen-
dent that a substantial improvement over the relationship Equation
(17a) with constant expansivity and compressibility was needed. The
thermal expansion coefficient of water is large, in the sense that mod-
est temperature changes in a system held at constant total fluid density
will produce very large pressure effects. Indeed, in a closed system
the relationship between pressure and temperature changes during -
equilibration is determined by

1
dp =p; (c.dp - £, dT)=0 (20)
so that
d _&
daT CL (21)

with typical values of 5.0 bar/°C at (T, p) = (100°C, 100 bar), and
increasing with temperature to 7.8 bar/°C at (T,p) = (240°C, 50 bar).
The substantial increase of the ratio g /c,. with temperature produces
interesting effects during thermal equilibration of waters of different
temperature. The pressure drop experienced by the hotter water in the
matrix from thermal contraction outweighs the pressure increase of the
colder water in the fractures from thermal expansion. As a conse-
quence, mixture pressures tend to equilibrate at rather low values.
Because of the pronounced temperature dependence of both expan-
sivity and compressibility Equation (17a) is a poor approximation.
Initial calculations with the semi-analytical method gave rather inac-
curate pressure predictions, that were tens of bars too high. This could
be remedied by using time-dependent expansivity and compressibility
in Equation (17a), evaluated at average block temperature, which can
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Ty RTHEREE CHNE a simulation from known parameters as follows:

T =T+ % I(t) (22)
Results for the two single-block problems are shown in Figures S and
6. In Case 1 there is excellent agreement between semi-analytical and
MINC approximations for both pressures and temperatures over many
log-cycles in time. For t> 10° s the pressure drop calculated from the
MINC method flattens out; associated with this is a faster temperature
rise in the MINC calenlation. Closer inspection indicated that these
phenomena were caused by the emergence of two-phase (steam-water)
conditions deep in the matrix block, where temperatures were still
high (approximately 240°C), while pressures had declined down to the
saturated vapor pressure. These phase change and two-phase flow
effects are not represented in the semi-analytical approach. It should
be pointed out that these effects are unlikely to occur in practical cir-
cumstances, where the fracture domain would be connected to a larger
reservoir volume and would in fact be pressurized from injection
operations.

An attempt was made to generate other cases in which no phase
transitions would occur. In order to diminish the strong pressure
decline resulting from thermal equilibration of waters of 240°C and
120°C, respectively, we reduced the relative volume of the fracture
domain to 10% (Case 2, Table 6). (Note that in realistic cases frac-
tures will typically represent at most a few percent of reservoir
volume.) This results in an equilibration temperature of 226 °C, much
closer to the original matrix temperature than in Case 1. Results for
this case are shown in Figure 6. Semi-analytical and MINC tempera-
tures now agree very well over the entire equilibration process, while
pressure agreement is less close at early times. This is caused by the
reduction in fracture volume which amplifies the pressure effects from
temperature changes in the blocks. It is significant that there is never
any pressure excursion. In both cases equilibrium temperatures and
pressures show excellent agreement between semi-analytical and
MINC-resuits. .

When comparing results from the semi-analytical and MINC calcu-
lations, one must keep in mind the extreme sensitivity of water pres-
sures to small density changes. From the level of pressure agreement
shown in Figures 5 and 6 it can be concluded that the interporosity
fluid and heat flow rates calculated from the semi-analytical approxi-
mation agree very closely with those predicted from the MINC
method. Note also that in actual reservoir problems the sensitivity to
small inaccuracies in individual block response will be much reduced
from global flow effects. :

ONE-DIMENSIONAL RADIAL FLOW

The semi-analytical fuid and heat exchange technique was applied to
model cold water injection into a fractured-porous formation in one-
dimensional radial flow geometry. The problem parameters as given
in Table 7 are representative of typical geothermal injection problems
in single-phase liquid reservoirs. Matrix blocks were assumed to be
cubes, and a wide range of block sizes was studied. Figure 7 shows
that pressure buildups calculated with the semi-analytical representa-
tion of interporosity flow agree very well with results obtained from
the MINC method. The buildup for permeable blocks displays vary-
ing curvature with no straight-line segments. It had been observed
previously that nonisothermal injection into fractured media shows
very complex behavior that appears to defy simple analysis methods
(O’Sullivan, 1987, and references therein).

Temperature profiles after 49.3 days of injection are plotted in Fig-
ure 8. It is observed that for small matrix block sizes reservoir
response approaches the uniform porous medium limit, as expected.
For very large block sizes the surface-to-volume ratio asymptotes to
Zero, so that reservoir behavior should again approach a porous
medium limit, but corresponding to only the fracture domain being
present. This is confirmed by the results plotted in Figures 8 and 9.
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Note that most of the width of the temperature fronts for the poro
medium limits is due to numerical dispersion; thermal fronts in a un
form porous medium are known to be sharp, except for rather sm:
heat conduction effects (Bodvarsson, 1972). The broad thermal fron
observed for injection into fractured media are *‘real,’”’ being cause
by the delayed heat transfer from the blocks to the fractures.

Figure 10 shows simulated pressure falloff and temperature buildy
in response to shutting in the injection well after 11.6 days. Notic
that pressure response is insensitive to matrix block size while ten
perature transients depend strongly on block size. This suggests th;
useful information on fracture spacings may be obtainable from ter
perature monitoring following non-isothermal injection.

DISCUSSION AND CONCLUSIONS

We have incorporated an analytical interporosity flow model into
numerical simulator to calculate finid and heat exchange betwee
matrix blocks of low permeability and fluids migrating past thes
blocks in fractures. Qur method uses simple trial functions t
represent flow inside the matrix blocks and across matrix block sur
faces. This offers a means of simulating fluid and heat flow in frac
tured media with no noticeable increase in computing work as com
pared to porous medium simulations. Detailed analysis of heat flov
from a cube suggested that the semi-analytical approximation shoul
provide good accuracy.  Simulations for a two-phase
production/injection problem with phase change and for radial flow ir
nonisothermal injection gave almost perfect agreement with the MINC
method.

The reason why the semi-analytical method performs even better or
reservoir problems than might have been expected from the test results
for an individual matrix block is in the nature of the interplay between
global and interporosity flow. Namely, the aggregate response of
many rack blocks in a reservoir flow problem tends to compensate for
inaccuracies that may be present in the modeling of individual block
response. To see how this comes about, suppose that because of
discretization effects the blocks near the injection well do not deliver
heat to the fluids as rapidly as they should. (This is what actually hap-
pens in the heat exchange problem tabulated in Table 3.) As a conse-
quence fluids will have somewhat lower temperatures when at later
time they sweep past downstream blocks, and hence they will pick up
more heat from those blocks. This compensation of inaccuracies in
individual block response from global reservoir mechanisms is com-
pletely analogous to what was observed in analysis of waterfloods ir
fractured hydrocarbon reservoirs (Wu and Pruess, 1988). It indicates
that satisfactory accuracy in reservoir flow problems should be attain-
able with rather modest accuracy requirements for individual blocks.

A somewhat different approach for approximating the response of
matrix blocks to changing boundary conditions at the block surfaces
was recently developed by Zimmerman et al. 1989, 1990. Thes:
authors constructed trial functions based on early and late time block
response, and showed that such functions can provide good engineer-
ing accuracy for representing flow rates at matrix block surfaces. The
Zimmerman et al. trial functions should be capable of producing goo¢
accuracy for reservoir-type simulation problems with global fracture
flow, but no such implementation has been reported yet.

The semi-analytical treatment of interporosity flow as presented ir
this paper is applicable to multiphase fluid and heat flow problem:
with impermeable matrix blocks (heat exchange only), and for single
phase fluid and heat flow problems with permeable matrix block:
(coupled fluid and heat exchange). For single phase flow problemy
involving gas instead of liquid the trial function for fluid pressure
Equation (14), would be written in terms of p° instead of p. Applica
tion of the method to chemical transport in fractured media is straight
forward, because chemical transport in low-permeability blocks o
rock can be described in analogy to heat conduction (Birkhoelzer e
al., 1990). The problem of multiphase fluid and heat exchange witt
permeable blocks is considerably more difficult, because of highls
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near relative permeability and capillary pressure effects, with
»nal complications from gravity drainage. These processes may
e amenable to semi-analytical treatment, instead requiring a
discretized numerical approach.
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NOMENCLATURE

area, m?

heat capacity, J/kg °C

compressibility, Pa™

penetration depth for heat conduction, m
penetration depth for fluid flow, m

temperature integral, defined in Equation (8a), °C - m
pressure integral, Pa - m

permeability, m?

heat conductivity, W/m - °C

side length of cube, m

parameter in temperature expansion, Equation (1)
pressure, Pa or bar (= 10° Pa)

pressure change.in fractures, Pa

proximity function, dimensionless

parameter in temperature expansion, Equation (1)
parameter in pressure expansion, Equation (14)
parameter in pressure expansion, Equation (14)
time, s

temperature, °C

.-].-pm»:,os,g*u oEE R e U g 0L
B

AT temperature change in fractures, °C
u fluid flux, kg/m?® - 5
ug heat flux, W/m?
v volume, m®
X distance from block surface, m
reek
B
Y geometric coefficients in temperature integral, Equation (8b)
&
s thermal diffusivity, m%/s
A pressure diffusivity, m%/s
P density, kg/m®
€ expansivity, °C™*
H viscosity, Pa - s
bscripts
cond conductive
f fracture
i initial
L liquid
ma matrix
n grid block index
per permeable
R rock
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Table 1. Parameters for test problem (heat exchange with unit cube).

side length of cube 1m

rock density 2650 kg/m®
specific heat 1000 J/kg°C
heat conductivity 2.1 W/m°C

initial temperature 300°C -
surface temperature
fort>0 100°C

Table 2. Heat flow rates from unit cube.

Heat Flow Rate (W)

semi-

(s) exact 3-D  exact 1-D  analytical MINC

1 1.410E6 1.592E6 1.821E6 1.315E6
10 4987E5 5.000ES 5.038E5 6.122ES
107 1.534E5 1.547E5 1.546E5 1.683ES
10° 4.429E4 4.547E4 4.514E4 4.913E4
10t 1.020E4 1.093E4 1.063E4 1.207E4
10° 6.354E2 4.414E2 9.478E2 8.372E2
10° 427SE-7 2.610E-10 1.021E1  5.676E-2

Table 3. Cumulative heat flows from unit cube.

Cumulative Conductive Heat Transfer (MJ)
Time -

semi-
(s) exact3-D  exact1-D  analytical MINC

1 3.285 3.286 2.645 1.22
10 10.04 10.05 9.079 8.52
10° 31.31 31.44 28.40 30.28
10° 94.73 95.97 86.09 93.52
10 259.6 265.0 235.7 261.8
10° 503.0 515.9 4539 503.3
108 530.0 530.0 5249 5299




Table 5. Cumulative heat transfer from rocks to finids in 1/8 of five-spot.

Table 4. Specifications of five-spot problem.

Formation
rock grain density 2650 kg/m?
specific heat 1000 J/kg°C
heat conductivity 2.1 W/m°C
permeable volume fraction 2%
porosity in permeable domain  50%
impermeable blocks: cubes

with side length 50m, 250 m
effective permeability 6.0 x 1075m?
thickness 305 m
relative permeability:
Corey curves with
Sy =0.30, 5,,=0.05
initial temperature 300°C
initial liquid saturation 0.99
initial pressure 85.93 bar
Production/injection
pattern area 1 km?
distance between producers
and injectors 707.1m
production rate (*) 30kg/s
injection rate (*) 30 kg/s
injection enthalpy 500 kJ/kg

(*) full-well basis

Table 6. Specifications for single-block fluid and heat exchange.

Matrix Data
cube size 10x 10 10m’
permeability 107" m? (10 ud)
porosity 5%
compressibility 10°Pa™!
rock grain density 2650kg/m’
specific heat 1000 J/kg °C
heat conductivity 2.1 W/m °C
Fracture Data

Case 1 Case 2
volume fraction 0.5 0.1
porosity in fracture domain 5% . 5%
Initial Conditions

Case 1 Case 2
(T.p) (T.p)

fractures (100 °C, 100 bar) (100 °C, 150 bar)
matrix (240 °C, 50 bar) (240 °C, 100 bar)

Cumulative Conductive Heat Transfer (10 J)
Time
(years) Fracture Spacing 50 m Fracture Spacing 250 m
MINC  Semi-analytical | MINC = Semi-analytical
1 1.07 1.07 .83 .85
2 2.11 2.10 1.77 1.79
5 5.22 5.18 4.64 4.67
10 10.33 10.29 9.40 9.46
15 15.48 15.44 14.10 14.16
20 20.43 20.38 18.70 18.79
25 25.24 25.19 23.21 23.33
30 30.14 30.10 27.60 27.75
35 35.05 35.00 31.91 32.07

Table 7. Specifications of one-dimensional radial injection problem

Formation Data
| thickness 100 m
permeability 50-10%m?  (50md)
average fracture porosity 1%
matrix blocks: cubes
block volumes (range) 1-10'2m3
matrix permeability 1077 m? (10 pd)
matrix porosity 8%
pore compressibility 107 Pa!
rock grain density 2600 kg/m®
rock specific heat 920 Jkg°C
formation heat conductivity  2.51 W/m °C
Initial Conditions
temperature 240°C
pressure 100 bar
Well Conditions
fully penetrating
wellbore radius 0.1lm
injection rate 37.5 kg/s
injection enthalpy 500 kl/kg

(SPE 18426)
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Figure 1. The concept of multiple interacting continua (MINC) for an

idealized fracture system.

I

Figure 2. Computational grid five-spot production injection problem a

- injector, P - producer).
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Figure 3. Temperature profiles in the fractures of a five-spot along a
line connecting production and injection wells after 36.5 years of pro-

duction and injection.
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Figure 4. Schematic of single-block problem for evaluating accuracy

of semi-analytical fluid and heat exchange.
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Figure 5. Fracture pressures and temperatures in single-block problem
(Case 1; see Table 6).
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Figure 6. Fracture pressures and temperatures in single-block problem
(Case 2; see Table 6).
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Figure 7. Simulated pressure buildups for non-isothermal injection
into a fractured reservoir (10 X 10 X 10 m? cubic matrix blocks)
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Figure 8. Temperature profiles in the fractures after 49.3 days of injec-
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- Figure 9. Location of thermal front after 49.3 days of injection as

function of matrix block size.
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Figure 10. Temperature and pressure transients following shut-in o!
injection well after 11.6 days.
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